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Abstract
Background: Virtual screening methods are now well established as effective to identify hit and
lead candidates and are fully integrated in most drug discovery programs. Ligand-based approaches
make use of physico-chemical, structural and energetics properties of known active compounds to
search large chemical libraries for related and novel chemotypes. While 2D-similarity search tools
are known to be fast and efficient, the use of 3D-similarity search methods can be very valuable to
many research projects as integration of "3D knowledge" can facilitate the identification of not only
related molecules but also of chemicals possessing distant scaffolds as compared to the query and
therefore be more inclined to scaffolds hopping. To date, very few methods performing this task
are easily available to the scientific community.

Results: We introduce a new approach (LigCSRre) to the 3D ligand similarity search of drug
candidates. It combines a 3D maximum common substructure search algorithm independent on
atom order with a tunable description of atomic compatibilities to prune the search and increase
its physico-chemical relevance. We show, on 47 experimentally validated active compounds across
five protein targets having different specificities, that for single compound search, the approach is
able to recover on average 52% of the co-actives in the top 1% of the ranked list which is better
than gold standards of the field. Moreover, the combination of several runs on a single protein
target using different query active compounds shows a remarkable improvement in enrichment.
Such Results demonstrate LigCSRre as a valuable tool for ligand-based screening.

Conclusion: LigCSRre constitutes a new efficient and generic approach to the 3D similarity
screening of small compounds, whose flexible design opens the door to many enhancements. The
program is freely available to the academics for non-profit research at: http://bioserv.rpbs.univ-
paris-diderot.fr/LigCSRre.html.
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Background
Drug discovery remains a lengthy and costly process in
which in silico approaches have been proven of interest to
help to reduce the cycle time and cost, as well as to
increase the productivity [1], in complement to experi-
mental techniques such as high-throughput screening
(HTS) [2], high-throughput X-ray crystallography [3], or
combinatorial chemistry [4]. There are two main compu-
ter-based approaches.

Structure-based virtual screening (SBVS) approaches
depend on the knowledge of the 3D structure of the target.
They aim at docking collections of small compounds in
the target structure, resulting in a quantified interaction
score to identify candidate compounds [5]. Ligand-based
virtual screening (LBVS) approaches [6] are based on the
assumption that structurally similar compounds are likely
to exhibit similar biological activities. They are often used
when at least one compound biological activity is proven,
but detailed structural information on the mechanisms
underlying the biological activity is not available. This
might come since the biological target is totally unknown,
or since no structural information about the drug-target
interaction could be obtained. When a significant number
of structure activity relationship data have been validated,
one can apply QSAR (Quantitative Structure Activity Rela-
tionship) techniques [7]. The goal of such techniques is to
derive from the available 2D or 3D data a statistical model
that can be used to predict new active molecules. Other
LBVS methods focus on similarity searches, and encom-
pass 2D-similarity-search (e.g. [8]), shape-based (or 3D-
based) (e.g. [9-12]) and pharmacophore based tech-
niques [13]. The latter approach relies on the knowledge
of the biological activity of multiple hits to identify key
features for the search. It has been extensively explored,
and its relevance has been assessed by many studies. 2D-
and 3D-based approaches attempt to quantify compound
similarity based on the sharing of chemical groups, the 3D
shape of compounds and their chemistry. Most of the
similarity search approaches developed so far are availa-
ble as commercial packages. ChemMine [8] is a pure 2D-
similarity searching tool which uses a classic Tanimoto
coefficient as a scoring criterion. MED-SuMoLig [10] and
ROCS/ROCS-cff [11] are 3D-similarity search approaches.
While relying on different underlying concepts, they com-
bine both shape and chemistry to mine chemical com-
pounds. Both of these 3D approaches need a
multiconformational representation of the chemical
library to be screened because their algorithm treat the
small molecules as rigid entities. Some other methods
such as Surflex-sim [14] can treat the molecules with flex-
ibility but are not suited for large in silico screening due to
computational time limitations.

Concerning LBVS approaches, one important outcome
from previous studies is the importance of the balance

between search specificity and search diversity. Search
specificity can be related to receptor selectivity, which
would result in restraining the search close to the bioac-
tive compounds, whereas diversity is related to the neces-
sary alleviation to any scaffolds dependency, to propose
new relevant scaffolds divergent if possible from the
known bioactive compounds. Here, we introduce a new
approach (LigCSRre) to mine chemical libraries based on
molecular similarity with a query potent compound. It
explicitly addresses the two former points of view. It is
based on a genuine 3D maximum common substructure
– 3D similarity – search engine CSR [15] that is capable of
identifying a three-dimensional match between two sets
of atoms, the query set, and those of a chemical library.
The nature and type of the atoms is taken into account
through a set of rules using Unix regular expression for-
malism that makes possible to tune the nature of the
atoms allowed to be eligible for pairing in the CSR engine,
thus enhancing the physico-chemical relevance of the 3D
similarity search. Those rules are user-defined, which
makes this program totally customizable. Whereas similar
formalism has already been introduced, although using a
different search engine, for protein similarity search [16]
using PDB atom and residue naming conventions, we
extend here its usage to the combination of atomic types
of sybyl mol2 http://www.tripos.com/, i.e. to more
detailed physico chemical typing of atoms.

