
HAL Id: inserm-00663932
https://inserm.hal.science/inserm-00663932

Submitted on 27 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PhyloPattern: regular expressions to identify complex
patterns in phylogenetic trees.

Philippe Gouret, Julie Thompson, Pierre Pontarotti

To cite this version:
Philippe Gouret, Julie Thompson, Pierre Pontarotti. PhyloPattern: regular expressions to identify
complex patterns in phylogenetic trees.. BMC Bioinformatics, 2009, 10 (1), pp.298. �10.1186/1471-
2105-10-298�. �inserm-00663932�

https://inserm.hal.science/inserm-00663932
https://hal.archives-ouvertes.fr

BioMed Central

ss

BMC Bioinformatics
Open AcceSoftware
PhyloPattern: regular expressions to identify complex patterns in
phylogenetic trees
Philippe Gouret*1, Julie D Thompson2 and Pierre Pontarotti1

Address: 1UMR 6632, Evolutionary Biology and Modeling, University of Provence, 3 place Victor Hugo, 13331 Marseille, France and 2IGBMC,
(CNRS/INSERM/ULP), Biology and Structural Genomics Department, BP 10142, 67404 Illkirch Cedex, France

Email: Philippe Gouret* - philippe.gouret@univ-provence.fr; Julie D Thompson - julie@igbmc.fr; Pierre Pontarotti - pierre.pontarotti@univ-
provence.fr

* Corresponding author

Abstract
Background: To effectively apply evolutionary concepts in genome-scale studies, large numbers
of phylogenetic trees have to be automatically analysed, at a level approaching human expertise.
Complex architectures must be recognized within the trees, so that associated information can be
extracted.

Results: Here, we present a new software library, PhyloPattern, for automating tree manipulations
and analysis. PhyloPattern includes three main modules, which address essential tasks in high-
throughput phylogenetic tree analysis: node annotation, pattern matching, and tree comparison.
PhyloPattern thus allows the programmer to focus on: i) the use of predefined or user defined
annotation functions to perform immediate or deferred evaluation of node properties, ii) the
search for user-defined patterns in large phylogenetic trees, iii) the pairwise comparison of trees
by dynamically generating patterns from one tree and applying them to the other.

Conclusion: PhyloPattern greatly simplifies and accelerates the work of the computer scientist in
the evolutionary biology field. The library has been used to automatically identify phylogenetic
evidence for domain shuffling or gene loss events in the evolutionary histories of protein sequences.
However any workflow that relies on phylogenetic tree analysis, could be automated with
PhyloPattern.

Background
Evolutionary concepts have revolutionized our under-
standing of biology [1]. Understanding evolution and
especially genome evolution requires a global compara-
tive approach in which individual genetic events are con-
sidered and integrated in their evolutionary context,
which in turn may be correlated to the population history,
the environment and the different phenomes. Phylogeny-
based analysis provides an ideal framework for perform-

ing such investigations, by pinpointing when a genetic
event occurred and by identifying the simultaneous occur-
rence of several events. Such correlations allow to high-
light convergence and co-convergence (i.e. the apparition
of the same events independently in biological history).
Co-convergence can strengthen the cause-consequence
effects between for example, two events and identify com-
mon selective pressures acting on the two events, as well
as the functional or adaptive relationship between the cor-

Published: 19 September 2009

BMC Bioinformatics 2009, 10:298 doi:10.1186/1471-2105-10-298

Received: 15 May 2009
Accepted: 19 September 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/298

© 2009 Gouret et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19765311
http://www.biomedcentral.com/1471-2105/10/298
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:298 http://www.biomedcentral.com/1471-2105/10/298
responding characters [2,3]. In order to identify micro-
evolutionary (sequence evolution) and macro-evolution-
ary (including gene duplication, deletion, exon shuffling,
horizontal gene transfer) events, a detailed analysis of a
phylogenetic tree is essential. Of course this can be per-
formed by human experts, but such a manual analysis is
impossible in the context of a large scale analysis project.
Some state-of-the-art pipeline processes, such as the Fige-
nix platform [4], the SIFTER platform [5] or the pipeline
used to build the PhyloFacts database [6], are capable of
producing phylogenetic trees on a large scale, so it should
be possible to develop a new kind of automatic process
using the phylogenetic trees as a starting point, in order to
answer the biological questions mentioned above, using
an evolutionary approach.

One important aspect of such automatic processes is an
efficient traversal of the tree to identify genetic events for
subsequent analysis. Hierarchical tree traversal is a com-
mon issue in computer science. In the biological field,
phylogenetic trees are mostly traversed by hard coded
algorithms and some programs, such as Rio Forester [7]
allow the detection of duplication nodes and orthologs
from a tree. Other tools allow the detection of specific
genetic events: [8-13].

All of these tools include mathematical components
which apply a probabilistic model to interpret the tree,
and have led to some significant results. Unfortunately,
current mathematical approaches cannot provide and
integrate all human interpretations about trees, simply
because some models have not been defined yet. One can
cite, for example, the detection and localization of
domain shuffling events in domain phylogenetic trees,
which we will illustrate in this paper. As a consequence, it
remains crucial for a biologist to apply his own knowl-
edge and reasoning to the interpretation of phylogenetic
trees. Clearly a software API is now needed, that can be
easily integrated in automatic genome-scale processes to
read phylogenetic trees, that provides a level of expertise
as close as possible to that of the biologist, and that will
facilitate the application of evolutionary approaches.
Famfetch [14] is one such software that offers a simple
pattern-matching system and includes a graphical user
interface, allowing the user to define specific patterns.

