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Abstract

Background: Microarray technologies produced large amount of data. In a previous study, we have shown the

interest of k-Nearest Neighbour approach for restoring the missing gene expression values, and its positive impact

of the gene clustering by hierarchical algorithm. Since, numerous replacement methods have been proposed to

impute missing values (MVs) for microarray data. In this study, we have evaluated twelve different usable methods,

and their influence on the quality of gene clustering. Interestingly we have used several datasets, both kinetic and

non kinetic experiments from yeast and human.

Results: We underline the excellent efficiency of approaches proposed and implemented by Bo and co-workers

and especially one based on expected maximization (EM_array). These improvements have been observed also on

the imputation of extreme values, the most difficult predictable values. We showed that the imputed MVs have still

important effects on the stability of the gene clusters. The improvement on the clustering obtained by hierarchical

clustering remains limited and, not sufficient to restore completely the correct gene associations. However, a

common tendency can be found between the quality of the imputation method and the gene cluster stability.

Even if the comparison between clustering algorithms is a complex task, we observed that k-means approach is

more efficient to conserve gene associations.

Conclusions: More than 6.000.000 independent simulations have assessed the quality of 12 imputation methods

on five very different biological datasets. Important improvements have so been done since our last study. The

EM_array approach constitutes one efficient method for restoring the missing expression gene values, with a lower

estimation error level. Nonetheless, the presence of MVs even at a low rate is a major factor of gene cluster

instability. Our study highlights the need for a systematic assessment of imputation methods and so of dedicated

benchmarks. A noticeable point is the specific influence of some biological dataset.

Background

Numerous genomes from species of the three kingdoms

are now available [1,2]. A major current aim of biologi-

cal research is to characterize the function of genes, for

instance their cellular regulation pathways and implica-

tions in pathology [3-7]. High-throughput analyses (e.g.,

Microarrays) combined with statistical and bioinfor-

matics data analyses are necessary to decipher such

complex biological process [8,9]. Microarrays technolo-

gies allow the characterization of a whole-genome

expression by measuring the relative transcript levels of

thousand of genes in one experiment [10,11]. For

instance, their relevancies were proved for the classifica-

tion/identification of cancer subtype or diseases [12-17].

However, technical limitations or hazards (dust,

scratches) lead to corrupted spots on microarray [18].

During the image analysis phase, corrupted or suspi-

cious spots are filtered [11], generating missing data

[18]. These missing values (MVs) disturb the gene clus-

tering obtained by classical clustering methods, e.g.,

hierarchical clustering [19], k-means clustering [20],

Kohonen Maps [21,22] or projection methods, e.g., Prin-

cipal Component Analysis [23]. In practice, three differ-

ent options can be considered. The first method leads
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to the elimination of genes, i.e., information loss [5].

The eliminated genes may be numerous and among

them some may be essential for the analysis of the stu-

died mechanism [24]. The second method corresponds

to the replacement by zero [13]; it brings up a different

problem in the analysis. Indeed, real data close to 0 will

be confused with the MVs. Thus to limit skews related

to the MVs, several methodologies using the values pre-

sent in the data file to replace the MVs by estimated

values have been developed [25].

The most classical method to estimate these values is

the k-nearest neighbours approach (kNN), which com-

putes the estimated value from the k closest expression

profiles among the dataset [26]. This approach was

applied to DNA chips by Troyanskaya and collaborators

[27] and rapidly became one of the most popular meth-

ods. Since this pioneer study, more sophisticated

approaches have been proposed, like Sequential kNN

(SkNN) [28].

Simple statistical methods have been also proposed as

the Row Mean [29]/Row Average method [28], or

approaches based on the Expectation Maximisation

algorithm (EM), e.g., EM_gene and EM_array [29]. Prin-

ciple of least square (LS) has been also widely used, e.g.,

LSI_gene, LSI_array, LSI_combined and LSI_adaptative

[29]. Kim and co-workers have extended the Least

Square Imputation to Local Least Square Imputation

(LLSI) [28]. However this method is only based on the

similarity of genes for estimating the missing data.

Others more sophisticated methods like the Bayesian

Principal Component Analysis (BPCA) [30] combines a

principal component regression, a Bayesian estimation

and a variational Bayes (VB) algorithm.

The MVs replacement in microarrays data is a recent

research field and numerous new and innovative meth-

odologies are developed. We can noticed the work of

Bar-Joseph et al. who described a model-based spline

fitting method for time-series data [31] and Schliep et

al. who used hidden Markov models for imputation

[32]. Tuikkala and co-workers have investigated the

interest to use GO annotation to increase the imputa-

tion accuracy of missing values [33] as Kim et al. [34].

Hu et al. and Jörnsten et al. have incorporated informa-

tion from multiple reference microarray dataset to

improve the estimation [35,36], while Gan co-workers

takes into consideration the biological characteristics of

the data [37]. Hua and Lai did not propose a new

method, but assess the quality of imputation on the con-

cordance of gene prioritization and estimation of true/

false positives [38].

In addition we can list the following relevant meth-

odologies applied in MVs replacement for microarray

analysis: Support Vector Regression [39], Factor Analysis

Regression [40], Ordinary Least Square Impute [41],

Gaussian Mixture Clustering [42], LinCmb [43], Collat-

eral Missing Value Estimation [44], Linear based model

imputation [45], Dynamic Time Warping [46] or itera-

tive kNN [47,48].