In order to validate our approach, we have applied
LigCSRre on a previously reported test set that contain sev-
eral bioactive ligand queries (through 6 different protein
targets) among about 38 000 drug-like molecules used as
decoy molecules. Here, we used 5 targets and 47 active
compounds, described in [10] (10 on CDK2, 9 on FX, 10
on NA, 8 on RNase, and 10 on TK), an approach similar
to that of Sheridan and co-workers [17] which also deals
with the variation between multiple active compounds.
Also, in order to explore the performance of the approach,
it seemed important to use co-crystallized ligands since
the availability of the 3D information allows to investi-
gate in detail the relevance of the superposition. Indeed,
to evaluate the performance of our program we assessed
two general aspects of 3D-ligand-based screening tools,
superimposability and enrichment. The former character-
izes the ability of such tool to correctly align co-active lig-
ands of a same protein target, and the latter assesses
whether or not a higher score is given to co-active mole-
cules versus decoy molecules. Early enrichment, that is,
the ability for a virtual screening tool to present in the very
top ranked molecules the most potent compounds is par-
ticularly important when the experimental screening
capacity is only few hundred molecules. Because we use in
the present study the same test set that the one used in
[10], we can apply a reference protocol for both superim-
posability and enrichment, in order to compare our pro-
gram to the three other commercial packages used, MED-
Page 2 of 11
(page number not for citation purposes)

http://www.tripos.com/


BMC Bioinformatics 2009, 10:245 http://www.biomedcentral.com/1471-2105/10/245
SuMoLig [10], ROCS/ROCS-cff [11], and ChemMine [8].
Finally, we also analyse its performance when combining
the mining of collections using several compounds inde-
pendently, i.e. in an opposite direction to the pharma-
cophore approach.

Results and discussion
3D superimposability
As a first assessment of our program capabilities in screen-
ing, we decided to test its ability to correctly align (or
superimpose) co-active molecules with respect to each
other. It is very important that 3D-ligand-based screening
methods be accurate in such alignment because a series of
structural conclusions can be driven from them. The co-
localization of key chemical groups can help to design
pharmacophores and in the end facilitate the hit identifi-
cation or even the optimization of lead compounds.
Therefore, we ran our program for all the actives (here 47
compounds) using their respective bioactive X ray confor-
mation as the query compound. Our first control was evi-
dently to assess whether LigCSRre was capable of
retrieving the closest de novo conformation of the query
molecule itself, which was systematically the case. Then
we sought for the closest de novo conformation of the N-
1 other co-active molecules on the same protein target. We
defined as experimental alignment or experimental super-
imposition the experimentally derived superimposition
of the co-crystallized ligands by superimposing the pro-
tein structures from which they were extracted. Table 1 –
upper results – presents the results per family. On average,
the superpositions of the other co-actives onto the active
query were coherent with the experimental alignment
71% of the time (RMSD < 2 Å between the chosen super-
imposed de novo conformation and the bioactive confor-
mation plus visual inspection to ensure that the ligands
are properly aligned – not flipped over), which indicates
that LigCSRre recovered true positives (co-actives) for the
right reason and not thanks to a misalignment. For the
other cases, we observed some alignment flipped over
with regard to the query due to molecular symmetry. We

also observed mis-alignments resulting from targeting
one or several peripheral groups rather than the global
architecture of the query ligand.