However a biologist, reading a tree, is capable of recognis-
ing much more complex patterns. Indeed, the human
expert, consciously or unconsciously, combines sophisti-
cated phylogenetic architectures with constraints associ-
ated with the nodes' explicit or implicit properties. We call
"explicit properties", properties already attached to the
nodes when he reads it and we call "implicit properties",
additional properties he must compute to complete the
node's annotation.

The bioinformatician or the computer scientist working
with the biologist would like to easily annotate the many
phylogenetic trees he produces, and to define complex
patterns for searching, without having to re-program the
tree traversal each time.

Moreover "implicit properties" cannot always be evalu-
ated immediately in a simple tree traversal. For example,
to evaluate, for each node of a tree, a property such as the
topological distance to a specific node of this tree, one
needs to set an equation system between the unknown
values of the property at each node during the tree traver-
sal and then to solve it to get all values.

Finally, it should be possible to dynamically define the
patterns from one tree, for example to compare tree struc-
tures.

Here, we describe a new compact software library, called
PhyloPattern, which offers three main functional mod-
ules that can be used either independently or in combina-
tion:

- a tree annotation module, based on predefined traversal
algorithms and predefined or user defined annotation
functions, to produce immediate or deferred evaluations
of node properties,

- a pattern matching module to define powerful patterns
and to search for them in phylogenetic trees,

- a tree comparison module to globally compare rooted
tree topologies or to identify matching nodes. These func-
tionalities are illustrated in the present paper with biolog-
ical examples.

Implementation
Representation of trees and patterns
Phylogenetic trees are composed of nodes linked in a hier-
archical structure. Each terminal node, named a leaf, rep-
resents the biological object whose evolutionary history
one wants to study. Each internal node then represents a
real or virtual ancestor of all the leaves present in the
node's subtree. Two nodes are connected by a branch,
whose length gives complementary information about the
predicted evolutionary distance between the nodes. In
general, most phylogenetic trees are considered to be
binary structures, where internal nodes own exactly two
children. However, technically, phylogenetic trees are in
fact n-ary structures, and tree construction algorithms can
generate more than two children for an internal node if
the true phylogenetic relationships cannot be determined.
Such internal nodes are named rakes. Note that a rake can
always be transformed into a binary structure by generat-
ing pseudo-nodes, although this may be problematic,
Page 2 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:298 http://www.biomedcentral.com/1471-2105/10/298
since the pseudo-nodes cannot be interpreted and used
directly.

PhyloPattern uses its own formalism to represent phylo-
genetic trees and patterns (the pattern formalism extends
the tree formalism (see Table 1)), based on the syntax of a
classic programming and Artificial Intelligence (AI) lan-
guage: Prolog [15], which is particularly suitable for hier-
archical structure manipulations. This important feature
will be discussed in detail below.

In addition to this formalism, PhyloPattern can read and
write trees in NH http://evolution.genetics.washing
ton.edu/phylip/newicktree.html or NHX syntax (New
Hampshire eXtended) http://phylosoft.org/NHX/[7].

For the PhyloPattern user, the formalism also provides
"regular expression like" definitions for phylogenetic
trees. Regular expressions are classically used to parse and
find specified syntactic shapes inside sentences, without
having to develop a specific syntactic analyser from user
defined grammar rules. Typical examples are the regular
expressions specified in Unix command shells http://
www.opengroup.org/onlinepubs/007908799/xbd/
re.html.

In PhyloPattern, regular expressions are patterns used to
find nodes with a specified architecture or according to
specified criteria.

Note that the current version of PhyloPattern works only
with rooted binary trees but accepts rake structures.

The syntax used in PhyloPattern for nodes in a phyloge-
netic tree is very simple. A node is expressed by:

[List_of_child_nodes, List_of_tags]

As in the NHX format, a "tag" refers to a property-name/
property-value pair. Using this syntax, a leaf node is repre-
sented by:

[[], [tag1(Value1), tag2(Value2), ..., tagN(ValueN)]]

and an internal node is represented by:

[LeftChildNode, RightChildNode], [tag1(Value1),
tag2(Value2), ..., tagN(ValueN)]]

where LeftChildNode and RightChildNode indicate the two
child branches of the node. They are themselves nodes
and so respect the same syntax. The denominations left
and right have no biological significance and they are
used for convenience only. Obviously and if it is neces-
sary, left and right nodes are automatically permuted by
PhyloPattern during matching phases.

Table 1: PhyloPattern syntax for representing trees and
 patterns

<node> ::= <leaf> | <internal_node> | <rake>

<leaf> ::= " [" <empty_list>, <tag_list> "]"

<internal_node> ::= " [" "[" <node>, <node> "]", <tag_list> "]"

<rake> ::= &(" [" <node_list> "]")

<node_list> ::= <node>

::= <node>, <node_list>

<empty_list> ::= "[]"

<tag_list> ::= <empty_list>

::= " [" <filled_tag_list> "]"

<filled_tag_list> ::= <tag>

::= <tag>, <filled_tag_list>

<tag> ::= <identifier> (<value>)

<leaf_list> ::= <leaf>

::= <leaf>, <leaf_list>

<identifier> ::= <lower-case-letter> { <letter> | <digit>}

::= ' { <character> } '

<value> ::= <identifier> | <number>

<pattern> ::= <leaf>

::= " [" "[" <pattern>, <pattern> "]", <tag_list> "]"
Page 3 of 12
(page number not for citation purposes)

http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://phylosoft.org/NHX/
http://www.opengroup.org/onlinepubs/007908799/xbd/re.html
http://www.opengroup.org/onlinepubs/007908799/xbd/re.html
http://www.opengroup.org/onlinepubs/007908799/xbd/re.html

BMC Bioinformatics 2009, 10:298 http://www.biomedcentral.com/1471-2105/10/298
We introduce another kind of syntax for rake nodes,
which are non binary nodes with a zero length on each
child branch:

&(List_of_nodes) <=> &([Node1, Node2, ..., NodeN])

A full BNF grammar of our formalism is provided in Table
1.