In a previous study, we estimated the influence of

MVs on hierarchical clustering results and evaluated the

effectiveness of kNN approach [49]. We observed that

even a low rate of missing data can have important

effects on the clusters obtain by hierarchical clustering

methods. Recently, this phenomenon was confirmed by

Wong and co-workers for other particular clustering

methods [50].

Since our work, numerous replacement methods (see

Table 1 and previous paragraphs) have been developed

to estimate MVs for microarray data. Most of the time,

the new approaches are only compared to kNN. In this

study, we decided to evaluate the quality of MV imputa-

tions with all usable methods, and their influence on the

quality of gene clustering. The present paper undertakes

a large benchmark of MVs replacement methods to ana-

lyze the quality of the MVs evaluation according to

experimental type (kinetic or not), percentage of MVs,

gene expression levels and data source (Saccharomyces

cerevisiae and human).

Results

General principle

Figure 1 shows the general principle of the analysis.

From the initial gene expression datasets, the series of

observations with missing values are eliminated to create

a Reference matrix. Then simulated missing values are

generated for a fixed τ percentage and are included in

the Reference matrix. In a second step, these simulated

missing values are imputed using the different available

methods. Difference between the replaced values and

the original true values is finally evaluated using the

root mean square error (RMSE) (see Methods). In this

work, we chose 5 microarray datasets, very different one

from the other, i.e., coming from yeasts and human

cells, and with or without kinetics (see Table 2). The

idea was to have the broadest possible vision types of

expression data [see Additional file 1 for more details

[49,51-54]].

Our goals were also (i) to evaluate methods that

experimental scientists could use without intervention,

(ii) to select only published methods, and (iii) to analyse

influence of the gene clusters. Indeed, some studies have

been done to compare numerous methods, e.g., [55], but

does not go through the clustering; while less frequent

researches goes through the clustering, but test only a

limited number of imputation methods as [56]. We so

have searched all kinds of published imputation meth-

ods with available dedicated softwares or codes, when-

ever the Operating System, language or software. From
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this search, we selected 12 available replacement meth-

ods, which were compatible with high-throughput com-

putation. Others methods had not been used due to the

unavailability of the program despite the indication in

the corresponding papers or to impossibility to modify

the source code to used our microarrays data.

Error rate for each replacement method

Figure 2 shows the dispersion of expected and true

values, for three given imputation methods. On one

hand, kNN and EM_gene approaches exhibit a high dis-

persion between expected and true values; the correla-

tions R equal respectively 0.33 and 0.32 (see Figures 2a

and 2b). On the other hand EM_array approach pre-

sents a highly better agreement with a R value of 0.97

(see Figure 2c). Figure 3 shows the evolution of RMSE

values for τ ranging between 0.5 and 50% using the two

datasets GHeat and OS. These two examples are good

illustrations of the different behaviours observed with

the different replacement methods. Some have initial

high RMSE values and remains quite consistent, while

others have lower initial RMSE values but are very sen-

sitive to an increased rate of MVs. Moreover,

performances for the different methods appeared to be

dependant of the used dataset.

• EM_gene[29]: This method is always associated to

very high RMSE values, which range in an interval from

0.6 to 0.7 for a rate τ ranging from 0.5 to 3.0% (see Fig-

ure 3b) and decrease for values from 0.30 to 0.40. Such

a curved profile is observed for the datasets OS and

GH2O2 (see Figure 3a). For the other dataset, RMSE

increases as expected (see Figure 3a), but is always asso-

ciated to high RMSE values.

• kNN[27]: Its RMSE values for all six data files always

range between 0.3 and 0.4. The increase of τ only affects

slightly the kNN approximation, at most 0.05 for the

datasets B and OS. This constancy of RMSE values

implies that for high rates of missing data (more than

20% of missing data) the RMSE values remain

acceptable.

• SkNN[28]: Despite the fact that SkNN is an improve-

ment of kNN, their RMSE values are surprisingly always

higher than the one of kNN (from 0.01 to 0.08). Only

with the dataset B, SkNN performs slightly better than

kNN (RMSE difference of 0.076).

Table 1 Different missing values replacement methods.

Methods Author Availability Language Used Year

K-Nearest Neighbors (kNN) Troyanskaya O. Y C Y 2001

Bayesian Pricipal Component Analysis
(BPCA)