It must be noted that the pursuit of maximum superimpo-
sition has a meaning only on the parts of the ligand that
both interact an identical region of the protein. Thus, two
parts of the ligands to be superimposed that would point
toward the solvent, outside of the binding pocket and that
would not be correctly superimposed, would certainly not
represent a failure from the superimposing tool. Figure 1
illustrates LigCSRre behaviour for 3 series of targets,
CDK2, FXa, and RNase. The query molecules (green car-
bon compound) are simply the first molecule on each
subset, that is, not necessarily the best active (by best
active we mean the one that could catch the highest
number of co-actives in the smallest database percentage
level of subsetting). For CDK2 the query molecule was
extracted from structure 1E9H and is based on an
Indirubin scaffolds (two indole system rings), which is the
only biindole-based ligand of the CDK2 subset. One
clearly sees that the superpositions goes beyond the sole
indole function they have in common which is an inter-
esting proof of scaffolds hopping. Indeed, the superim-
posed parts of the hits on the query correspond to the
segment of the molecules that interact with the well-
known "hinge" region of the CDK2 protein, essential for
tight binding to CDK2 through a network of up to 3
Hydrogen bonds (left bottom corner of the CDK2 panel).
The high chemical diversity of the FXa is a primary chal-
lenge to most of the ligand-based methods (see paragraph
on comparison to tiers program). The query molecule on
Figure 1 was extracted from PDB structure 1F0R. LigCSRre
managed to identify the global structural feature of the
compounds, that is, a haliphatic ring surrounded by two
ring-based arms and used it to superimpose the 3 FXA hits
onto 1F0R. 1F0S ligand was correctly aligned onto the
query, but unfortunately, it flipped over the 2 next hits,
1NFU and 1KSN. 1F0R and 1F0S ligands shared most
their chemical structures except for some minor variation
for the portion of the ligands that go deep inside the P1
pocket of FXa, such that our ligand-based tool had no
problem to detect the 1F0S ligand as a one of the first hits
and to correctly align it onto the query 1F0R ligand. On
the contrary, 1KSN and 1NFU ligands do not share chem-
ical features with 1F0R ligand, different groups interacting
with the P1 pocket, different linker, and different group
interacting with the entrance of the binding site (exposed
to the solvent). So, any ligand-based tool cannot rely on a
strong chemical similarity or even topological similarity
to proceed to an accurate similarity detection between the
query 1F0R ligand and 1KSN, 1NFU ligands. Concerning
NA, the query ligand was extracted from structure 1INV. It
is the only NA ligand of the subset without a carboxylic
function attached to the core 6-atom ring. Despite the lack

Table 1: LigCSRre 3D superimposability and enrichment 
performance

CDK2 FXa NA RNAse TK All

3D sup. 0.61 0.58 0.73 0.76 0.73 0.71

Enrichment
1% 0.28 0.20 0.68 1.0 0.43 0.52
3% 0.40 0.27 0.80 1.0 0.55 0.60
5% 0.44 0.30 0.82 1.0 0.63 0.64
10% 0.49 0.42 0.89 1.0 0.73 0.71

For 5 families of active compounds, we present the LigCSRre 
performance reached for 3D superimposability and for enrichment at 
various thresholds.
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of carboxylic function, LigCSRre managed to correctly ori-
ent the different hits onto the NA ligand query. To sum-
marize, we found that LigCSRre is able to globally
perform structural alignment in a satisfactory fashion by
selecting in vast majority (71% of the time) the closest de
novo conformation of the query co-active compounds.

Enrichment Assessments – Independent query runs
To be consistent with a previous study [10], we evaluated
the enrichment capacities of LigCSRre using an identical
protocol. Average results are reported Table 1, enrichment
section. As seen from Table 1, the 1% enrichment value is
of 0.52, which indicates that more than one half the active
compounds are scored within the first 1% compounds.
This is important since the essence of virtual screening
tools is to avoid an experimental testing of the full length
database but rather to select an early enrichment subset of
compounds enriched in putative actives. Early enrichment
is therefore of primary importance when dealing with
large chemical database because the experimental and

financial capacity of certain research departments is just
sufficient to assess a few hundred molecules. However, we
also note large variations depending on compound fami-
lies. RNase ligands gave by far the best results with 100%
of recovery before 0.1% level of subsetting for each active
of the subset. For FXa, the corresponding value is of only
20%. Looking more in detail at FXa results, we observed
large variations among the different active compounds.
For instance, LigCSRre managed to recover about 40% of
the co-actives for 3 of the active queries within 1% level of
subsetting. The FXa subset represented a real challenge for
6 ligands which display poor recovering rates. The first
explanation is again the chemical diversity and the lack of
consensual physico-chemical properties with respect to
the binding interactions with the protein. In the present
case the program could not systematically discriminate
actives from decoys. To illustrate the difficulty to discrim-
inate between FXa actives and decoys we have studied the
best ranked decoys for the FXa LigCSRre runs. As seen on
Figure 2 one can see that the very first decoy molecules

Best co-active hit alignmentsFigure 1
Best co-active hit alignments. The green carbon molecules represent the query molecule, cyan-, pink- and yellow-carbon 
molecules are respectively the 1st, 2nd and 3rd co-active molecules found by LigCSRre. Panel A (CDK2), panel B (FXa), panel 
C (NA).

