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Predicting drug side-effect profiles: a chemical
fragment-based approach
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Abstract

Background: Drug side-effects, or adverse drug reactions, have become a major public health concern. It is one of

the main causes of failure in the process of drug development, and of drug withdrawal once they have reached

the market. Therefore, in silico prediction of potential side-effects early in the drug discovery process, before

reaching the clinical stages, is of great interest to improve this long and expensive process and to provide new

efficient and safe therapies for patients.

Results: In the present work, we propose a new method to predict potential side-effects of drug candidate

molecules based on their chemical structures, applicable on large molecular databanks. A unique feature of the

proposed method is its ability to extract correlated sets of chemical substructures (or chemical fragments) and

side-effects. This is made possible using sparse canonical correlation analysis (SCCA). In the results, we show the

usefulness of the proposed method by predicting 1385 side-effects in the SIDER database from the chemical

structures of 888 approved drugs. These predictions are performed with simultaneous extraction of correlated

ensembles formed by a set of chemical substructures shared by drugs that are likely to have a set of side-effects.

We also conduct a comprehensive side-effect prediction for many uncharacterized drug molecules stored in

DrugBank, and were able to confirm interesting predictions using independent source of information.

Conclusions: The proposed method is expected to be useful in various stages of the drug development process.

Background

Drug side-effects, or adverse drug reactions, have

become a major public health concern. It is one of the

main causes of failure in the process of drug develop-

ment, and of drug withdrawal once they have reached

the market. As an illustration of the extent of this pro-

blem, serious drug side-effects are estimated to be the

fourth largest cause of death in the United States, result-

ing in 100,000 deaths per year [1]. In order to reduce

these risks, many efforts have been devoted to relate

severe side-effects to some specific genetic biomarkers.

This so-called pharmacogenomics strategy is a rapidly

developing field, especially in oncology [2]. The aim is

to prescribe a drug to patients who will benefit from it,

while avoiding life threatening side-effects [3].

From the viewpoint of systems biology, drugs can be

regarded as molecules that induce perturbations to

biological systems consisting of various molecular inter-

actions such as protein-protein interactions, metabolic

pathways and signal transduction pathways, leading to

the observed side-effects [4]. Actually, the body’s

response to a drug reflects not only the expected favor-

able effects due to the interaction with its target, but

also integrates the overall impact of off-target interac-

tions. Indeed, even if a drug has a strong affinity for its

target, it also often binds to other protein pockets with

varying affinities, leading to potential side-effects. This

concept has been illustrated by comparing pathways

affected by toxic compounds and those affected by non-

toxic compounds, establishing links between drug side-

effects and biological pathways [5].

Although preclinical in vitro safety profiling can be

used to predict side-effects by testing compounds with

biochemical and cellular assays, experimental detection

of drug side-effects remains very challenging in terms of

cost and efficiency [6]. Therefore, in silico prediction of

potential side-effects early in the drug discovery process,

before reaching the clinical stages, is of great interest to
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improve this long and expensive process and to provide

new efficient and safe therapies for patients. Expert sys-

tems based on the knowledge of human experts have

been developed to predict the toxicity of molecules

based on the presence or absence of toxic moieties in

their chemical structure. For example, they predict

potential toxicity such as mutagenicity, but they do not

provide prediction for numerous potential side-effects in

human [7]. Recently, several computational methods for

predicting side-effects have been proposed, and the

methods can be categorized into pathway-based

approaches and chemical structure-based approaches,

which are respectively reviewed below.

The principle of pathway-based approaches is to relate

drug side-effects to perturbed biological pathways or

sub-pathways because these pathways involve proteins

targeted by the drug. In a pioneer work to illustrate this

concept, it has been shown that drugs with similar side-

effects tend to share similar profiles of protein targets

[8]. The authors further exploited this characteristic to

predict missing drug targets for known drugs using

side-effect similarity. Fukuzaki et al has proposed a

method for relating side-effects to cooperative pathways

defined as sub-pathways sharing correlated modifica-

tions of gene expression profiles in presence of the drug

of interest [9]. However, this method requires gene

expression data observed under chemical perturbation

of the drug. Xie et al developed a method to identify

off-targets for a drug by docking this drug into proteins

binding pocket similar to that of its primary target has

been proposed [10]. The drug-protein interactions with

the best docking scores are incorporated to known bio-

logical pathways, which allows us to identify potential

off-target binding networks for this drug. However, the

performance of this method depends heavily on the

availability of protein 3D structures and known biologi-

cal pathways, which limits its large-scale applicability.