Oba S. Y JAVA Y 2003

Row Mean1 Bø T.H. Y JAVA Y 2004

EM_gene1 Bø T.H. Y JAVA Y 2004

EM_array1 Bø T.H. Y JAVA Y 2004

LSI_gene1 Bø T.H. Y JAVA Y 2004

LSI_array1 Bø T.H. Y JAVA Y 2004

LSI_combined1 Bø T.H. Y JAVA Y 2004

LSI_adaptative1 Bø T.H. Y JAVA Y 2004

Sequential KNN (SkNN) Kim K. Y R Y 2004

Local Least Square Impute2 (LLSI) Kim H. Y MATLAB Y 2005

Row Average2 Kim H. Y MATLAB Y 2005

Linear model based Imputation (LinImp) Scheel I Y R N 2005

FAR, Factor Analysis Regression (FAR) Feten. N - N 2005

Ordinary Least Square Impute (OLSI) Nguyen D.V. N - N 2004

Support Vector Regression (SVR) Wang X. Y C++ N 2006

Gaussian Mixture Clustering (GMC) Ouyang M. On demand MATLAB N 2004

Singular Value Decomposition (SVD) Troyanskaya O. N C N 2001

ghmm Schielp, A Y N 2003

Collateral Missing Value Estimation (CMVE) Sehgal M. On demand MATLAB N 2005

GO-based imputation Tuikkala N - N 2005

LinCmb Jörnsten, R On demand MATLAB N 2005

Integrative Missing value Estimation (iMISS) Hu, J Y C++ N 2006

Projection Onto convex sets (POCS) Gan, X N - N 2006

Iterative kNN Bras N - N 2007

Is given the name of the methods, the authors, its availability, if we have used it (Y) or not (N) and the publication year.
1 Package Bø T.H.
2 Package Kim H.
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Figure 1 Principle of the method. The initial data matrix is analyzed. Each gene associated to at least one missing value (in pink) is excluded

given a Reference matrix without any missing value. Then missing values are simulated (in red) with a fixed rate τ. This rate τ goes from 0.5% to

50% of missing values by step of 0.5%. 100 independent simulations are done each time. Missing values are then imputed (in blue) for each

simulations by the selected methods. RMSE is computed between the estimated values of missing values and their true values.
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Table 2 The different datasets used

Ogawa et al., 2000 Gasch et al., 2000 Bohen S.P et
al., 2002

Lelandais et
al., 2005

Organism Saccharomyces cerevisiae Saccharomyces cerevisiae human Saccharomy-
ces cerevisiae

Initial gene number 6013 6153 16523 5261

Initial number of conditions 8 178 16 6

Missing values (%) 0.8 3 7.6 11.4

Genes with missing
values (%)

3,8 87,7 63,6 88.29

Genes erased from
the study

230 NA NA 616

Conditions erased from
the study

0 136 0 0

Ogawa_Complet
(OC)

Ogawa_subset
(OS)

Gasch HEAT
(GHeat)

Gasch H2O2
(GH2O2)

Bohen (B) Lelandais (L)

Kinetics N N Y N N Y

Final gene numbers 5783 827 523 717 861 4645

Final condition number 8 8 8 10 16 6

Figure 2 Example of three methods. Distribution of predicted values (y-axis) in regards to true values (x-axis). Estimation of the missing values

has been done (a) by kNN approach, (b) EM_gene and (c) EM_array. The dataset used is the Bohen set with τ values ranging from 0.5% to 50%

of missing values with a step of 0.5. 10 independent simulations have been done for each τ value.
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• LLSI[57]: The average RMSE values of LLSI ranges

mainly from 0.34 to 0.41 for most of the dataset. Its per-

formance could be considered as median and its effec-

tiveness is close to the LSI_gene method. Its RMSE

values increase gradually with the increase of τ, i.e., 0.1

from 0.5 to 50% of missing data. It is the less efficient

method based on least square regressions. However for

the dataset L, this method is the most powerful after the

LSIs methods (see below).

• LSI_gene[29]: The effectiveness of LSI_gene is slightly

affected by the increase in the percentage of missing

data. For each data file, the values of RMSE range

between 0.3 and 0.4. These results are close to those

observed for methods LLSI and kNN, i.e., methods giv-

ing of the medium results ranging between the best

(LSI_array) and the less efficient methods (EM_gene).

• Row Mean[29] and Row Average [57]: Low RMSE

values are observed for L (0.23) and B (0.28) datasets.

Only for dataset GHeat, the RMSE value is high (0.54).

Strikingly this method shows equivalent and or better

results than more elaborated approaches.

• BPCA[30]: For the OC, OS and GH2O2 datasets, and

for τ comprises in the range 0.5 to 10-15% of missing

data, BPCA appears to have one of the lowest RMSE

Figure 3 Missing value imputation. RMSE value for (a) GHeat subset and (b) for OS for rate of missing value going from 0.5% to 50% by step of

0.5%. (b) 100 independent simulations are done at each level.
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values [see Additional file 2], only bypass by two other

approaches. This method is powerful for low rates of

missing values. However it should be noted that the effi-

ciency of BPCA is strongly reduced when the rate of

missing data increases. This is particularly notable in

the case of the GHeat dataset. The values of the RMSE

increases from 0.2 to 1.1 (see Figure 3a). For a τ value

higher than 30%, BPCA performs worst than most of

the imputation methods. This observation is less striking

for the other datasets. For B and OS datasets, RMSE

values increase by a maximum of 0.1 for τ increasing

from 0.5 to 50%. It is a good illustration of the dataset

specificity related to the quality of the imputation

methods.

• LSI_array, LSI_combined, LSI_adaptative and

EM_array[29]: Their RMSE values are always lower

than 0.1. Remarkably, it is true even for a rate of miss-

ing data that equals 50%. The average RMSE values of

EM_array are slightly lower than the ones of the three

other methods. It is striking when the rate of missing

data exceeds 20%. A pair-wise comparison shows that

EM_array is better than the three other methods; its

approximation is better in 2/3 of the case. If τ is higher

than of 33%, this method remains the best one in 80%

of the cases (see Table 3 for two examples).