Constraints can also be associated with a pattern's struc-
ture. The basic syntax of a constraint is: freeze (Variable,
Predicate), but a more detailed explanation of how they
work will be given below. Note that constraints, expressed
separately from a pattern's structure, are not included in
the grammar in Table 1.

Prolog engine
As we said before, trees and patterns in PhyloPattern are
in fact Prolog [15] language terms which allows us to
implement all our API tools in this language.

Prolog belongs to the Artificial Intelligence (AI) language
family. AI languages provide a means of modelling the
knowledge and reasoning of humans, or any other intelli-
gent species. Other examples of AI languages are Lisp [16],
Camel [17], etc. PhyloPattern is not built with an algorith-
mic approach but rather on a first order logic approach
which is the foundation of Prolog. All sentences in this
language are expressed as logical implication rules
between a set of facts which imply a single fact. The Prolog
engine applies these rules in a backward chaining mode,
which means that to verify that a fact is true, the engine
searches for the facts that imply the given fact, and so on.
The engine relies on two fundamental concepts namely:
backtracking and unification. Backtracking is a mecha-
nism which allows the generation of all solutions to a
given question, i.e. to an initial fact that one wants to ver-
ify. This is sometimes called a Prolog clock, because the
engine moves back and forth between future and past: the
future when the engine tries to advance on a solution
pathway and the past when it moves back on the path.
This mechanism is very convenient for implementing
solutions to problems where we need to explore a set of
paths, some of these paths being dead-ends. Backtracking
is well adapted to our pattern matching approach because
matching cases are defined as crossroads that PhyloPat-
tern encounters again and again, each time a tree's traver-
sal reaches a new node. The unification concept is the
fusion of a variable's assignation and equality concepts.
Two Prolog terms are said to be "unifiable" if and only if
they are equal or if all non assigned parts of one term can
be assigned to an assigned part of the other term, thus
implying the equality of fully assigned terms.

Here is a very small and trivial example that nevertheless
gives a very complete illustration of all Prolog concepts
applied to tree manipulations.

These four lines are extracted directly from the PhyloPat-
tern source code:

% enumerate all subtrees from a tree

subtree(Tree, Tree).

subtree([LeftChild, _], _], Subtree) :- subtree(LeftChild, Sub-
tree).

subtree([_, RightChild], _], Subtree) :- subtree(RightChild,
Subtree).

subtree(&(List), Subtree) :- element(Tree, List), subtree(Tree,
Subtree).

As specified in the comment line, this predicate is able to
enumerate all subtrees existing in a tree. The aim here is
not to give a complete explanation of the Prolog language
but only a synthetic description of each rule. Thus, we
consider each line in order: a tree is a subtree of a tree if it
is the full tree, or a tree is a subtree of a tree if it is a subtree
of the left child node, or a tree is a subtree of a tree if it is
a subtree of the right child node, or a tree is a subtree of a
tree if it is one of the elements of a rake.

PhyloPattern is a Prolog library, which can be used with
any "Edimburg syntax like" [15] Prolog engine. The Phy-
loPattern toolbox can also be accessed from the Java lan-
guage directly via the 'GNU Prolog for Java' API http://
sourceforge.net/projects/gnuprologjava/.

::= &(" [" <pattern_list> "]")

::= @ (<pattern>)

::= $ (<pattern>)

::= #(" [" <leaf_list> "]")

<pattern_list> ::= <pattern>

::= <pattern>, <pattern_list>

The grammar rules used for describing trees and patterns are
indicated using the BNF (Bacchus Naur Form: http://cui.unige.ch/db-
research/Enseignement/analyseinfo/AboutBNF.html) notation.

Table 1: PhyloPattern syntax for representing trees and
 patterns (Continued)
Page 4 of 12
(page number not for citation purposes)

http://sourceforge.net/projects/gnuprologjava/
http://sourceforge.net/projects/gnuprologjava/
http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

BMC Bioinformatics 2009, 10:298 http://www.biomedcentral.com/1471-2105/10/298
In addition, the 'GNU Prolog for Java' allows the defini-
tion of predicates directly in the Java language. Thus, the
Rio Forester [7] parser is used to convert NHX trees to Phy-
loPattern Prolog terms.

A short example to show how a Prolog PhyloPattern script
can be used from Java is given in the PhyloPattern package
[see Additional file 1]. Other simple examples are pro-
vided with the PhyloPattern distribution (file src/sam-
ples.pl) to demonstrate how to run PhyloPattern and how
to write scripts.

Results
The strategy we adopted in the development of PhyloPat-
tern, was first to understand how a biologist reads and
uses a phylogenetic tree and, from this, we deduced three
main functionalities that are essential for most tree analy-
ses: tree annotation, pattern matching and trees compari-
son.

Tree annotation module
An important functionality in PhyloPattern is the ability
to assign crucial information to the nodes, before pro-
ceeding to the subsequent steps in the analysis. Indeed
when a biologist reads a phylogenetic tree, he often incor-
porates complementary information, such as the species
associated with each leaf, the fact that an internal node
represents a speciation or a duplication event, or the
domain architectures if leaves are associated with pro-
teins.