The principle of chemical structure-based approaches

is to relate drug side-effects to their chemical structures.

Scheiber et al developed a method that identifies chemi-

cal substructures associated to side-effects [11]. How-

ever, this method does not provide an integrated

framework to predict side-effects for any drug molecule.

Yamanishi et al proposed a method to predict pharma-

cological and side-effect information using chemical

structures, which is then used to infer drug-target inter-

actions [12]. However, the method cannot be applied to

predict high-dimensional side-effect profiles.

In the present work, we develop a new method to pre-

dict potential side-effect profiles of drug candidate

molecules based on their chemical structures, which is

applicable on large molecular databanks. A unique fea-

ture of the proposed method is its ability to extract cor-

related sets of chemical substructures (or chemical

fragments) and side-effects. This is made possible using

sparse canonical correlation analysis (SCCA). To our

knowledge, no other computational method has been

reported for both predicting drug side-effects and asso-

ciating these side-effects with the presence of identified

chemical substructures. In the results section, we show

the usefulness of the proposed method on the prediction

of 1385 side-effects in the SIDER database from the che-

mical structures of 888 approved drugs. These predic-

tions are performed with simultaneous extraction of

correlated ensembles formed by a set of chemical sub-

structures shared by drugs that are likely to have a set of

side-effects. We also conduct a comprehensive side-effect

prediction for many uncharacterized drug molecules

stored in DrugBank, and were able to confirm interesting

predictions using independent source of information.

Results

Data representation

Side-effect keywords were obtained from the SIDER

database which contains information about marketed

medicines and their recorded adverse drug reactions

[13]. This led to build a dataset containing 888 drugs

and 1385 side-effect keywords. Each drug was repre-

sented by a 1385 dimensional binary profile y whose ele-

ments encode for the presence or absence of each of the

side-effect keywords by 1 or 0, respectively. The left

panel in Figure 1 shows the index-plot of the number of

associated drugs for each side-effect, and the right panel

in Figure 1 shows the histogram of the number of asso-

ciated drugs for each side-effect. There are 61,102 asso-

ciations between drugs and side-effect terms in the

dataset, and each drug has 68.8 side-effects on average.

This dataset is used to evaluate the performance of the

proposed methods in this study.

To encode the drug chemical structure, we used a fin-

gerprint corresponding to the 881 chemical substructures

defined in the PubChem database [14]. Each drug was

represented by an 881 dimensional binary profile x whose

elements encode for the presence or absence of each Pub-

Chem substructure by 1 or 0, respectively. A description

of the 881 chemical substructures can be found at the

website of PubChem [14]. There are 107,292 associations

between drugs and chemical substructures in the dataset,

and each drug has 120.8 substructures on average.

The other drug information (e.g., ATC code, drug

category, protein target) was obtained from DrugBank

[15]. This information is used to ease biological inter-

pretation in the side-effect prediction for uncharacter-

ized drugs.

Performance evaluation

We applied nearest neighbor (NN), support vector

machine (SVM), ordinary canonical correlation analysis
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(OCCA), and sparse canonical correlation analysis

(SCCA) to predict drug side-effect profiles. We also

applied random assignment procedure (Random) as a

baseline method. For the details of the algorithm of

each method, see the Methods section. First we tested

five methods: Random, NN, SVM, OCCA and SCCA for

their abilities to predict known side-effects profiles by

the following 5-fold cross-validation. Drugs in the side-

effect data were split into 5 subsets of roughly equal

size, each subset was then taken in turn as a test set,

and we performed the training on the remaining 4 sets.

For accurate comparison, we kept the same experimen-

tal conditions, where the same training drugs and test

drugs are used across the different methods in each

cross-validation fold. We evaluated the performance of

each method by the ROC (receiver operating character-

istic) curve [16], which is a graphical plot of the sensitiv-

ity, or true positive rate, against false positive rate (1-

specificity or 1-true negative rate). The ROC curve can

be represented by plotting the fraction of true positives

out of the positives (true positive rate) vs. the fraction of

false positives out of the negatives (false positive rate),

where true positives are correctly predicted side-effects

and false positives are incorrectly predicted side-effects

based on the prediction score for various threshold

values above which the output is predicted as positive

and negative otherwise.