The different datasets influence the quality

of the imputation

Table 4 shows the average RMSE values for each impu-

tation methods. They are given as the average of all the

simulations ranging from τ = 0.5 to 50% (50,000 inde-

pendent simulations per imputation method). This table

highlights the differences that were observed between

the datasets. Nonetheless, it allowed us to rank the

methods in term of efficiency. Roughly, we could iden-

tify three groups: The first one comprise four methods

(EM_array, LSI_array, LSI_combined and LSI_adapta-

tive) for which small RMSE values were always observed

(EM_array always exhibited the best performances); (2)

the second group comprised 4 methods, i.e., BPCA, Row

Mean, LSI_gene and LLSI; (3) and finally the third

group, which can be considered as the last group, com-

prised three methods, i.e., kNN, SkNN and EM_gene.

Notably, this order depends on the dataset, but still the

changes are often limited. For instance, EM_gene per-

forms better than kNN and SkNN for B dataset, but does

not perform better than the others. Strong changes could

be noted for OS that allows SkNN to be better than LLSI

and LSI_gene. Nonetheless, it is mainly due to the poor

quality of the estimation of these two methods with this

dataset. For the L dataset, we observed that LLSI method

Table 3 Pairwise comparison of imputation method.

(a)
kNN BPCA Row Mean EM_gene EM_array LSI_gene LSI_array LSI_combined LSI_adaptative SkNN

kNN ——— 23.47 47.65 60.82 4.59 38.06 5.00 5.41 7.25 47.14

BPCA ——— ——— 75.41 81.33 11.12 67.04 12.76 14.49 16.63 75.51

Row Mean ——— ——— ——— 64.69 4.49 40.82 5.10 5.71 6.12 52.45

EM_gene ——— ——— ——— ——— 3.67 29.49 4.08 4.39 5.31 37.04

EM_array ——— ——— ——— ——— ——— 92.45 60.04 63.89 63.36 95.00

LSI_gene ——— ——— ——— ——— ——— ——— 7.86 7.65 7.45 61.53

LSI_array ——— ——— ——— ——— ——— ——— ——— 37.24 38.27 94.79

LSI_combined ——— ——— ——— ——— ——— ——— ——— ——— 44.39 93.78

LSI_adaptative ——— ——— ——— ——— ——— ——— ——— ——— ——— 92.96

SkNN ——— ——— ——— ——— ——— ——— ——— ——— ——— ———

(b)

kNN BPCA RowMean EM_gene EM_array LSI_gene LSI_array LSI_combined LSI_adaptative SkNN

kNN ——— 42.59 44.02 55.90 6.32 45.45 18.74 18.74 18.74 50.09

BPCA ——— ——— 52.02 63.49 7.84 53.04 23.37 23.37 23.37 58.03

Row Mean ——— ——— ——— 62.18 6.69 24.88 14.01 14.01 14.01 56.58

EM_gene ——— ——— ——— ——— 5.06 39.27 15.67 15.67 15.67 44.54

EM_array ——— ——— ——— ——— ——— 92.97 79.65 79.65 79.65 93.61

LSI_gene ——— ——— ——— ——— ——— ——— 14.85 14.85 14.85 55.52

LSI_array ——— ——— ——— ——— ——— ——— ——— 39.24 43.29 81.67

LSI_combined ——— ——— ——— ——— ——— ——— ——— ——— 46.49 81.67

LSI_adaptative ——— ——— ——— ——— ——— ——— ——— ——— ——— 81.67

SkNN ——— ——— ——— ——— ——— ——— ——— ——— ——— ———

Is given the percentage of better approximation of one method versus another for a rate of missing value t equal to (a) 32% and (b) 48.5% with the OS dataset.

The percentage is given in regards to the method given at the left.
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performs well and remains better than other LSIs and

EM_array methods. GHeat dataset that is associated to

the highest average RMSE values has strong particulari-

ties as (i) kNN performs better than BPCA, Row Mean,

LSI_gene and LLSI, and (ii) BPCA and Row Mean per-

forms poorly compared to other methods, being only

slightly better than EM_gene. Hence, it appears that

GHeat is a more difficult dataset to impute.

Extreme values

The same methodology was followed to analyze the

extreme values, i.e., 1% of the microarray measurements

with the highest absolute values. They have major biolo-

gical key role as they represent the highest variations in

regards to the expression reference [see Additional file

3]. Figure 4 presents similar examples to these of Figure

3, but this time, only extreme values were used in the

Table 4 Mean RMSE value for the different datasets

methods mean
EM_gene SkNN kNN LLSI LSI_gene Row

Mean
BPCA LSI_array EM_array

datasets B 0.334 0.390 0.455 0.344 0.320 0.283 0.194 0.098 0.053 0.275

GH2O2 0.586 0.445 0.431 0.452 0.358 0.319 0.334 0.068 0.028 0.336

OS 0.444 0.369 0.383 0.379 0.377 0.263 0.257 0.077 0.036 0.287

L 0.388 0.292 0.300 0.078 0.261 0.215 0.250 0.028 0.020 0.204

GHeat 0.703 0.426 0.350 0.412 0.403 0.541 0.690 0.091 0.054 0.408

mean 0.491 0.384 0.384 0.333 0.344 0.324 0.345 0.072 0.038 0.302

Figure 4 Extreme values (representing 1% of the missing values). Evolution of RMSE according to τ ranging (a) from 0.5% to 30% of the

extreme values for the Bohen dataset and (b) from 0.5% to 50% of the extreme values) for the Ogawa dataset.
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analysis. Thus, the percentage of missing values τ can be

differently apprehend, i.e., τ = 10% corresponds to 10%

of the extreme missing values, so 0.1% of the values of

the dataset. At one exception, all the replacement meth-

ods decrease in effectiveness for the estimate of the

extreme values. Performance of the methods also greatly

depends on the used dataset and especially -in agree-

ment with previous observation - in the case of the

GHeat dataset. A description of the behaviour of each

method is presented in Additional file 3. kNN [27] is the

less powerful method in most of the case (see Figures 4a

and 4b). Its average RMSE value is often 0.5 higher than

the second poorest imputation method. Interestingly, in

the case of the extreme values, SkNN improved greatly.