More complex annotations can also be envisaged, for
example, one would like to attribute to internal nodes: the
list of all species present in the node's subtree or the dis-
tance to a specific node. The tree annotation module
involves two distinct problems: the traversal of the tree in
order to visit all nodes and the function used to annotate
each node.

For the first problem, PhyloPattern offers two of the main
traversal algorithms for binary trees: pre-order traversal
and post-order traversal. The third major algorithm,
namely in-order traversal, is a priori not useful for phylo-
genetic issues, but could be easily implemented. Pre-order
traversal means "do what you have to do on the node
itself, then on the left branch, and finally on the right
branch". In contrast, postorder traversal means: "do what
you have to do on the left branch first, on the right branch
second and finally on the node itself". In-order traversal
means "do what you have to do on the left branch, then
on the node itself, and finally on the right branch". For
example, for a very simple binary tree ((a, b)ab, c)abc, if
the operation one wants to apply to each node is: "display
its name", the different kinds of traversal will give the fol-
lowing results: for pre-order: abc, ab, a, b, c, for in-order: a,

ab, b, abc, c, for post-order: a, b, ab, c, abc. The post-order
approach performs a task first on the children, then on the
parent node, which is logically the most useful kind of
traversal for phylogenetic annotation, because usually we
want to gather information from the leaves in order to
propagate them to the internal nodes, i.e. we look at the
present with the aim of understanding the past.

For the second problem, two kinds of annotation func-
tions are distinguished: immediate evaluation functions
and deferred evaluation functions. Immediate evaluation
functions compute the value of a new tag for a node, when
the traversal reaches it, for example, to assign to the node,
in a post-order traversal, a list of all species present in its
full subtree. By first performing the task on the node's
children, it is easy to accumulate the species from the chil-
dren to form the node's list of species.

Deferred evaluation is more complex, but can be used
when the annotation function is unable to determine the
value for a specific tag when the traversal reaches the
node, although the function is able to install a con-
strained relation between the tag value for the node and
the tag values for its children. For example, suppose that
an evolutionary event has been detected on a branch of a
tree (this kind of detection is described below, see yellow
areas in Figure 1 (see nodes with asterisks) and suppose
one wants to compare, at the DNA level, a sequence asso-
ciated with this subtree and one associated with the other
subtree of the event's parent node (the one which did not
suffer the event).

It seems logical to choose the two sequences closest to the
parent node, because they are normally less derived and
should have fewer differences at the nucleotide level. To
select these sequences in the tree, each node of the tree
must be annotated with its total branch length to the
event's parent node. When the post-order traversal reaches
a node, it is impossible to set the distance value, but the
annotation function can specify equations between the
distance for the node and the distances for the children of
this node: Call d the distance for a node, dleft and dright,
distances for its children, lleft the length of the left branch
and lright the length of the right branch. The annotation
function can specify the two following equations: d = dleft
+/- lleft and d = dright +/- lright (/ means here the logical
or).

When the function is called on the specific node against
which one computes the distances, d = 0.

At the end of the post-order traversal however, a large set
of equations has been defined and is automatically solved
by PhyloPattern, associating a tag value with each node
that is equal to the distance to the specified node. The use
Page 5 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:298 http://www.biomedcentral.com/1471-2105/10/298
of this deferred evaluation mechanism means that many
other types of equation or constraint can be applied, by
defining an appropriate annotation function. In fact, any
constraint expressible in the Prolog language could be
implemented.

Note that the two annotation functions, given here as
examples, are included in the PhyloPattern implementa-
tion. The PhyloPattern user is thus able to choose a prede-
fined tree traversal mode (pre-order traversal or post-order
traversal) and a predefined annotation function (immedi-

ate evaluation or deferred evaluation). He also has the
possibility to define his own annotation function.

Pattern matching module
Pattern recognition is the main task performed by a biol-
ogist when reading a phylogenetic tree. He is not always
able to express explicitly and simply the patterns he uses,
but if he succeeds, the patterns, in most cases, can be mod-
elled and used within PhyloPattern. As mentioned before,
in the PhyloPattern framework, a pattern's syntax is
expressed in the same Prolog formalism as a phylogenetic

Wired phylogenetic trees of V_set and C2_set domains (definitions from Pfam database [21]), respectively zoomed on nodes 41 and 43 (yellow areas)Figure 1
Wired phylogenetic trees of V_set and C2_set domains (definitions from Pfam database [21]), respectively
zoomed on nodes 41 and 43 (yellow areas). All protein sequences are from the Ensembl database [22]. The multiple align-
ment was built and annotated using the MACSIMS program [23] and the phylogeny was produced and visualized using the Fige-
nix platform [4]. [Number] represents the identifier of the closest node. Number1_Number2_Number3 represents bootstrap
values for the closest internal node (from three construction algorithms [4]). Red circles on nodes represent duplication
events. Purple circles represent the detected homolog domains shuffling events. Labeled trees for V_set and C2_set domains
are provided [see Additional file 2], [see Additional file 3].
Page 6 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:298 http://www.biomedcentral.com/1471-2105/10/298
tree, so any tree can itself be used as a pattern to search
another tree. Subtrees are thus considered by PhyloPattern
as sub-patterns. The PhyloPattern matching module takes
as input: a tree term, a pattern term, and a list of con-
straints.

To illustrate this, we can consider some basic sample pat-
terns (without constraint), based on the forms given in
Figure 2 and applied to the tree on the top right of Figure
1. Variables in patterns can be used to obtain results and
the pattern matching function also returns a tree associ-
ated with the pattern. Note that _ is used as a mute varia-
ble in Prolog, i.e. a variable part whose value has no
interest:

Using the following pattern:

@([[], [species('Macaca Mulatta'), name(X)]])

we obtain the solutions: X = 'ENS6287' or X = 'ENS10851'
or X = 'ENS28928',

and the results of the pattern matching function are
exactly those leaves corresponding to the species "Macaca
Mulatta".