Figure 2 shows the ROC curves for the five different

methods based on the cross-validation experiment,

where the prediction scores for all side-effects were

merged and a global ROC curve was drawn for each

method. Parameters in each method were chosen by

using the AUC (area under the ROC curve) score as an

objective function. The best result for NN was obtained

by the number of neighbors k = 50. The best result for

SVM was obtained by Gaussian RBF kernel with width

parameter s = 0.2 and regularization parameter C = 1.
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Figure 2 ROC curves in the 5-fold cross-validation. Comparison

of the performance between nearest neighbor (NN), support vector

machine (SVM), ordinary canonical correlation analysis (OCCA) and

sparse canonical correlation analysis (SCCA).
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Figure 1 Characteristics of side-effect data. The left panel shows the index-plot of the number of associated drugs for each side-effect, and

the right panel shows the histogram of the number of associated drugs for each side-effect.
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The best result for OCCA was obtained by m = 20. The

best result for SCCA was obtained by the following

parameters: c1 = c2 = 0.05 and m = 20. The resulting

AUC scores for Random, NN, SVM, OCCA and SCCA

are 0.6088, 0.8917, 0.8930, 0.8651 and 0.8932, respec-

tively. It seems that the proposed SCCA method outper-

forms OCCA and its performance is at a competitive

level with NN and SVM. This result demonstrates the

high-performance prediction power of the proposed

method on side-effect prediction in practical applica-

tions. Next we evaluated the prediction accuracy of pre-

dicted side-effects for each drug, which is the ratio of

correctly predicted side-effects against the number of

predicted side-effects with high prediction scores. Figure

3 shows the boxplots for the prediction accuracies of

top 10 ranked predictions (top panels) and top 100

ranked predictions (bottom panels). In the case of top

10 predictions SVM seems to work as well as NN and

SCCA, while in the case of top 100 predictions SVM

seems to work worse than other methods. This result

suggests that SVM-based prediction is useful only for

highly ranked predictions.

We also examined the prediction accuracy for indivi-

dual side-effects. We draw the ROC curve for each side-

effect, and computed the AUC score for each side-effect.

Figure 4 shows the boxplot representing the distribution

of the resulting AUC scores for 1385 side-effects in each

method. Parameters in each method were chosen by

using the mean of AUC scores as an objective function.

The best result for NN was obtained by the number of

neighbors k = 10. The best result for SVM was obtained

by Gaussian RBF kernel with width parameter s = 0.1

and regularization parameter C = 1. The best result for

OCCA was obtained by m = 150. The best result for

SCCA was obtained by the following parameters: c1 = c2
= 0.2 and m = 500. In terms of the mean of the AUC

scores, SVM seems to work the best, followed by SCCA,

OCCA, and NN, but the AUC scores of SVM is more

diverse than those of other methods. Compared with

other methods, the difference between good accuracy

and bad accuracy is extremely large, which suggests that

the prediction success of SVM is not robust and

depends on a given side-effect term.

We are also interested in biological interpretability of

the outputs of the proposed method to understand the

relationship between chemical substructures and side-

effects. We focused on OCCA and SCCA, because they

are the only methods which can correlate two heteroge-

neous high-dimentional data sets. We examined the

weight vectors for drug chemical substructures and drug

side-effects in OCCA and SCCA. Figure 5 shows the

index-plot of weight vectors in OCCA, and Figure 6
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Figure 3 Boxplot of the prediction accuracy of predicted side-effects for each drug. Prediction accuract of top 10 ranked predictions (top

panels) and top 100 ranked predictions (bottom panels). Comparison of the performance between nearest neighbor (NN), support vector

machine (SVM), ordinary canonical correlation analysis (OCCA) and sparse canonical correlation analysis (SCCA).
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shows the index-plot of weight vectors in SCCA, where

the first eight canonical components are shown. It

seems that almost all elements in the weight vectors in

OCCA are non-zero and highly variable, while most of

the elements in the weight vectors in SCCA are zero in

each component, implying that SCCA can select a small

number of features as informative drug substructures

and side-effects. In practice, we found that it is very dif-

ficult to interpret the results when there are too many

non-zero weight elements like with OCCA. This result

suggests that the proposed SCCA method provides us

with more selective and informative correlation between

drug substructures and side-effects without loosing per-

formance. This highlights the significant performance of

the proposed method in terms of easier interpretation.

In addition, it should be pointed out that the other

methods NN and SVM do not provide any clue for bio-

logical interpretation.

Finally, we investigated the computational cost for each

method. All methods were implemented using R software

on a Linux with 2.16 GHz Intel Core 2 Duo processor

and 8 GB RAM. The total execution times of the cross-

validation experiment for NN, SVM, OCCA, and SCCA

are 2, 5885, 58, and 76 seconds, respectively. Figure 7

shows the total execution times of the cross-validation

experiment between the four different methods in the

scale of base10 logarithm. It seems that NN is the fastest,

followed by OCCA, SCCA, and SVM. As expected, SVM

is extremely slower than the other methods, because it

requires individual classifiers for all side-effect keywords

(1385 SVM classifiers are required in this study).