A B

C
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identified by LigCSRre for the 1MQ5 run represent chem-
ical structures that could be easily found similar with the
naked eye of a medicinal chemist. The presence on the
query ligand of ortho-substituted phenyl ring hanging
two amide functions followed by another phenyl and a
thiophen is correctly identify in three decoy molecules
and logically superimposed onto the query. Those decoy
molecules present more chemical similarity to the query
ligand than some of the other co-actives of the FXa subset.
In this example, the part of the ligand which interacts with
the well known P1 pocket of Factor Xa is not the basic pip-
erazine but rather the bromo-phenyl on the other side.
While basic groups are preferentially expected to bind the
P1 pocket it is surely not a systematic rule, in this case this
hydrophobic group can be accommodated as well. So
here, we look preferentially for molecular similarity with
the bromo-phenyl part of the ligand and with the linker,
which is exactly what shows the results of this run, with
even a supplementary molecular similarity with the linker
of the query ligand for the 3 hits shown in the figure.
Interestingly, the present example gives the opportunity to
search for a rarer type of FXa inhibitors as opposed to the
regular benzamidine or guanidinium group that are usu-
ally expected to interact with the bottom of the P1 pocket.

Another difficult case was the CDK2 subset that is rather
difficult because of its chemical diversity. LigCSRre man-
aged however to undertake some scaffolds hopping (e.g
between 1E9H and 1FVV ligands), and other examples of
scaffolds hopping could be cited like between 1OGU and
1H1S ligands. The 3 first CDK2 hits, for the 1E9H run,

were obtained in a percentage level of subsetting inferior
to 0.15% of the total test set (i.e within the top 60 of the
ranked test set). This means that, using an initial bank of
38 000 molecules, the experimental testing of the top 60
molecules would have provided already 3 new active com-
pounds, and not necessarily with the same scaffolds. For
the other CDK2 ligands, all actives recovered at least 2 and
3 co-actives at 1 and 5% of subsetting respectively, which
represent a moderate performance in term of global
enrichment but still offers interesting tracks for hit identi-
fication at early enrichment. The NA and TK ligands gave
convincing results. The results for NA show good recover-
ing rates with 3 actives (1A4G, 2QWK and 1F8B ligands)
that managed to identify 90% of the co-actives at 0.1% of
subsetting, and 2 more actives (adding 1IVB and 1INF lig-
ands) at 3% of subsetting getting 90% of the actives as
well. For TK, 7/10 TK ligands managed to recover more
than a third of the co-actives in the top 1% of the ranked
database. Interestingly, the three ligands that only manage
to do so at higher percentages level of subsetting are those
having a guanidine-like structure (2KI5, 1KI2 and 1KI3)
rather than a thymidine-based scaffolds, which represents
another case of scaffolds hopping. So, our method is capa-
ble of identifying molecules with a relatively distant scaf-
folds but at the same time of having the discriminatory
power to distinguish a molecule belonging to a different
subclass.

To summarize, one can state that LigCSRre has a rather
flexible behavior with respect the ligand chemical diver-
sity and flexibility. As illustrated for RNase, NA, and TK
ligands, both the superimposition and enrichment results
display the robust behavior of a rather 2D-search based
method that is capable of very good performances on
chemical series having a shared chemical core, regardless
of the strong presence of decoy compounds. On the other
hand, results for CDK2, some of the RNase and TK lig-
ands, and to some extent for certain ligands of FXa,
LigCSRre show enough plasticity in both the superimpo-
sition and the enrichments to offer scaffolds hoping capa-
bilities with respect to more diversified chemistries.

Finally, it is interesting to examine the variation of each
approach depending on the individual ligands. Table 2
reports for each target, minimal and maximal values for
enrichment scores at 1 and 3%. One clearly sees that the
variations can be very large. This is observed for all meth-
ods, on the same order of variation. For FXa, it is noticea-
ble that, for all methods, scores can be as low as 0% for
some ligand and as high than 75% for MED-SuMoLig.
Even for well established method such as ROCS-cff, one
sees that at 3% enrichment, we observe an enrichment
variation from 29 to 86% for RNAse, depending on the
query. These observations highlight the importance to

FXa (1MQ5) first ranked decoysFigure 2
FXa (1MQ5) first ranked decoys. Superimposition of 
some of the very first ranked decoy molecules on one FXa 
active (1MQ5).
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assess the scaffolds hopping capabilities of 3D ligand-
based methods using multiple 3D queries rather than a
single one.