Another example of a simple pattern, which can be used
to search for the parent of a given node, is:

@([_, [_, [id('43')]]], [id(X), bootstraps(Y)]])

whose solutions are: X = '42' and Y = '67_63_62',

and the result of the pattern matching function is the sub-
tree corresponding to node 42.

The syntax of these patterns is discussed in detail below
and a full list of patterns is given in Figure 2.

Depending on its location in the pattern, each variable
part of the pattern can match with any subtree of the tree,
with any list of tags or with any tag's value. Thus, the Phy-
loPattern matching module can be used either to find a
match or to extract data from a tree. Note that tags
expressed in the pattern must be included in the matching
node's tags list, but that equality of tags list is not neces-
sary.

Constraints associated with a pattern's structure must be
verified before the match is accepted. A constraint is
expressed as a Prolog free variable/Prolog predicate pair.

Semantics of the PhyloPattern formalismFigure 2
Semantics of the PhyloPattern formalism. Dotted lines indicate any tree containing the node, continuous lines indicate a
specific existing branch in the tree.

��������	
���� ��������	���� ��	�������� ��	���

��������	
��� �������
�������
�� ���������
������

������������������������	
���
������������������������

������������
���������
���
�������������������������������

��������������
����

���������
���������

� ������
�����������������
���

����������������������
���
������

�����������������
���
���������

! ������

�����������������
���
����������∀������
���#�

�����������������������
���
������

����∃�������%��������������
���
���
������

& ������	
��

����∋�(��������������������
�
∀���
������������
�����

����������������������������
������������
�
��������
���

����

�������������
�
�����#����������
��
��������
��

) 	���	
��
����������������
���
��

�∗�
∀�������������
∀���
��
����������������
�
�����#�����

�����
��������
��

������

��������

��������

�������+

�������

�������

������

	�����

	�����

	����+
Page 7 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:298 http://www.biomedcentral.com/1471-2105/10/298
The constraint is verified when the predicate is verified,
and this verification occurs when the free variable is
assigned. The output of the module includes the results of
the pattern matching (see Figure 2), as well as the values
of the free (without value) Prolog variables expressed in
the pattern. A very important feature of PhyloPattern is
that it always gives all solutions for a pattern applied to a
tree.

A number of specific definitions have been introduced for
patterns that increase their conciseness and their search-
ing power. These definitions are listed in Figure 2 and are
described in detail below.

The @(Pattern) syntax is used to find a specific sub-struc-
ture in a tree. For example, suppose one wants to search
for orthologs of a specific sequence associated with a leaf
of a tree. One must search for a speciation node with two
child trees that respectively contain the given sequence
and other sequences from a different species. This search
can be performed with the following:

pattern structure:

@([@([[], OrthologTags]), @([[], SequenceTags])],
ParentTags])

pattern constraints:

freeze([SequenceTags, element(name('sequence name'),
SequenceTags)]), freeze([OrthologTags, element(spe-
cies(OrthologSpeciesName), OrthologTags)]),
freeze([SequenceTags, diff(OrthologSpeciesName,
'sequence species name')]), freeze([ParentTags, ele-
ment(duplication(false), ParentTags)])

The structure definition is used to obtain all possible leaf
pairs in the tree, which technically means "a node with a
leaf coming from one of its children, and another leaf
coming from the other child". The constraints can be
expressed in natural language as: "SequenceTags contains a
tag that is the name of the studied sequence", "Ortholog-
Tags contains a tag that is a species different from the one
in SequenceTags", "ParentTags contains a non duplication
tag".

As mentioned before, PhyloPattern provides all solutions
matching the pattern, so if one applies this pattern to the
tree associated to the V_set domain [see Additional file 2],
for the studied sequence:

['lcl|ENSP00000383836|9606|HOMO~SAPIENS|', ...]

one obtains the ortholog leaves with tags:

[name(lcl|ENSMUSP00000102170|10090|MUS~MUSCU-
LUS|), id(183), length(0.05321),...],

[name(lcl|ENSMUSP00000042662|10090|MUS~MUSCU-
LUS|), id(184), length(0.05947),...],

[name(lcl|ENSRNOP00000046201|10116|RATTUS~NOR-
VEGICUS|), id(185), length(0.08274),...],

[name(lcl|ENSMUSP00000102174|10090|MUS~MUS-
CULUS|), id(186), length(0.11414),...],

[name(lcl|ENSRNOP00000043233|10116|RAT-
TUS~NORVEGICUS|), id(187), length(0.1197),...]

The #(LeafList) syntax can be used to obtain all leaves for
a tree, or to verify that a tree has a specified list of leaves.

The $(Pattern) syntax has a more complex interpretation.
It can be used to find a specific subtree in a tree, even if the
tree has to be "damaged" first, i.e. by eliminating some of
its subtrees. This pattern can be used to create a new tree
that consists of a subset of nodes of a given tree, where the
subset is not a direct existing subtree of the tree. For exam-
ple, suppose one has two trees associated with two protein
domains and suppose one wants to study domain shuf-
fling events based on these trees. To do this, one has to
compare the tree topologies only for the sequences that
are present in both trees, in order to detect differences in
the evolutionary histories of the two domains. To obtain
these trees with PhyloPattern, first a #(LeafList) pattern
must be applied to each tree to obtain their respective leaf
lists. Then the pattern: $(#(CommonLeafList)), where Com-
monLeafList is the intersection of the two leaf lists, must be
applied to the two trees. To understand the $(#(Common-
LeafList)) pattern, just cut it in two parts, the $(_) part
enumerates all damaged trees in the given tree, the #(Com-
monLeafList) part ensures that the resulting trees contain
exactly the list of leaves shared by the two trees.