Extracted sets of drug substructures and side-effects

From biological viewpoints, we examined the extracted

sets of drug substructures and drug side-effects in each

canonical component extracted using SCCA. Note that

the other methods (NN, SVM, and OCCA) do not enable

us to interpret the biological features. Each component

consists of only a small number of substructures and a

small number of side-effects that are correlated with each

other according to SCCA. For each component, two lists

of drugs are provided: one containing drugs with a high

score for the associated substructures, and one contain-

ing drugs with a high score for the associated side-effects.

We examined the results when we used the best para-

meters which provided the highest AUC for all side-effect

terms. Because of space limitation, the results for a few

canonical components will be discussed in this paper.

The results for all canonical components can be obtained

from Additional file 1 in the Supplemental materials or

from the web supplement.

A canonical correlation coefficient is computed to

evaluate the importance of each component. The p-

values for the canonical correlation coefficients of top
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Figure 4 Boxplot of the AUC (under the ROC curve) scores for individual side-effects. Comparison of the performance between nearest

neighbor (NN), support vector machine (SVM), ordinary canonical correlation analysis (OCCA) and sparse canonical correlation analysis (SCCA).

Pauwels et al. BMC Bioinformatics 2011, 12:169

http://www.biomedcentral.com/1471-2105/12/169

Page 5 of 13



20 components considered in the paper are almost

zeros. The components with high canonical correlation

tend to contain rare substructures present only in very

few drugs, which are associated to rare side-effects

mainly observed for these drugs. These components

contain quite specific substructure/side-effect canonical

correlations whose interpretation is straightforward. For

example, component 6 associates the presence of a

boron atom, only found in the bortezomid molecule in

the SIDER database, to a short list of neurological side-

effects observed only for this drug. Similarly, component

20 essentially clusters a substructure defined by a car-

bon atom bearing both a bromide atom and a nitrogen

atom. This substructure is found only in the bromocrip-

tine molecule of the SIDER database, with two side-

effects observed only for this drug (namely, pregnancy

induced hypertension and toxemia of pregnancy).

In the general case of components containing more

frequent substructures, drugs that contain these sub-

structures tend to present side-effects associated to this

component, but this correspondence is not strict.

Reciprocally, most drugs that have high scores for the

side-effects contain the chemical substructures of this

component, but not all. Analysis of component 18 can

illustrate these points. Component 18 has a high canoni-

cal correlation of 0.739 (the p-value is almost zero). It

contains two substructures, the major one being the

presence of “four or more saturated or aromatic nitro-

gen-containing rings of size 5”, associated to four side-

effects. This substructure is present in five drugs of the

SIDER database: verteporfin, porfimer, goserelin, busere-

lin, and leuprolide. Verteporfin and porfimer contain a

porphyrin group displaying four nitrogen-containing

rings of size 5, as shown in Figure 8(A). Goserelin,

buserelin, and leuprolide are synthetic 9-residue peptide

analogues of the gonadotropin releasing hormone. Their

sequences contain amino-acids whose chemical struc-

tures present nitrogen-containing rings of size 5, found

in side chains of proline, histidine or tryptophane resi-

dues, as shown in Figure 8(B), (C) and Figure 8(D).

Overall, four or more nitrogen-containing rings of size

5 are indeed present in their structures. Note however
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Figure 5 Index-plot of weight vectors for drug substructures and side-effects in OCCA. Index-plot of weight vectors for drug substructures

(left) and side-effects (right) extracted by ordinary canonical correlation analysis (OCCA).

Pauwels et al. BMC Bioinformatics 2011, 12:169

http://www.biomedcentral.com/1471-2105/12/169

Page 6 of 13



that these rings are different from those of the por-

phyrin group. Although goserelin, buserelin and leupro-

lide on the one hand, and verteporfin and porfimer on

the other hand, belong to totally unrelated families of

molecules, they share common substructures, at least

according to their definition in the present study. All

drugs from these two families, but verteporfirin, have

high scores for side-effects of this component. This

result indicates that side-effects of a drug is usually

associated to the presence of given substructures,

although it may be modulated by the overall molecular

structure, as in the case of verteporfirin. This property

is also well known in the context of drug structure-

activity relationship, which usually depends on given

molecular scaffolds, but which is modulated by the pre-

sence of additional chemical groups.