EM_gene [29] remains one of the less powerful methods

for the imputation of missing values. LLSI [57] method

effectiveness remains similar compared to the other

methods of its group. Row Mean [29] and Row Average

[57] have RMSE values increased by 0.2 to 0.4 for the

yeast dataset, which is correct in regards to other meth-

ods (see Figures 6). Their efficiencies are median com-

pared to the other methods. BPCA [30] has a correct

behaviour. But contrary to most of them, it is very sensi-

tive to the datasets. LSI_gene [29] has the lowest RMSE

values observed after EM_array, LSI_array, LSI_com-

bined and LSI_adaptative. This result shows that LSIs,

whatever the specificity of their implementations, are

effective to impute the values missing.

EM_array method is again the most performing

method (see previous section). Its RMSE values are

almost identical to the ones previously computed.

LSI_array, LSI_combined and LSI_adaptative are slightly

less efficient than previously seen. Thus, the clustering

we have proposed remains pertinent when only the

extreme values are implicated. LSI_array, LSI_combined,

LSI_adaptative and EM_array are always good, and the

Figure 5 CPP of hierarchical clustering approach algorithm. (a) with complete, average, ward and McQuitty algorithm for OS with kNN and

(b) with Ward algorithm for Ogawa dataset for the different imputation methods.
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less efficient methods can be associated now to consid-

erable RMSE values. Noticeably, kNN efficiency col-

lapses and the influence of datasets on the imputation

quality is sharpened.

Clustering in question

A critical point in the analysis of DNA data is the clus-

tering of genes according to their expression values.

Missing values have an important influence on the stabi-

lity of the gene clusters [49,58]. Imputations of missing

values have been used both to do hierarchical clustering

(with seven different algorithms) and k-means [20] (see

Methods).

Figure 5a shows the Cluster Pair Proportions (CPP,

[49] see Methods section) of OS using hierarchical clus-

tering with complete linkage, average linkage, McQuitty

and Ward algorithm. CPP values of average linkage

ranges between 78 and 68%, those of McQuitty between

58 and 45%, those of Ward between 57 and 35% and

finally those of complete linkage between 50 and 41%.

We obtain for the 7 hierarchical clustering algorithms

the same behaviours than previously observed [49]: ran-

ging from high CPP values for single linkage to low CPP

values for Ward. This observation can be explained by

the topology given by each algorithm, e.g., Ward gives

well equilibrated clusters whereas single linkage creates

few major clusters and numerous adjacent singletons.

For every hierarchical clustering methods the CPP

values are different, but the general tendencies remain

the same: (i) imputation of small rate τ of MVs has

always a strong impact on the CPP values, and (ii) the

CPP values slowly decreased with the increased of τ.

Between 0.5 and 3% of MVs and the CPP values

decrease by 1 to 3% per step of 0.5% of MVs. From τ

equals 3.5 to 20% of MVs, the values of CPP decrease

overall by 10%. For higher rate of MVs the decreasing

of CPP is slower. This loss of stability is present in the

case of the k-means method and for each type of hier-

archical classification (except for the methods single

linkage and centroid linkage, due to the building of the

clusters).

Individual evaluation of the methods highlights the

lack of efficiency of the EM_gene imputation method; it

obtains always the lowest CPP values, i.e., 1.37 to 5.34%

less than other approaches. At the opposite, EM_array,

LSI_array, LSI_combined and LSI_adaptative are

associated to the highest CPP values. In the case of the

methods with a median efficiency, e.g., Row_Mean, their

CPP values could be assigned as median compared to

the values of the other methods. Figure 5b shows the

particular example of OS dataset. CPP values of BPCA

(average value equals 42.6%) are close to the most

powerful methods (42.8% for the four methods). More-

over, in the classical range of τ less than 20%, it is the

best. As seen in Table 4, BPCA is one of the best

approaches for this dataset. Hence, common trends can

be found between the quality of the imputation method

and the gene cluster stability.

In addition, evaluation of imputation methods shows

that the cluster quality depends on the dataset. For

instance, with the dataset OS, imputation of missing

values with kNN method gives an average CPP value

(for the Ward algorithm) that equals 42.9%, while the

average CPP values for all the other methods only

equals 40.6% whereas its RMSE value is one of highest

(see Table 4). The CPP differences are mainly bellow

5%. These results show that an improvement has been

obtained since last study. Nonetheless, no new

approaches had drastically improved the quality of the

clustering. Interestingly, k-means approach had similar

tendencies, underlining that this low improvement is

not due to hierarchical clustering.

Another question is the comparison between hierarch-

ical clustering algorithms and k-means. Nonetheless,

comparison only between hierarchical clustering algo-

rithms is already a difficult task. Comparison with k-

means is so more difficult. Indeed, the use of the same

number of clusters to compare the hierarchical cluster-

ing algorithms with k-means can leads to a wrong con-

clusion. Indeed, for an equivalent number of clusters,

most of the CPP values of k-means are lower than CPP

values obtained with hierarchical clustering algorithms.