Enrichment Assessments – Combined query runs
One interesting observation that could be made about
individual enrichment curves is that the enrichment is
highly dependent on the ligand query. This is particularly
true for Neuraminidase, for which the results at 0.1% of
subsetting are either at 100% or 23% of recovered active
depending on ligand query, 1A4G or 1INV ligands respec-
tively. The fact that full ligand structures are used as
LigCSRre query rather than pharmacophoric hypothesis
makes the program more dependent on the chemical
properties of each query, and might inevitably bring noise
to the results. Nonetheless, this approach has the advan-
tage to avoid focusing on what co-actives must have in
common for activity (pharmacophore) but rather on what
might bring specificity to protein binding. Thus, by com-
bining several query searches a higher number of hits and
therefore a higher number of therapeutic tracks will be
opened. This is the essence of the group fusion techniques
used in 2D search approaches [18]. It is clear on Figure 3
(panel a – combined) that shows the results of cumulating
the different queries of a same protein subset by taking the
best score for each molecule (actives + decoys) across the
N query runs (e.g CDK2; N = 10). In that case the enrich-
ment rate we obtained is much higher. We think this
shows a convincing example of the benefit of cumulating
the available information of several actives to retrieve
complementary novel chemical entities rather than focus-
ing on consensual chemical features.

Sensitivity to compound conformational sampling
As discussed in previous studies related to SVBS [19,20],
or to LVBS [21], 3D search techniques can be dependent
on the number of conformations per compound. In par-
ticular, McGaughey et al. [21] have shown that ROCScff
performances are not deeply affected by increasing the
number of conformations per compound up to 100.
Because the enrichment rates were more modest for CDK2
and FXa, we decided to measure the impact of the number
of conformers by generating a new database this time with
a maximum number of 100 conformers. This way we
would identify how tightly the enrichment rate is corre-
lated to the relative flexibility of the compounds. In the
case of FXa the number of conformers for the actives has
a consequence on the enrichment rates, but only at 10%
subsetting, therefore showing a rather low impact on early
enrichment. The FXa ligands are quite flexible 5 to 10
rotatable bonds, it is therefore not surprising that an
increased number of conformers be more efficient,
although the search must face an increasing noise from
decoy structure flexibility. For CDK2 the impact on
enrichment is rather low. This can be explained by the

lower flexibility of the CDK2 ligand versus those of FXa,
which obviously makes the dependence to the number of
conformers milder for CDK2 ligands. In that case the
availability of more CDK2 conformers is balanced by the
increasing presence of decoy conformers in terms of
enrichments. These results tend to show that while ligand
flexibility is of primary importance for larger ligand at
higher percentage level of subsetting, it does not seem to
influence the behavior of our program at early percentages
of enrichments. It is therefore interesting to see that for
the very first ranked hits of LigCSRre a maximum of 50
conformers is sufficient to obtain what would obtained
with higher maximum number of conformers.

Comparison with related methods
Because we use the same test set as used in [10] we were
able to directly compare the averaged enrichment per-
formance of our product with the three ligand-based
packages, MED-SuMoLig, ROCS/ROCS-cff, and Chem-
Mine that were used in that study. We have focused our
study on 5 of the 6 proteins they used because the ligands
of HIV-1 protease do not display drug-like properties.
Indeed, the ligands have a molecular weight and number
of rotatable bonds significantly above some of the Lipin-
ski and Veber's standards: MW < 500 and Nrotatable < 10,
respectively [Lipinski et al; Veber et al.].

The cumulated percentage of actives recovered are dis-
played on Figure 3 at four thresholds of percentage level
of subsetting, 1%, 3%, 5% and 10%. For example, for
CDK2 on average 3 actives out of 9 (10 ligands CDK2 – 1)
are recovered in the top 1% of the ranked bank, that is
here 1% of 38 000 compounds, therefore before rank
380th. On average across the 5 targets, the results show
that LigCSRre recovered 52% of the co-actives in the top
1% of the ranked list, whereas MED-SuMoLig, Chem-
Mine, ROCS-cff and ROCS display respectively 51%, 42%,

Table 2: Compared enrichment variations over 5 methods

CDK2 FXa NA RNAse TK

Enrichment 1%
CSR 11–56 0–63 33–100 100-100 22–78
SM 22–67 0–63 44–67 43–100 22–78
RC 11–56 0–38 67–100 29–57 44–100
2D 0–33 0–38 22–89 100-100 22–89

Enrichment 3%
CSR 33–56 0–63 56–100 100-100 33–89
SM 22–67 0–75 56–100 43–100 56–100
RC 22–67 0–63 78–100 29–86 56–100
2D 11–56 0–38 22–89 100-100 44–100

For 5 families of active compounds, we present for LigCSRre (CSR), 
MED-SuMoLig (SM), ROCS-cff (RC) and ChemMine (2D), the minimal 
and maximal enrichment scores at 1% and 3%. Results expressed in % 
of recovered co-active ligands.
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50% and 22%. Hence, LigCSRre performs, on average
slightly better than the other methods for early enrich-
ment.

