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Chronology of prescribing error during the
hospital stay and prediction of pharmacist’s alerts
overriding: a prospective analysis
Thibaut Caruba1,2*, Isabelle Colombet3,4,5,6, Florence Gillaizeau3,4,5,6, Vanida Bruni1, Virginie Korb1, Patrice Prognon1,
Dominique Bégué1,2, Pierre Durieux3,4,5,6, Brigitte Sabatier1,7

Abstract

Background: Drug prescribing errors are frequent in the hospital setting and pharmacists play an important role in
detection of these errors. The objectives of this study are (1) to describe the drug prescribing errors rate during the
patient’s stay, (2) to find which characteristics for a prescribing error are the most predictive of their reproduction
the next day despite pharmacist’s alert (i.e. override the alert).

Methods: We prospectively collected all medication order lines and prescribing errors during 18 days in 7 medical
wards’ using computerized physician order entry. We described and modelled the errors rate according to the
chronology of hospital stay. We performed a classification and regression tree analysis to find which characteristics
of alerts were predictive of their overriding (i.e. prescribing error repeated).

Results: 12 533 order lines were reviewed, 117 errors (errors rate 0.9%) were observed and 51% of these errors
occurred on the first day of the hospital stay. The risk of a prescribing error decreased over time. 52% of the alerts
were overridden (i.e error uncorrected by prescribers on the following day. Drug omissions were the most
frequently taken into account by prescribers. The classification and regression tree analysis showed that overriding
pharmacist’s alerts is first related to the ward of the prescriber and then to either Anatomical Therapeutic Chemical
class of the drug or the type of error.

Conclusions: Since 51% of prescribing errors occurred on the first day of stay, pharmacist should concentrate his
analysis of drug prescriptions on this day. The difference of overriding behavior between wards and according
drug Anatomical Therapeutic Chemical class or type of error could also guide the validation tasks and
programming of electronic alerts.

Background
Drug prescribing errors are defined as a prescribing
decision or prescription writing process that results in
an unintentional, significant reduction in the probability
of treatment being timely and effective or increase in
the risk of harm, when compared with generally
accepted practice. High rates of inpatient prescribing
errors have been reported: 1.5-5.3 per 100 drug orders,
or 1.4 errors per admission [1,2].
In the context of inpatient care, both Computerized

Physician Order Entry (CPOE) implemented with

Clinical Decision Support Systems [3-7] and the review
of drug orders by pharmacists (hereafter referred to as
‘pharmacy validation’) [8-10], can reduce the rate of
errors. The prevention of prescribing errors implies that
the physician captures his/her prescriptions in the
CPOE and a pharmacist analyses them the same day to
detect a prescribing error. In case of error, the pharma-
cist notifies the physician by phone or through electro-
nic alert in the patient record. The physician can modify
the prescription, complying or not to the alert. We
showed in a previous study that prescribers override
70% of pharmacists’ alerts [11].
In the hospital setting, some studies suggest that pre-

scribing errors could preferably occur at hospital
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admission, during a transfer or at discharge [12,13]. To
our knowledge, no study described the daily distribution
of drug prescribing errors over the hospital stay.
The first objective of this study is to describe the rate

of prescribing errors on first day of patient’s stay and on
the 14 following days. The second objective is to find
which characteristics for an alert are the most predictive
of its overriding.

Methods
Setting
In France, the physician is entirely responsible for pre-
scriptions, including specification of the brand name of
the drug (rather than its international denomination),
infusion time and solution for reconstitution of intrave-
nous medication. In this context, a pharmacist must
alert the prescriber in cases of unavailability or non-con-
formity with best practice. However, the prescriber can-
not modify the prescription directly, with the exception
of replacing one drug with another having the same
international denomination. Nurses should administer
exactly what is written on the prescribing order.
Georges Pompidou European Hospital (HEGP) is a

French tertiary care university hospital with 717 beds. A
patient information system, integrating an electronic
patient record and a CPOE (Dx-Care®, Medasys™) is
implemented throughout the hospital since its inception
in 2000. Dx-Care® is at the centre of care delivery. It is
used by doctors, pharmacists and nurses:

• to prescribe laboratory examinations and imaging
tests for a patient,
• to visualize the results of laboratory tests,
• to establish and to consult nursing schedules,
• to archive a structured observation,
• to prescribe drugs,
• to validate prescriptions by pharmacists (pharmacy
validation).

The drug prescription facility is available in 17 medi-
cal wards, 506 beds, 70% of the hospital’s beds. The
remaining wards, which do not use the CPOE are the
ones for oncology (15% of hospital beds) and for emer-
gency or intensive care (15%). Pharmacy validation is
carried out daily, from Monday till Friday, in 7 wards
(148 beds) out of the 17 which use the CPOE: immunol-
ogy, nephrology, vascular medicine, geriatrics, diabetes
care and internal medicine (2 wards). It is performed
twice a week in 7 other wards (300 beds), and the drug
orders of the 3 remaining wards (58 beds) are not
reviewed at all by any pharmacist.
Five full-time pharmacists are involved in pharmacy

validation. Nights’ prescriptions are reviewed on the

next day and weekends’ prescriptions are reviewed on
Monday if unexpired.
We define a prescription as a list of drug orders made