However, it is only due to the dispersion of observations

within the clusters obtained by k-means approach. Thus,

to have an unbiased comparison, the dispersion of genes

within cluster between k-means and hierarchical cluster-

ing algorithms must be computed. It had been done, as

previously described [49]. Following this approach,

Ward and complete linkages were defined as the best

approaches to assess an unbiased comparison. They

have both CPP values lower than k-means CPP values.

The differences were often higher than 5% underlining

the interest of k-means approach to cluster gene expres-

sion profiles.

Distribution of the observations

When index CPP is calculated, only one group is taken

into account. To go further, we used another index,

named CPPf that allows to take into account the five

closer groups, and to check the pairs of genes remaining

joint partners. The values of CPPf are higher than those

Figure 6 Summary of the comparison.
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of the CPP, e.g., 20% for the Ward. Methods associated

to high CPP values have also high CPPf values, while

methods with low CPP values have also a lower CPPf
values. These weak variations shows that often a part of

the observations, not associated to the original cluster

could be find in its vicinity. These results are entirely in

agreement with our previous results [49]. It shows here

that the novel imputation methods have not permit to

get closer related genes with better improvement.

The analysis of associations could also take into

account the non-associations. For this purpose, Cluster-

ing Agreement Ratio (CAR, see Methods section) has

been used which considers both associated and non-

associated genes. CAR values are higher than the one of

the CPP due to the calculation of the pairs of genes

remaining dissociated. Indeed, it is more probable than

the genes are dissociated than associated according to

the number of treated genes and the number of gener-

ated groups. For the OS dataset, the highest values of

the index CAR concerns Ward classification and are

ranging between 88.2 and 91.2%. For the GHeat dataset,

it ranges between 91.0 and 94.1%. Complete linkage,

average linkage and McQuitty have lower CAR values

(80%). For k-means classification, the values are higher 1

to 2% compared to Ward classification, 10% better than

McQuitty and Complete linkage and 13% to average

linkage. This results underlines that K-means allows so

a better stability of gene clusters.

Discussion

Imputation

Since our previous analysis [49], numerous new MVs

imputation methods have been proposed. Some

appeared to be true improvements in regards to the

computation of RMSE. In particular, EM_array is clearly

the most efficient methods we tested. For τ < 35%, it is

the best imputation method for 60% of the values, and

for τ > 35%, in 80%. This feature was confirmed by the

analysis of extreme values. LSI_array, LSI_combined and

LSI_adaptative follow closely the efficiency of EM_ar-

ray. We have unsuccessfully tried to combine these four

different methods to improve the RMSE values. No

combination performs better than EM_array.

We can underline four interesting points:

i. As expected, the imputation quality is greatly affected

by the rate of missing data, but surprisingly it is also

related to the kind of data. BPCA is a perfect illustra-

tion. For non-kinetic human dataset, MVs estima-

tions were correct, whereas for the GHeat dataset the

error rate appeared to be more important.

ii. The efficiency of Row_Mean (and Row_Average)

is surprisingly good in regards to the simplicity of

the methodology used (with the exception of GHeat

dataset).

iii. Even if kNN is the most popular imputation method;

it is one of the less efficient, compared to other meth-

ods tested in this study. It is particularly striking

when analyzing the extreme values. SkNN is an

improvement of kNN method, but we observed that

RMSE values of SkNN were not better than ones of

kNN. It could be due to the use of non-optimal num-

ber of neighbours (k), as for kNN. It must be noticed

we used kopt defined by [27], this choice has a direct

impact on the imputation values.

Extreme values are the ones that are the most valuable

for the experiments. The imputation of extreme value

missing data shows that -except for EM_array- the

effectiveness of all the methods is affected.

Our results are so in good accordance with the results

of Brock and co-workers [55] who found that methods

from Bo and co-workers [29], Kim and co-workers [57]

and Oba and co-workers [30] are highly competitive.

However, they consider “that no method is uniformly

superior in all datasets” [29]. Our results are simpler to

summarize as we observe -thanks to our distance cri-

teria- a grading between the effectiveness of the meth-

ods. LLSI of Kim and co-workers [57] has a correct

behavior for all datasets while BPCA of Oba and co-

workers [30] is strongly dependant of the dataset. At the

opposite, the methods implemented by Bo and co-work-

ers [29] remain the most efficient in all cases. Moreover,

some implemented methods of Bo and co-workers [29]

have not been tested by [55], but are the most efficient.

All these results are reinforced by the analyses of

extreme value imputations.

An important point must be not forgotten, we have, as

the other authors, e.g., [24,55,56], used the entire data-

set, i.e., no specific selection of interesting profile gene

had been done. It could have importance in terms of

quality of the imputation values and consequence on

the clustering.

Clustering

A strong assumption of the microarray data analysis is

that genes with similar expression profiles are likely to

be co-regulated and thus involved in the same or similar

biological processes. Different types of clustering and

classification methods have been applied to microarray

data, e. g., some classical as k-means clustering [20],

self-organizing maps [21,22,59], hierarchical clustering

[19,60], Self Organizing Tree Algorithm [61-63], and

some dedicated approaches as DSF_Clust [64], re-sam-

pling based tight clustering [65], cluster affinity search

technique [66], multivariate Gaussian mixtures [67],

model-based clustering algorithms [68,69], clustering of

change patterns using Fourier coefficients [70], Nearest

Neighbor Networks [71], Fuzzy clustering by local

Approximation of membership [72] or Multi-Dimen-

sional Scaling [73].
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Given one particular dataset, different clustering algo-

rithms are very likely to generate different clusters [74].