When comparing the enrichment rate for CDK2 ligands
we could see that LigCSRre is more powerful than a simple
2D-search similarity such as ChemMine at all level of sub-
setting, with on average 10 more percents in favor of
LigCSRre. The performances are similar to the program
ROCS-cff program at higher level of subsetting 3, 5, and
10 and a little under at 1%, while MED-SuMoLig is the
one that performs the best on this protein target. It is not
surprising that an approach like MED-SuMoLig essentially
based on pharmacophoric properties (Hydrogen bond
donor, Hydrogen bond acceptor, etc) performs well on
such ligands when one considers the very importance of
the ligand interaction with the "hinge region" of the pro-
tein through a network of up to 3 Hydrogen bonds.

Concerning FXa, the results of all 4 methods are modest
due to the chemical complexity of those ligands and the
absence of consensual features. Both LigCSRre and Chem-
Mine have more problem than MED-SuMoLig and ROCS-
cff to recover the active at all percentage of subsetting. But
interestingly, at 1% level of subsetting, i.e at early level of
enrichment, LigCSRre and ROCS-cff perform similarly. So
this means that even in the case of a complicated target
such as FXa, very early enrichment can be observed, not
necessarily with the majority of the co-actives but some of
them.

LigCSRre performed very well for NA with about 70% of
the active recovered at 1% level of subsetting (i.e rank
380th), and up to about 90% at 10% of the ranked data-
bank. ROCS-cff clearly outperforms the other programs
on this target with nearly 100% enrichment at 1% level of
subsetting, while MED-SuMoLig's performance are
slightly lower than those of LigCSRre, ChemMine per-
forming the poorest with 45% enrichment at 1% level of
subsetting, which is satisfactory at this level.

For the TK ligands, all methods perform similarly at 10%
subsetting, around 80% of recovered co-actives, except for
ChemMine that reaches 90%. The results of ChemMine
can be explained by the high chemical similarity of the TK
ligands, their small size and their low flexibility. At early
enrichment level (1% subsetting), LigCSRre is a little
behind the other methods but with a satisfactory 45% of
recovered co-actives, while MED-SuMoLig, ROCS-cff and
ChemMine display a recovering percentage of co-actives
of, 55, 72, 58%, respectively. Even though the results of
LigCSRre are still quite satisfactory, one can note the rela-
tive superiority of ROCS-cff at early level of enrichment.
Indeed, it is the only method tested that penalizes molec-
ular discrepancies besides identifying molecular similari-
ties. Discrepancies become more pronounced when the

query molecule is of small size, increasing the probability
for the three other methods to find a bigger hit molecule
containing a substructure compatible with the query
structure. This is illustrated by the poor results for ROCS
that does not take into account the molecular chemistry in
addition of the shape. TK was one of the only two cases
with NA where ROCS alone had satisfactory results, but
both targets have relatively small ligands, and both ROCS
versions penalize molecular discrepancies.

For the RNase ligands, both LigCSRre and ChemMine
reach the perfect recovering percentage possible (100%)
at only 1% level of subsetting. We can see that despite the
high similarity of the RNase ligands MED-SuMoLig does
not have an equivalent enrichment on this protein target,
even if at 70% it remains quite satisfactory. ROCS-cff has
the poorest performances on RNase with an average of
45% of recovered co-actives. One explanation of the
present discrepancy between the programs is linked to
their global concept and to the structures of the RNase lig-
ands. Two of the RNase ligands display a bicephal struc-
ture (1QHC and 1JN4 ligands), one part based on the
classic purine-like scaffolds, and the other based on a pyri-
midine-like scaffolds, the two parts being connected by a
poly-phosphate chain linker. From a chemical point of
view, one faces a chemical consistency across the RNase
actives because of the purine-based part the two ligands
have in common with the rest of the RNase ligands. But
from both a topological (ROCS concept) and a pharmaco-
topological (MED-SuMoLig) point of view, this represents
a more important difference because the two bi-cephal lig-
ands are twice as big as the rest of the ligands. Moreover,
one of the RNase ligand has a different mode of binding
while being purine-based (1O0O ligand) as well, such
that the 3D distribution of the query atoms is quite differ-
ent. This represents a challenge especially for methods
such as ROCS, because of the shape-associated properties
of the query ligand versus the co-actives. Even if LigCSRre
is also a 3D method in essence, it also has, as MED-SuMo-
Lig, the discriminatory power to identify rigid chemical
entities such as a purine-based scaffolds that are also well
described by more simple 2D patterns (like in Chem-
Mine). Finally one of the ligand is exclusively based on a
pyrimidine structure (1O0N) with ribose and phosphate
associated. In the X ray crystallographic structures the
pyrimidine part of this ligand superimposes perfectly with
the pyrimidine part of the bicephal ligands cited above.
This means, that to be accurate a similarity search using
1O0N-ligand as the query would retrieve only the
bicephal ligands (that also possesses a pyrimidine-based
structure) and not the only purine-based ligands as done
by LigCSRre and ChemMine which obtained 100% of
recovered co-actives. This raises the complicated question
of recovering true positive ligands but with the wrong
alignment. In the case of RNase a very minor chemical
change in the ligand can trigger a flipping over of the
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purine scaffolds with respect to the classic binding mode
while the ligands still have a very high degree of similarity.
This problem can be associated in the case of RNase-like
proteins to the so-called reverse binding mode issue [22-
25] for which several binding modes can be observed for
one ligand.