Finally, the &(PatternList) term, used as a pattern (it is also
a node syntax) allows to define a list of patterns to match
a tree and to partition it. Usually this pattern is not used
directly, but rather when one wants to globally compare
two trees. (see the global tree comparison section below).

A simple example is provided here to demonstrate the
flexibility of PhyloPattern, by chaining annotation phases
and pattern matching phases with constraint definitions
based on tags produced by annotations. Suppose one
wants to identify shuffling events between two non
homologous protein domains. An evolutionary strategy
might be to construct phylogenetic trees for the two pro-
tein domains (based on a multiple sequence alignment)
Page 8 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:298 http://www.biomedcentral.com/1471-2105/10/298
and then to perform the following steps with the Phy-
loPattern API:

Step 1
annotate the leaves of the trees with the domain architectures
of associated proteins (using a protein domain database) and
annotate internal nodes of the trees by inferring their domain
architectures from the leaf domain architectures (using for
example the Dollo parsimony algorithm [18] or Maximum
Likelihood methods [19]),

Step 2
define a pattern with constraints mainly based on the domain
architecture tag to try to find a parent node of a shuffling event
and apply it to each tree (see pattern schema at the top of Fig-
ure 3),

Step 3
if such a node is found, annotate each tree, by adding event tags
to derived nodes found under the event's parent node,

Step 4
apply two patterns to each tree; first to extract a common leaf
(same name) from each "event marked" subtree and second to
extract an "ancestral" leaf (with the "parent" domain architec-
ture).

Potential shuffling events detected using this strategy
could be verified by performing genomic comparisons of
the common sequence with the two associated ancestral
sequences. Figure 3 shows the results of this strategy for a
domain shuffling event described in the literature.

Trees comparison module
Global comparison
A "global comparison" can be used to determine whether
two phylogenetic trees are equivalent. To do this with
PhyloPattern, one of the trees is used as a pattern to be
applied to the second tree. PhyloPattern includes a tool to
transform a tree into a wired structure (nodes without tags
except the node's name) in which badly supported nodes
(nodes with "bad" bootstrap values, where thresholds are
defined by the user) are collapsed to form rakes. This
allows many alternative architectures to be matched with
the "raked" pattern. As a result, when globally comparing
two trees, it is possible to answer "yes" the two trees are
"the same", even if the "badly supported" nodes do not
have the same topology.

Local comparison
Another important tool in the PhyloPattern API, is the
"local" tree comparison. In contrast to global tree compar-
isons, here the tool enumerates all the matching subtrees
between the two trees. To do this, PhyloPattern dynami-
cally defines patterns from all subtrees in one tree, "rak-
ing" some of them if necessary (see global comparison)

and applies each to the second tree, using the pattern
matching tool. One can imagine that these tasks can be
very complex and would be very difficult and fastidious to
reproduce by a human expert.

To continue the domain shuffling example introduced in
the pattern matching section, when global matching fails
on two independent domain trees, one can search for par-
ent nodes of matching subtrees. By definition, these nodes
have two children, one matching subtree and one non-
matching subtree. Thus, one can infer that these nodes
might be parents of a shuffling event, because the match-
ing tree is associated with one set of sequences for one
domain and to another set of sequences for the other
domain. This implies two different evolutionary histories
for two domains in an extant protein. On the trees shown
in Figure 1, PhyloPattern has identified two such nodes
with identifiers 41 and 43. Here, the subtrees with
sequences: [ENSP00000312158, ENSPTR00000056995,
ENSMMUP00000028928] match and the other subtrees
do not.

Conclusion
In this article, we have presented PhyloPattern, a software
API, to:

(i) annotate easily phylogenetic trees using two prede-
fined tree traversal algorithms and predefined or user
defined annotation functions. Optional deferred evalua-
tion of tags, in an annotation function, allows them to be
computed by constraint system solving,

(ii) search and extract complex phylogenetic architectures
and information using a "regular expression like" pattern
syntax,

(iii) compare two trees, either globally using one as a pat-
tern applied to the other, or locally by searching subtrees
from one tree in the other. In this case, sub-patterns are
dynamically and automatically defined by the tool.

PhyloPattern is designed to facilitate the in-depth analysis
of a phylogenetic tree. To achieve this, we have tried to for-
malize and reproduce the studies currently performed by
human experts. The goal is not simply to apply a mathe-
matical algorithm, but to automate the complex evolu-
tionary interpretation of phylogenetic trees for large-scale
scientific pipelines. For example, it is currently being used
in our laboratory in an automatic pipeline to detect
genetic events occurring in vertebrate proteomes (manu-
script in preparation). In this context, analyzing a tree
with two hundred taxa takes only a few seconds. (test pro-
duced on a single Xeon 2,5 Ghz processor with 2Go of
RAM). We also tried pattern matching on a relatively large
tree (797 taxa) of the GPRC gene family which is one of
the biggest in the TreePfam [20] database of phylogenetic
Page 9 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:298 http://www.biomedcentral.com/1471-2105/10/298
trees. In this case, PhyloPattern took 150 seconds to
search for all orthologs (see the orthology pattern in sam-
ples.pl file in the PhyloPattern package) of a given
sequence in the full tree. Thus, we think that PhyloPattern
represents a significant step towards automatic, high-
throughput evolutionary biology studies.