This is true when large-scale gene expression data from

microarrays are analyzed [58,75,76]. Comparison of dif-

ferent clusters even obtained with the same classification

approach is still a difficult task [see Additional file 4

[69,77-79]]. Thus, to assess the relevance of missing

value imputation methods, we observed the behaviours

of different hierarchical clustering methods and k-means

clustering using CPP, CPPf [49] and newly introduce

CAR index. Results follow exactly the observations done

on RMSE values (see previous section). Only one

method seems ambiguous: kNN. Indeed, its CPP and

CPPf are higher than expected. It is mainly due to the

selection of the genes in the different datasets. We have

decided at the beginning to not discard any genes, i. e.,

we have absolute no a priori. Thus very flat profiles

have been conserved and empower kNN that prefers to

predict values closer to zero than the other methods

(see Figure 4 of [49]). It generates clusters with lot of

zero, these clusters are so stable. For the majority of the

methods, the order of effectiveness of the methods for

the maintenance of stability within the groups between

various classifications is identical. Combination of CPP,

CPPf and CAR index underlines the interest of k-means

clustering in regards to hierarchical clustering methods.

For comparable clusters, k-means gives better values.

Wang and co-workers does not found a strong differ-

ence between the three imputation methods they used, i.e.,

kNN, BPCA and LLS, in the classification performance

[24]. The only comparable extensive study has been done

by Tuikkala and co-workers [56], they have focussed inter-

estingly on the GO term class and use k-means. They have

tested six different methods with less simulation per miss-

ing value rates and less missing value rates. But, the

important point is they have not tested the methods found

the most efficient by our approach. We also slightly dis-

agree with their conclusion about the quality of BPCA

[56]. It can be easily understand as only a very limited

number of clusters has been tested (5 clusters); in our

case, we have supervised the choice of cluster numbers

(see Method section), leading to a higher number of clus-

ters. This higher number is so more sensitive to the quality

of clustering. It must be noticed we have used Euclidean

distance and not Pearson correlation, it was mainly to (i)

stay consistent with our previous research, and (ii) as we

have not filtered the data, Pearson correlation could have

aggregated very different profiles. As the time computation

was very important, it was not possible to test the two

possibilities.

Conclusions

The DNA microarrays generate high volume of data.

However they have some technical skews. Microarrays

studies must take into account the important problem

of missing values for the validity of biological results.

Numerous methods exist to replace them, but no sys-

tematic and drastic comparisons have been performed

before our present work. In this study, we have done

more than 6.000.000 independent simulations, to assess

the quality of these imputation methods. Figure 6 sum-

marizes the results of our assessment. The method

EM_array, LSI_array, LSI_combined and LSI_adaptative

are the most performing methods. BPCA is very effec-

tive when the rate of missing values is lower than 15%,

i.e., for classical experiments. The values estimated by

the Row_Mean are quite correct in regards to the sim-

plicity of the approach. kNN (and SkNN) does not give

impressive results, it is an important conclusion for a

method used by numerous scientists. The methods LSI_-

gene and EM_gene are not effective but they are to be

tested with data files made up of little of genes and a

great number of experiments. These conclusions are to

be taken carefully because the quality of the imputations

depends on the used datasets.

A major disadvantage of numerous methods is their

accessibilities. We have tested here only a part of the

methods as some are unavailable and others had not

worked properly. Some methods used here could not be

used easily by a non-specialist. It could be interesting so

to have implementation of all the different methods in a

useful manner with the standardized input and output

file format. In the second time, graphic interfaces for

the methods could be helpful. These remarks are parti-

cularly relevant in regards to recent papers that pro-

posed novel approaches as SLLSimpute [80] or

interesting comparison [55,56] that do not compare

with the methods that had been considered as the most

efficient in this study.

Methods
Datasets

We used 5 data sets for the analysis [see Additional file

1]; they were mainly coming from the SMD database

[81]. The first one, named Ogawa set, was initially com-

posed of N = 6013 genes and n = 8 experimental condi-

tions about the phosphate accumulation and the

polyphosphate metabolism of the yeast Saccharomyces

cerevisiae [51]. The second one corresponds to various

environmental stress responses in S. cerevisiae [52]. This

set, named Gasch set, contains N = 6153 genes and n =

178 experimental conditions. Due to the diversity of

conditions in this set, we focused on two experimental

subsets corresponding to heat shock and H2O2 osmotic

shock respectively. Bohen and co-workers have analyzed

the patterns of gene expression in human follicular lym-

phomas and the interest of treatment by rituximab [53].

This dataset is composed of N = 16.523 genes and n =
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16 experimental conditions. The last dataset has been

obtained by Lucau-Danila, Lelandais and co-workers

[54]. To precisely describe the very early genomic

response developed by yeast to accommodate a chemical

stress, they performed a time course analyses of the

yeast gene expression which follows the addition of the

antimitotic drug benomyl. The dataset is a kinetic that

comprised N = 5.621 genes for n = 6 kinetic time (30

seconds, 2, 4, 10, 20 and 40 minutes).