Finally, it is interesting to examine the variation of each
approach depending on the individual ligands. Table 2
reports for each target, minimal and maximal values for
enrichment scores at 1 and 3%. One clearly sees that the
variations can be very large. This is observed for all meth-
ods, on the same order of variation. For FXa, it is noticea-
ble that, for all methods, scores can be as low as 0% for
some ligand and as high than 75% for MED-SuMoLig.
Even for well established method such as ROCS-cff, one
sees that at 3% enrichment, we observe an enrichment
variation from 29 to 86% for RNAse, depending on the
query. These observations highlight the importance to
assess the scaffolds hopping capabilities of 3D ligand-
based methods using multiple 3D queries rather than a
single one.

Future perspectives
In order to improve the discrimatory power of our pro-
gram towards false positives, we have decided to address
the problematic of penalizing molecular discrepancies
besides identifying molecular similarities as programs
such as ROCS do. We have tried to penalize hit molecules
that had too many heavy atoms with respect to the query
molecule. This has increased the results for small ligands
such as TK ligands for which a 10% improvement was
observed at 10% level of subsetting. The observation
could not be made for all protein targets though. So a
more sophisticated criterion could be applied in order to
improve the enrichment rates. The regular expressions
used to determine the rules of atom pairings offer enough
plasticity to construct more complex rules such that the
final match between query and hit molecules could be
more discriminate towards false positives.

Conclusion
We have introduced a new free flexible approach for small
compounds 3D molecular similarity screening that explic-
itely addresses both aspects of 3D and physico-chemical
similarity. Compared to gold standard of the field, it
proves able to achieve efficient early enrichment in active
compounds. Due to its flexible design, many perspectives
now range from scanning generic collections to deriving
focused collections specific rules.

Methods
Compound test sets
As a reference bank, we have considered the filtered ver-
sion of the chembridge diversity set (50 000 compounds)

http://www.chembridge.com, a set already used in previ-
ous studies [10]. The dataset has been filtered for ADME/
tox properties [26]. The remaining diversity set of Chem-
bridge contains 37 907 molecules different molecules
with the following properties: a molecular weight ranging
between 200 and 900, a computed octanol/water parti-
tion coefficient (logP) between -5.0 and 6.0, a polar sur-
face area between 0.0 and 160, a maximum number of
rotatable bonds of 20, a number of Hydrogen bond donor
ranging between 0 and 8, a number of Hydrogen bond
acceptors ranging between 0 and 12, and at least two het-
eroatoms per compound. To limit the deviation from
standard Lipinski rule of five, we only tolerate one Lipin-
ski violation. Each compound has a multiconformer rep-
resentation, setting up a maximum of 50 conformers for
the dvs50 set and 100 conformers to the dvs100 set. The
dvs-50 set contains about 1 150 000 molecules, which
makes an average of 30 conformers per molecule. For
query active compounds, we have used series of experi-
mentally validated inhibitors, RiboNuclease (RNAse) (8
ligands), coagulation factor ten (FXa – 9 ligands) and the
Cyclin Dependent Kinase 2 (CDK2 – 10 ligands), Neu-
raminidase (NA – 10 ligands), and Thymidine Kinase (TK
– 10 ligands) for which the experimental structure of the
complex exists, which makes a total of 47 active com-
pounds that have a multiconformational representation
as well. These active compounds display similar physico-
chemical properties as the compounds of the remaining
dataset [27]. CDK2 and FXa ligands are rather chemically
diverse with respect to the NA, RNase, and TK ligands. TK
ligands are quite small and represent thymidine analogs
for the most part and guanidine-based for the rest of
them, NA ligands are built around a consistent 6-atom
ring with various peripheral groups, whereas RNase lig-
ands are based on analogs to purine-based or pyrimidine-
based compounds or both (for two of the RNase actives)
and are rather flexible molecules (7–10 rotatable bonds).