Another potential application for automatic phylogenetic
analysis would be in the case of very large trees (with
thousands of taxa), where visual inspection would be
impossible or too time consuming. Although PhyloPat-
tern has not been designed specifically to handle such
large trees, theoretically it should be possible on very

Two phylogenetic trees are shown, which were built from the same protein sequence alignment, but that correspond to two different domains from the Pfam database [21]Figure 3
Two phylogenetic trees are shown, which were built from the same protein sequence alignment, but that cor-
respond to two different domains from the Pfam database [21]: TBC and UCH. This example has already been
described in the literature [24] and is used here as a benchmark for PhyloPattern. The results of each step in PhyloPattern
(based on the strategy described in Pattern Matching) are shown. Step 1, Annotation: the full domain architecture is given for
each sequence. Domain architectures for internal nodes are computed with the Dollo parsimony algorithm [18]. Step 2, Pat-
tern Matching: the pattern shown above each tree is used to detect "parent" nodes of a shuffling event resulting in the architec-
ture TBC-UCH (indicated in yellow). Step 3, Annotation: a purple circle is placed on the derived branch to locate the event.
Step 4, Pattern Matching: A simple pattern is applied to extract leaves from each derived subtree. The human sequence
ENSP305473 is common to the two subtrees and can be used as a reference for a subsequent genomic comparison with
sequences having the "parent" architecture. Labeled trees for TBC and UCH domains are provided [see Additional file 4], [see
Additional file 5].
Page 10 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:298 http://www.biomedcentral.com/1471-2105/10/298
powerful computers. Another possibility would be to
divide a very large tree into a number of smaller subtrees
(say 100 trees with 100 taxa) and to search for patterns
recursively. For example, a strategy for an exhaustive
domain shuffling events search, using PhyloPattern on a
very large tree, could be defined like this:

1) Divide the large tree into sub trees with PhyloPattern,
for example using a size criterion,

2) With PhyloPattern, search each sub tree individually to
find nodes with new domain architectures due to a shuf-
fling event,

3) Identify the domain structure of the ancestor of each
subfamily,

4) Construct a new tree with one representative member
for each subfamily,

5) With PhyloPattern, search this tree to find intermediate
nodes with new domain architectures due to a shuffling
event.

All the examples described in this paper illustrate the
potential functionalities of PhyloPattern. Using the exist-
ing components in PhyloPattern in combination, we have
shown that different genetic events can be localized on a
phylogenetic tree, such as gene gain/loss, domain shuf-
fling or gene transfers. With this information, two differ-
ent complementary approaches can then be investigated:
a gene centered approach or a global genetic approach. In
the gene centered approach, a small number of trees are
studied and the genetic events can be linked to different
phenomes such as transcriptomes, interactomes, and phe-
notypes (note that a shift in a phenome can be also
labeled on the tree using PhyloPattern). In a more global
analysis, the genetic events can be robustly correlated with
the phenotypic shift and in turn this can be linked to an
environmental shift. Such an evolutionary based
approach could also integrate multiple gene histories and
possibly the whole genome. In this case, the deduced
events and their functional consequences for one gene can
be correlated with the other genes by comparing the tree
annotations in order to find co-convergence between
genetic events, function and environment.

In the future, PhyloPattern can be easily extended, by the
addition of new predefined annotation functions and by
the definition of new pattern syntaxes to solve specific
issues not yet implemented in the current version.

Availability and requirements
Project name: PhyloPattern

Project home page: http://sourceforge.net/projects/phy
lopattern/

Operating system(s): platform independent

Programming language: Prolog (Edimbourg) and Java (>=
1.5)

Other requirements: no

Licence: GPL

Any restrictions to use by non-academics: contact EBM
Lab before using

Abbreviations
API: Application Programming Interface; BNF: Bacchus
Naur Form; NHX: New Hampshire eXtended

Authors' contributions
PG specified PhyloPattern functionalities, developed the
software and drafted the main parts of this manuscript.
JDT provided alignment data to build trees and helped to
validate PhyloPattern. PP highlighted the evolutionary
concepts underlying the conception and drafted biologi-
cal parts of this manuscript. All authors read and
approved the final manuscript.

Additional material

Additional file 1
PhyloPattern package, version 1.01. The complete PhyloPattern package
with runtime, sources, samples and documentation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-298-S1.ZIP]

Additional file 2
V_set domain full phylogenetic tree. The full domain tree corresponding
to the top/left part of Figure 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-298-S2.JPEG]

Additional file 3
C2_set domain full phylogenetic tree. The full domain tree correspond-
ing to the bottom/left part of Figure 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-298-S3.JPEG]

Additional file 4
TBC domain full phylogenetic tree. The full domain tree corresponding
to the top/left part of Figure 3.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-298-S4.jpeg]
Page 11 of 12
(page number not for citation purposes)

http://sourceforge.net/projects/phylopattern/
http://sourceforge.net/projects/phylopattern/
http://www.biomedcentral.com/content/supplementary/1471-2105-10-298-S1.ZIP
http://www.biomedcentral.com/content/supplementary/1471-2105-10-298-S2.JPEG
http://www.biomedcentral.com/content/supplementary/1471-2105-10-298-S3.JPEG
http://www.biomedcentral.com/content/supplementary/1471-2105-10-298-S4.jpeg

BMC Bioinformatics 2009, 10:298 http://www.biomedcentral.com/1471-2105/10/298
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Acknowledgements
We thank past and present students: Elodie Darbo, Jacques Dainat, Julien
Paganini, Katja Karstens and Francisco Prosdocimi for testing the tools in
different biological contexts. This work was supported by French National
Research Agency [EvolHHuPro: ANR-07-BLAN-0054].