Reciprocally, all drugs that have high scores for side-

effects of component 18 contain the chemical substruc-

tures of this component, but risperidone, as shown in

Figure 9. Its structure is very different from those of

porphyrins or gonadotropin analogues. It is an antago-

nist of the dopamine and of the serotonine receptors. It

belongs to the class of antipsychotic agents (see Drug-

Bank), and its high score for side-effects of component

18 cannot be explained in a straightforward manner.

However, in some cases, we were able to relate such

unexpected results to the targets of these drugs, as illu-

strated by component 13. This component has a
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Figure 6 Index-plot of weight vectors for drug substructures and side-effects in SCCA. Index-plot of weight vectors for drug substructures

(left) and side-effects (right) extracted by sparse canonical correlation analysis (SCCA).
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Figure 7 Computational cost. Total execution time of the cross-
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canonical correlation of 0.716 (the p-value is almost

zero), and contains substructures that are essentially

present in proton pump inhibitors used as anti-ulcer

agents like omeprazole. It is also present in a small

number of drugs from other families like pramipexole

(an antiparkinson agent) or riluzone (a neuroprotective

agent). As expected, these anti-ulcer agents are found in

the high scoring drugs for side-effects in component 13,

together with pramipexole and riluzone, although with

lower scores. As for component 18, other drugs that do

not contain the high scoring substructures of compo-

nent 13 are however found among high scoring drugs

for side-effects in this component. This is the case of

ropinirole. Interestingly, ropinirole is an antiparkinson

agent that targets the same protein as pramipexole,

namely dopamine receptor.

This result suggests that drugs sharing some protein

targets may also share some side-effects. It is also con-

sistent with the idea that the global biological effect of a

molecule (both beneficial effects and adverse side-

effects) is related to its overall profile of protein targets.

Taken together, our results indicate that the side-effects

of a drug are modulated both by its substructures and

by its targets. Note that these two factors are connected

since similar molecules tend to share similar protein tar-

gets, but this property was not exploited in the present

study.

Comprehensive side-effect prediction for uncharacterized

drugs

We then evaluated the interest of the proposed method

for prediction of side-effects for uncharacterized drugs.

We predicted potential side-effects for drugs in

 
Figure 9 Chemical structure of risperidone. Two dimensional

graph structure of risperidone.
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Figure 8 Nitrogen-containing rings of size 5. (A) Porphyrin

group, (B) Proline residue, (C) Histidine residue, (D) Tryptophane

residue.
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DrugBank for which side-effect information was not

available in the SIDER database. We focused on 2883

drugs which are labeled as “small molecules” in Drug-

Bank. We first make general comments on the results

and then present more details for a few well-known spe-

cific examples. All the prediction results can be obtained

from Additional file 2 in the Supplemental materials or

from the web supplement.

Very frequent side-effects, such as “headache” or “nau-

sea” are found in SIDER, and they occur with many

drugs. These side-effects are not specific, and they do

not appear for a well defined drug category. They are

the most frequently predicted side-effects, but they

hardly appear with the highest prediction scores for a

given drug, which is consistent with the fact that they

are common reactions. However, we also find more spe-

cific side-effects which are related to special types of

drugs. For example, steroids may lead to “striae”, or “lin-

ear atrophy”, which results in local dermal structure

atrophy and skin depigmentation [17]. Indeed, this key-

word is mainly found for steroid molecules in SIDER.

The top 30 drugs predicted to have this side-effect are

also steroids, which is consistent with literature and

training data. Moreover, “global amnesia”, a very specific

keyword in SIDER, is one of the most striking syn-

dromes in clinical neurology whose underlying causes

are not well known [18]. 14 drugs catch a high predic-

tion score for this keyword. Among them, one is antic-

holesteremic, three are antipsychotics, and the others

are experimental molecules whose categories are not

known. Therefore, three out of four drugs with known

indications are related to cognitive functions, which is

consistent with the predicted side-effect nature.

Although the accuracy of all the predictions was not dis-

cussed here, the results are consistent with the available

biological and medical information.

We also checked famous examples of withdrawn

drugs. Rimonabant (DB06155 in DrugBank) is an anti-

obesity agent. It was rejected for approval in the United

States, but it was accepted in Europe in 2006. In october

2008, the European Medicines Agency recommended

suspension of its marketing authorization because of

serious psychic side-effects, mainly severe depression.