Similarity search
The similarity search engine, LigCSRre is an evolution of
the CSR algorithm originally developped by M. Petitjean
[15]. The CSR algorithm searches for the maximal 3D
motif common – or maximal substructure (MSS) – to two
sets of coordinates. Whereas other approaches such as SQ
[28] or CLIP [29] use clique detection approaches, the
CSR algorithm is a parameter free approach that itera-
tively and stochastically searches for the largest set of atom
pairings between two clouds of atom coordinates – no a
priori pairings or a priori rules such as the knowledge of
the neighbors are required. Atomic natures, bonds and
connectivity information are ignored. Briefly, each itera-
tion starts from a random initial superposition, and itera-
tive pairings of atoms are performed until no new pairing
occurs. Pairing is based on distance sort of the N1*N2
interatomic distances between the N1 atoms of the mole-
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cule 1 and the N2 atoms of the molecule 2. The array of
the N1*N2 distances is sorted by increasing values. The
first atom-pair, corresponding to the smallest distances, is
always included in the common motif. Next pairs are
included until a member of a pair already included in the
common motif occurs. The latter pair is not included in
the motif and the pairing terminates. Then the complete
sets of coordinates are best superimposed from the cur-
rent pairings and the whole process distance sorting/best
fit is iterated until no new pair is accepted. This whole
process is performed for a series of random starting points
and CSR returns the largest motif identified. CSR was
shown efficient to retrieve similarities in large sets of coor-
dinates. However, limitations occur since similarities
between biological molecules must also consider that
atomic properties of the pairs are compatible.

In LigCSRre, we have implemented several additional par-
ticular features. Firstly, LigCSRre accepts, similarly to
Escan [16], a regular expression formalism that allows, for
each atom, to define which pairings are possible based on
some physicochemical properties (see next section). This
results in smaller search space and increases search effi-
ciency – LigCSRre usually requires much less iterations
than CSR. Secondly, LigCSRre extends the set of pairings
at search convergence. The extended pair collection
embeds the MSS identified by the CSR algorithm enlarged
by atom pairs that are distant by less than a user specified
tolerance. This can result in more relevant similarity
search since it is possible that CSR stops to enlarge its MSS
for an atom already paired, but hiding subsequent pairs.

Since atom nature deeply condition the chemical proper-
ties of compounds, and therefore their binding to recep-
tors, it is important to have some control on the atomic
types that can be paired during the similarity search. The
authorized or forbidden pairings must be defined in a way
flexible enough to be adapted to a particular chemical
context, or to express the knowledge of an expert for some
particular family of compounds. To take into account
these considerations, we use the Sybyl mol2 atom types,
as assigned by open-babel [30], and we use a three level
mechanism of regular expressions to define atomic types
compatible for pairing. The first one is the default level:
the atoms are assigned a default regular expression that
will authorize them to be paired only with atom having
the same atomic type. The second level is the generic level
that defines equivalence classes. At this level, it is for
instance possible to assert that a carbon atom could be
paired with any carbon, but not oxygen or sulfur. The
third level is the specific level. This level makes possible to
attach a regular expression to a particular atom of a partic-
ular compound. For instance, it would make possible to
define, for a specific carbon of known importance for
chemical activity, to accept that it could match only an

aromatic carbon or a Nitrogen. The precedence order gives
the higher priority to the specific level, then to the generic
level, then to the default level. In this study, since we want
to assess the generic performance of the approach, we
have not used the specific level. Instead, we have defined
a minimal set of rules for the generic level. More in detail
the equivalence classes correspond (i) to carbons but
carbo-cations, (ii) sp2 Oxygen (0.2 and 0.co2 mol2 types)
(iii) sulfoxide and sulfone Sulfur (S.o and S.o2); (iv) sp2
and sp3 Sulfur, and (v) Nitrogen. For other atomic types,
the default rules only accept pairings for atoms of identi-
cal atomic types. The LigCSRre algorithm is iteratively
applied to each compound of the bank. For each, we store
the number of bonds (nB) identified as shared, where a
bond is denoted as shared if both two atoms at bond
extremities are paired on exit of LigCSRre. We also store
the size of the pairing set (nP), and the RMS deviation
associated with these pairs (RMSd). Once all the com-
pounds have been screened, they are sorted using a cas-
cading procedure: according to nB, then to RMSd.

Multipe screening merging
Given a collection of compounds sharing the same inhib-
itor activity, we merge the results using a best rank crite-
rion: The lists obtained for each compound
independently are read from the first position to their last,
and each bank compound is inserted in the merge result-
ing list on the basis of its first occurrence.

Enrichment measurement
To measure the compound enrichment, we use as crite-
rion Ef = nAf/(nA-1), where nA is the number of active
compounds of the inhibitor family, and nAf is the number
of active compounds (but the query) retrieved in the best
of percent of the sorted results.
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