References
1. Dobzhansky T: Nothing in Biology Makes Sense Except in the

Light of Evolution. The American Biology Teacher 1973, 35:125-129.
2. Levasseur A, Orlando L, Bailly X, Milinkovitch MC, Danchin EG, Pon-

tarotti P: Conceptual bases for quantifying the role of the
environment on gene evolution: the participation of positive
selection and neutral evolution. Biol Rev Camb Philos Soc 2007,
82:551-72.

3. Barker D, Pagel M: Predicting functional gene links from phyl-
ogenetic-statistical analyses of whole genomes. PLoS Comput
Biol 2005, 1:e3.

4. Gouret P, Vitiello V, Balandraud N, Gilles A, Pontarotti P, Danchin
EG: FIGENIX: intelligent automation of genomic annotation:
expertise integration in a new software platform. BMC Bioin-
formatics 2005, 5:6-198.

5. Engelhardt BE, Jordan MI, Muratore KE, Brenner SE: Protein molec-
ular function prediction by Bayesian phylogenomics. PLoS
Comput Biol 2005, 1:e45.

6. Krishnamurthy N, Brown DP, Kirshner D, Sjölander K: PhyloFacts:
an online structural phylogenomic encyclopedia for protein
functional and structural classification. Genome Biol 2006,
7:R83.

7. Zmasek CM, Eddy SR: RIO: analyzing proteomes by automated
phylogenomics using resampled inference of orthologs. BMC
Bioinformatics 2002, 16:3-14.

8. Sakarya O, Kosik KS, Oakley TH: Reconstructing ancestral
genome content based on symmetrical best alignments and
Dollo parsimony. Bioinformatics 2008, 24:606-12.

9. Durand D, Halldórsson BV, Vernot B: A hybrid micro-macroevo-
lutionary approach to gene tree reconstruction. J Comput Biol
2006, 13:320-35.

10. Beiko RG, Hamilton N: Phylogenetic identification of lateral
genetic transfer events. BMC Evol Biol 2006, 11:6-15.

11. Huson DH, Bryant D: Application of phylogenetic networks in
evolutionary studies. Mol Biol Evol 2006, 23:254-67.

12. Blomme T, Vandepoele K, De Bodt S, Simillion C, Maere S, Peer Y
Van de: The gain and loss of genes during 600 million years of
vertebrate evolution. Genome Biol 2006, 7:R43.

13. Arvestad L, Berglund AC, Lagergren J, Sennblad B: Bayesian gene/
species tree reconciliation and orthology analysis using
MCMC. Bioinformatics 2003, 19(Suppl 1):i7-15.

14. Dufayard JF, Duret L, Penel S, Gouy M, Rechenmann F, Perrière G:
Tree pattern matching in phylogenetic trees: automatic
search for orthologs or paralogs in homologous gene
sequence databases. Bioinformatics 2005, 21(11):2596-603.

15. Warren DHD, Pereira LM, Pereira F: Prolog the language and its
implementation compared with Lisp. Symposium on Artificial
Intelligence and Programming Languages, Rochester, N.Y 1977.

16. McCarthy J: Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I. Massachusetts Institute
of Technology, Cambridge, Mass; 1960.

17. Wright AK, Fellensein M: A Syntactic Approach to Type Sound-
ness. Information & Computation 1992, 115:38-94.

18. Farris JS: Phylogenetic analysis under Dollo's law. Syst Zool
1977, 26:77-88.

19. Felsenstein J: Evolutionary trees from DNA sequences: a max-
imum likelihood approach. J Mol Evol 1981, 17:368-376.

20. Ruan J, Li H, Chen Z, Coghlan A, Coin LJ, Guo Y, Hériché JK, Hu Y,
Kristiansen K, Li R, Liu T, Moses A, Qin J, Vang S, Vilella AJ, Ureta-
Vidal A, Bolund L, Wang J, Durbin R: TreeFam: 2008 Update. Nucl
Acids Res 2008, 36:D735-40.

21. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL:
The Pfam protein families database. Nucleic Acids Res 2000,
28:263-266.

22. Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S,
Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fern-
andez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R,
Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kin-
sella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl
P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G,
Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J,
White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V,
Durbin R, Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor G,
Smith J, Searle S, Flicek P: Ensembl 2009. Nucl Acids Res 2009,
37:D690-D697.

23. Thompson JD, Muller A, Waterhouse A, Procter J, Barton GJ, Plewn-
iak F, Poch O: MACSIMS: multiple alignment of complete
sequences information management system. BMC Bioinformat-
ics 2006, 23:7-318.

24. Paulding CA, Ruvolo M, Haber DA: The Tre2 (USP6) oncogene
is a hominoid-specific gene. Proc Natl Acad Sci USA 2003,
100:2507-2511.

Additional file 5
UCH domain full phylogenetic tree. The full domain tree corresponding
to the bottom/left part of Figure 3.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-298-S5.jpeg]
Page 12 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-298-S5.jpeg
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17944617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17944617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17944617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16103904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16103904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16217548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16217548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16973001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16973001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16973001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18184685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18184685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18184685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16597243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16597243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16221896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16221896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16723033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16723033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15713731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15713731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15713731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7288891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7288891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18056084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19033362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12604796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12604796
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Representation of trees and patterns
	Prolog engine

	Results
	Tree annotation module
	Pattern matching module
	Step 1
	Step 2
	Step 3
	Step 4

	Trees comparison module
	Global comparison
	Local comparison

	Conclusion
	Availability and requirements
	Abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