Datasets refinement: missing values enumeration

From the original datasets, we built complete datasets

without MVs. All the genes containing at least one

missing value were eliminated from the Ogawa set

(noted OS). The resulting OS set contains N = 5783

genes and n = 8 experimental conditions. The second

set without MVs was taken from Gasch et al. and

called GS. The experimental conditions (column) con-

taining more than 80 MVs were removed. The result-

ing GS matrix contains N = 5843 genes and n = 42

experimental conditions. Two subsets were generated

from GS and have been noted GHeat and GH2O2.

They correspond to specific stress conditions as

described previously. GHeat and GH2O2 contain

respectively N = 3643 genes with n = 8 experimental

conditions and N = 5007 genes with n = 10 experi-

mental conditions.

To test the influence of the matrix size, i.e., the num-

ber of genes, we built smaller sets corresponding to 1/7

of OS, GS, GHeat and GH2O2. Principles are described

in [49]. For the dataset of Bohen et al. (noted B), we

have done the same protocol and used a subset repre-

senting 1/7 of B, i.e., N = 861 genes. For the dataset of

Lucau-Danila et al.: [54], 11.4% of the genes have at

least one missing values. The dataset with no missing

values (noted L) was so composed of N = 4645 genes.

Missing values generation

From the sets without MVs, we introduced a rate τ of

genes containing MVs (τ = 1 to 50.0%), these MVs are

randomly drawn. Each random simulation is generated

at least 100 times per experiment to ensure a correct

sampling. It must be notices that contrary to our

previous work, each gene could contain more than one

MV [49].

Replacement methods

The different packages have been downloaded from the

authors’ websites (see Table 1). kNN has been computed

using the well-known KNNimpute developed by

Troyanskaya and co-workers [27]. The determined kopt
value is associated with a minimal global error rate as

defined by Troyanskaya and co-workers [27]. BPCA was

used without its graphical interface [30] as for the Bo et

al. package (Java) [29]. For LLSI and Row_Average, we

have modified the original Matlab code to use our own

microarray datasets [57]. SkNN was performed with R

software [28].

Hierarchical Clustering

The hierarchical clustering (HC) algorithm allows the

construction of a dendogram of nested clusters based

on proximity information [19]. The HC have been per-

formed using the “hclust” package in R software [82].

Seven hierarchical clustering algorithms have been

tested: average linkage, complete linkage, median link-

age, McQuitty, centroid linkage, single linkage and Ward

minimum variance [83].

The distance matrix between all the vectors (i.e.,

genes) is calculated by using an external module written

in C language. We used the normalized Euclidean dis-

tance d* to take account of the MVs:

d
n m

v wi i

i

n

* ,v w( ) =
−

−( )
=
∑1 2

1

(1)

v and w are two distinct vectors and m is the number

of MVs between the two vectors. Thus, (vi - wi) is not

computed if vi and/or wi is a missing value

An index for clustering results comparison: Conserved

Pairs Proportion (CPP)

To assess the influence of missing data rates and differ-

ent replacement methods into clustering results (see

Figure 1), we have analysed the co-associated genes of

an original dataset (without MVs) compared to these

genes location in a set with MVs. A similar approach

has been used by Meunier et al. on proteomic data [84].

Hence, we realized in a first step the clustering with

the data sets without MV by each aggregative clustering

algorithm. The results obtained by these first analyses

are denoted reference clustering (RC). In a second step,

we generated MVs in data. The MVs are replaced by

using the different replacement methods. Then we per-

formed the hierarchical clustering for each new set. The

results obtained by these second analyses are denoted

generated clustering (GC).We compared the resulting

clusters defined in RC and GC and assessed the diver-

gence by using an index named Conserved Pair Propor-

tions (CPP). The CPP is the maximal proportion of

genes belonging to two clusters, one from the RC and

the other one from the GC (cf. Figure 1 of [49] and

Additional file 5 for more details).

Clustering Agreement Ratio (CAR)

The Clustering Agreement Ration (CAR) is the concor-

dance index measuring the proportion of genes pairs,

either belonging to a same cluster (resp. different clus-

ters) in the reference clustering (RC) and found again in

a same cluster (resp. different clusters) in the clustering

(GC) obtained without or after replacing the MVs.
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The index CAR is defined by the following equation:

CAR

ij
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j ii
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   1 1
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where  ij
ref and  ij

new specify the co-presence of two

genes in a same cluster, i.e., they take the value 1 when

the genes i and j belong to a same cluster in the cluster-

ing RC and GC respectively. The numbers of pairs in G

genes is G.(G - 1)/2. The first term of the numerator

corresponds to the co-presence of the pair (i, j) in a

same cluster for RC and GC, and, the second term the

co-absence of this pair in a same cluster.

Additional file 1: Dataset details.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-

15-S1.DOC ]

Additional file 2: RMSE of OS with BPCA imputing method. RMSE

value for OS for rate of missing value going from 0.5% to 20% by step of

0.5% with the L dataset.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-

15-S2.DOC ]

Additional file 3: Extreme values. Distribution of the values observed

in OS dataset. The extreme values are highlighted on each size of the

histogram.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-

15-S3.DOC ]

Additional file 4: Comparing clustering algorithms.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-

15-S4.DOC ]

Additional file 5: Details of CPP and CPPf.

Click here for file
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