Indeed, this drug is active in the central nervous system,

which may trigger very broad and complex psychic

mechanisms. Consistent with this, in our prediction pro-

file, the “borderline personality disorder” and “posttrau-

matic stress disorder” keywords are found in the ten top

ranking keywords for this drug. In other words, our

method would have foreseen potential psychoactivity for

rimonabant. Furthermore, the method provides a potential

rationale for appearance of these psychotic effets. Rimona-

bant contains the substructure shown in Figure 10. This

substructure is also found in the alprazolam molecule

used in the treatment of psychic disorders (a molecule in

SIDER). Interestingly, among the 165 molecules of Pub-

Chem that also share this substructure and for which

pharmacological annotation is available, 40 are classified

as “anti-anxiety agents”. A reasonable hypothesis to

explain rimonabant’s severe side-effects may be the pre-

sence of this substructure, together with the nature of its

protein target (namely, the cannabinoid receptor). Terfe-

nadine (DB00342 in DrugBank) is an anti-allergic agent

which was withdrawn by the U.S. Food and Drug Admin-

istration in 1997 because of toxic effects on heart rhythm.

The “Aortic stenosis” and “aortic valve incompetence” key-

words rank 9-th and 11-th among the predicted side-

effects for this drug. These related side-effects are known

to often lead to arrhythmias [19], as observed for this

drug. In this case again, our method would have foreseen

potential severe cardiac side-effects.

Discussion
In this paper we showed the usefulness of the proposed

SCCA method in the analysis of chemical structures and

side-effects, but there are several limitations on SCCA.

One main difficulty of using SCCA is to choose appro-

priate sparsity parameters and appropriate number of

components. High sparsity promoting parameters would

lead to an over-sparse model in all the cases, which

might be misleading in the interpretation if the degree

of sparsity was not tuned carefully. The optimal para-

meters value depends highly on the definition of the

objective function to be investigated in the cross valida-

tion. We evaluated both global prediction accuracy,

involving all possible drug-sideeffect associations, and

local accuracy considering each sideeffect keyword inde-

pendantly. Those two evaluation procedures did not

lead to the same optimal parameter values (it varies

between 0 and 1). The definition of an appropriate

objective function in the cross-validation is an important

issue. There remains much room to develop a more

appropriate way to choose the parameters, depending

Figure 10 Rimonabant substructure selected by the proposed

method to be a clue of psychoacticity. The substructure of

Rimonabant is selected to be a clue of psychoacticity.
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on the goal of the analysis. When the goal is the global

accuracy (accuracy for all side-effects for each drug), the

sparsity parameter producing the best results tends to

be very low, which produces canonical components

associated with very few substructures and side-effects

as shown in the results section. On the other hand, the

goal is the local accuracy (accuracy for individual side-

effects), the sparsity parameter producing the best

results tends to be relatively high, which produces cano-

nical components associated with a larger number of

substructures and side-effects. The extracted features

based on SCCA is also influenced by the procedure of

data normalization. In this study we normalized two

data sets by centering and scaling with unit variance. In

our experience, when the scaling is performed on data

sets, SCCA tends to extract less frequent features (both

side-effects and chemical substructures). On the other

hand, when the scaling is not performed on data sets,

SCCA tends to extract more frequent features (both

side-effects and chemical substructures). Therefore, an

appropriate data normalization procedure is supposed to

be performed taking into account the objective in prac-

tical applications. For example, if the user wants to

extract rare features, the scaling is encouraged, but

otherwise, the scaling is not necessary.

Another possible statistical method with high interpret-

ability would be a decision tree learner or a rule learner.

However, these methods can be applied to only one

response variable (one side-effect term in this study). For

example, if the decision tree method [20] is applied to

the problem addressed in this paper, it requires learning

for all side-effects separately. We then need to interpret

1385 resulting trees, so it is quite difficult to make a glo-

bal interpretation. Note that we have two heterogeneous

high-dimensional data sets: drug chemical substructures

and drug side-effects, and we are interested in joint

extraction of a subset of chemical substructures and a

subset of side-effects which are suspected to be corre-

lated with each other. It would be interesting to extend

the decision tree framework to analyze the correlation

between two heterogeneous high-dimensional data, but it

is out of scope in this paper.

The proposed methods depend highly on the pre-defi-

nition of chemical substructures, and the terminology of

side-effect keywords. Future development could evaluate

the performance of using other fingerprints. For exam-

ple, commercial softwares such as Daylight or Dragon

provide drug structure descriptors, and commercial

databases such as PharmaPendium provide other side-

effect terms. Another interesting research direction is to

extract informative chemical sub-structures directly

from the raw structured data (e.g., 2D or 3D graph

structures for drugs) without using pre-defined feature

representation. Recently, a data mining technique has

been proposed in order to extract complex graph fea-

tures, which do not require the pre-definition of feature

vectors representing each molecule [21-27]. A promising

future work would be an extension of such graph

mining techniques in the context side-effect prediction.

Conclusion

In this paper we proposed a novel method to predict

potential side-effect profiles of drug candidate molecules

based on their chemical structures using sparse canoni-

cal correlation analysis (SCCA). The method is compu-

tationally efficient and is applicable on large datasets.

The originality of the proposed method lies in the inte-

gration of chemical space and pharmacological space in

a unified framework, in the extraction of correlated sets

of chemical substructures and side-effects, and in the

prediction of a large number of potential side-effects at

a time. To our knowledge, no previous work gathers all

these features.

The proposed method is expected to be useful in var-

ious ways and at various stages of the drug development

process. At early stages, among several active drug can-

didates, the method could help to choose the molecules

that should further continue the process and those that

should be dropped. It could also help to find new indi-

cations for known drugs, a process named drug repur-

posing. Indeed, side-effects of drugs used in a given

pathology can be viewed as a beneficial effect in another

pathology. Sildenafil is a famous example of such drug

repositioning. The method could help to identify chemi-

cal substructures of known drugs that might participate

in the appearance of a given side-effect. These substruc-

tures could be used as building blocks in fragment-

based drug discovery approaches [28] for pathologies in

which this side-effect could be positively exploited.

Methods

We propose five possible methods to predict drug side-

effect profiles from the chemical structures.

Random assignment (Random)

To evaluate how difficult the problem considered in this

paper is, we apply a random assignment procedure, that

is, we use the 0/1 ratio to assign a binary label to each

test drug randomly. For example, if the ratio in given

training data is 90%, we can assign zero for 90% of

examples in test; otherwise 1. This method is used as a

baseline method in this study.

Nearest neighbor (NN)

The most straightforward approach is to apply the near-

est neighbor (NN), which predicts a given drug x to

have the same side-effects as those of the drug (in a

training set) whose chemical substructure profile is the
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most similar. For each query drug, we look for k nearest

neighbors, and if k’ of k have a side-effect, we assign the

prediction score of k’/k to the query drug. We repeat

this procedure for q side-effects.

Support vector machine (SVM)

A more sophisticated approach would be to apply a

supervised binary classification method for predicting

whether a given drug x has a side-effect or not, and

repeat this process for all q side-effects. The support

vector machine (SVM) is a well-known binary classifier,

and it has become a popular classification method in

bioinformatics [29] and chemoinformatics [21] because

of its high-performance prediction ability [30]. We test

several kernel functions such as linear kernel, Gaussian

RBF kernel with various width parameters, and polyno-

mial kernel with various degree parameters. Note that

this strategy needs to construct q individual SVM classi-

fiers for q side-effects, so it will require considerable

computational burden, because q is quite huge in practi-

cal applications (q is 1385 in this study).

Ordinary canonical correlation analysis (OCCA)

Suppose that we have a set of n drugs with p substruc-

ture features and q side-effect features. Each drug is

represented by a chemical substructure feature vector x

= (x1 , ..., xp )T , and by a side-effect feature vector y =

(y1 , ..., yq )
T .

Consider two linear combinations for chemical sub-

structures and side-effects as ui = aT xi and vi = bT yi (i

= 1, 2, ..., n), where a = (a1, ..., ap)
T and b = (b1 , ..., bq

)T are weight vectors. The goal of ordinary CCA is to

find weight vectors a and b which maximize the follow-

ing canonical correlation coefficient:

ρ = corr(u, v) =

∑n
i=1 αT

xi · βT
yi

√

∑n
i=1 (αTxi)2

√

∑n
i=1 (βTyi)

2

, (1)

Where
∑n

i=1 ui = 0 (resp.
∑n

i=1 vi = 0) is assumed and

u (resp. v) is called canonical component for x (resp. y)

[31].

Let × denote the n × p matrix defined as X = [x1 , ...,

xn]
T , and let Y denote the n × q matrix defined as Y =

[y1 , ..., yn ]T . The columns of X and Y are assumed to

be centered and scaled. Then the maximization problem

can be written as follows:

max{αTXTYβ} subject to

αTXTXα = 1, βTYTYβ = 1,
(2)

In other high-dimensional problems, it is known that

good results can be obtained by treating the covariance

matrix as a diagonal matrix [32,33], as suggested in [34].

Therefore, we substitute identity matrices for XT X and

YT Y , and consider the following optimization problem:

max{αTXTYβ} subject to ||α||22 = 1, ||β||22 = 1. (3)

Sparse canonical correlation analysis (SCCA)

In the OCCA, the weight vectors a and b are not

unique if p or q exceeds n. In addition, it is difficult to

interpret the results when there are many non-zero ele-

ments in the weight vectors a and b. In practical appli-

cations, especially when p and q are large, we want to

find a linear combination of the weights for x and y that

has large correlation, but that is also sparse for easier

interpretation.

To impose the sparsity on a and b, we propose to

consider the following optimization problem with some

additional L1 penalty terms:

max{αTXTYβ} subject to

||α||22 = 1, ||β||22 = 1, ||α||1 ≤ c1

√

p, ||β||1 ≤ c2
√

q,
(4)

where || · ||1 is L1 norm (the sum of all absolute

values in the vector), c1 and c2 are parameters to control

the sparsity and restricted to range 0 <c1 ≤ 1 and 0 <c2
≤ 1. For simplicity, we use the same value for c1 and c2
in this study. The sparse version of CCA is referred to

as sparse canonical correlation analysis (SCCA).

The optimization problem in SCCA can be regarded

as the problem of penalized matrix decomposition of

the matrix Z = XTY. Recently, a useful algorithm for sol-

ving the penalized matrix decomposition (PMD) pro-

blem has been proposed and applied to this kind of

analysis [34].

The optimisation problem formulated in (4) can be

used for finding one canonical component. To extract

multiple canonical components, we use a deflation

manipulation iteratively as follows:

Z(k+1) ← Z(k) − dkαkβ
T
k

(5)

where Z (k) is the input of step k (Z (1) = XTY ), dk is

the highest singular value, and ak and bk are the weight

vectors estimated in the k-th step (k = 1, 2, ..., m).

Finally, we obtain m pairs of weight vectors a1, ..., am

and b1, ..., bm. For easier interpretation, the sign of the

weight vectors is adjusted such that the weight element

with the highest absolute value is positive in each com-

ponent. High scoring substructures and side-effects in

the weight vectors are extracted as correlated sets.

If the extracted sets of chemical substructures and

side-effects are biologically meaningful, potential side-

effects for a new drug candidate molecule should be

predicted by looking for the extracted chemical sub-

structures in its chemical structure. Suppose that we are
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given the chemical structure profile x of a new drug

candidate molecule, and we want to predict its potential

side-effect profile y based on the extracted sets of che-

mical substructures and side-effects encoded in {αk}m
k=1

and {βk}m
k=1.

The x and y are assumed to have their canonical com-

ponents u = AT x and v = BT y, respectively, where A =

[a1, ..., am], B = [b1 , ..., bm]. Since y is unknown, we

need to estimate y such that v is close to u as much as

possible. This estimation can be done by minimizing

||u − v||22 = ||AT
x − BT

y||22, which leads to the following

solution:

ŷ = B−TAT
x, (6)

where B-T is the peudo-inverse matrix of BT . Note

that all data features are normalized in the CCA analy-

sis, each element in the estimate is de-normalized with

the standard deviation and the average calculated in the

training set. If the j-th element in ŷ has a high score,

the new molecule x is predicted to have the j-th side-

effect (j = 1, 2, ..., q).

We also consider another prediction score. Based on

the weighted sum of canonical components, we propose

the following prediction score for a given molecule x:

s(x) =

m
∑

k=1

βkρkα
T
k x = B�AT

x, (7)

where Λ is the diagonal matrix whose elements are

canonical correlation coefficients. Note that s(x) is the

q-dimensional vector whose j-th element represents a

prediction score for the j-th side-effect. If the j-th ele-

ment in s(x) has a high score, the new molecule x is

predicted to have the j-th side-effect (j = 1, 2, ..., q).

In our experience, eq. (7) works similarly as or slightly

better than eq. (6), so we use eq. (7) as the prediction

score in the result section.

Availability

Project name: Side-effect analysis project; Project home

page: http://cbio.ensmp.fr/~yyamanishi/side-effect/;

Operating system(s): Platform independent; Program-

ming language: R; Other requirements: “PMA” library in

R; Any restrictions to use by non-academics: licence

needed.

Additional material

Additional file 1: Extracted features by the proposed method. All

the results for drug chemical substructures and drug side-effects

extracted by Sparse CCA are summarized in this file.

Additional file 2: Predicted side-effects for unchatecterized drugs in

DrugBank. All the results for uncharacterized drugs in DrugBank are

summarized in this file, where the 1st column is Drug ID, the 2nd

column is Pubchem compound ID, the 3rd column is the predicted side-

effect, and the 4th column is prediction score.
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