per day by physician for one patient. For each drug
order the physician has to precise: drug name, dose,
unit, reconstitution process, route and optional annota-
tion in a plain text field. In addition, the physician has
to choose frequency and duration of the order. Various
types of prescription aid are available: information about
reconstitution processes for intravenous drugs, typical
orders pre-specified by pharmacists for intravenous
drugs and an integrated drug-drug interaction system
are to be targeted by the prescriber. Only alert concern-
ing maximum dose for oral drugs are actively targeted
by the system without request by the prescriber.
The pharmacist analyses each patient’s prescription,

drug order by drug order (dose, unit, time to take,
route, frequency in a day, reconstitution process) and
the prescription as a whole, testing for drug-drug inter-
actions. The pharmacist has access to biological data
and patient record. This analysis is performed daily so
that a drug order prescribed for 3 days is validated 3
times.
In case of prescribing error, the pharmacist posts a

message, which can be visualized by prescribers through
an ‘accepted’ or ‘refused’ symbol inserted next to the
order line. The ‘accepted’ symbol indicates that the
pharmacist agrees with the prescription, unless a com-
ment is added relating to good practice, which may or
may not suggest a modification of the prescription line.
The ‘refused’ symbol indicates that the pharmacist dis-
agrees with the prescription line, having identified a
potential severe prescribing error and suggesting its cor-
rection. The physician may click on the symbol to visua-
lize the pharmacist’s comment, but is not obliged to
take that comment into account. We define as alert, any
line with a ‘refused’ symbol or an ‘accepted’ symbol
associated with a comment from the pharmacist and
which corresponds to a potential prescribing error. The
prescriber can choose to ignore the alert and maintain
his/her order along with the pharmacist symbol: in this
case we considered the alert as overridden. Alternatively,
the prescriber may take the alert into account. Then, the
prescriber can either discontinue the order or modify it
by cancelling the order line and recreating another one.
It is therefore possible from the pharmacy validation
database to analyse whether or not an alerts has been
overridden the following day.
Collection of data
The 7 participating wards are those where pharmacy
validation is performed daily. Prescribers of these wards
were 24 physicians. All data were collected prospectively
by pharmacists while validating the prescriptions.
According to French regulation, this study that aimed at
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improving quality of care did not require to be approved
by any research ethic committee. The data collection
has been approved by French Data Protection Authority.
Pharmacists collected prescribing errors detected for
each patient admitted in these 7 wards between June 26
to July 13, 2007. We defined as “new prescribing error“
any error appearing for the first time in the patient’s
prescription whether at admission or in the following
days. If this error was maintained the next day, it was
not any more considered as “new”. Only new errors
were recorded and for each of them, their chronology of
appearance during the patient’s stay (ith day), their type
and degree of severity, as defined according to a com-
monly used classification (see Additional file 1)
[3,6,8,14,15]. For each patient admitted during the study
period we also collected data regarding renal impair-
ment, hypertension, thromboembolic disease, as these
are clinical contexts known to be associated with more
prescribing errors [16,17].
Since pharmacy validation is provided from Monday

to Friday, any prescribing error occurring during the
week-end was only collected if still present on following
Monday. Thanks to the Dx-Care® program we still had
access to the exact date of this error, therefore to its
chronology in hospital stay. Our first objective consisted
in describing the chronology of all new prescribing
errors.
Our secondary objective relates to alerts posted by

pharmacists in response to new prescribing errors. The
alert was considered as overridden if repeated on follow-
ing days for the same order, consecutively to the
absence of any modification of prescription neither evo-
lution of clinical context.
Statistical analysis
Primary outcome
We first described the rate of new prescribing error
according to its chronology in the patient’s hospital stay.
The day of admission was noted as day one.
Then we modelled the time-errors relationship in the

first seven days of stay with multivariable models (we
ruled-out prescriptions recorded after the seven first
days of stay as the number of new errors decreased sig-
nificantly after this day inducing estimation problems).
We tested patient medical data (renal impairment,
hypertension and thromboembolic disease), wards, num-
ber of order lines, day of discharge as potential confoun-
ders of the model. Renal impairment was defined
according to the estimated glomerular filtration rate
(less than 79 mL/min/1.73 m2). Hypertension was
defined according to the arterial blood pressure (systolic
blood pressure of 140 mm Hg or greater or a diastolic
blood pressure of 90 mm Hg or greater). Thromboem-
bolic disease was defined by the prescription of an antic-
oagulant drugs.

We modelled the risk of an error on ith day of stay
with a Generalized Estimating Equation (GEE) regres-
sion model taking account for dependency between
repeated measurements in a stay. In addition, a mixed
Poisson regression model was performed to examine
whether the number of new prescribing errors per order
lines was related to ith day of stay. We presented the
results from the Poisson regression model as estimation
of the number of new prescribing errors per 10 order
lines since the median number of order lines in a pre-
scription was 7. For both models, a backward selection
process with all potential confounders was used to reach
the final multivariate model, and the ith day of stay was
introduced as a discrete or a continuous variable with
possibly mathematical transformation according to the
minimum deviance criteria.
Secondary outcome
To find which characteristics of new alerts were the
most predictive of alert’s overriding, we performed a
classification and regression tree (CART) analysis. This
method developed by Breiman et al. [18] consisted in
algorithms with logical “if-then” conditions for predict-
ing or classifying cases. We chose this method since it
produced simple decision rules allowing pharmacists to
classify prescribing errors with low or high risk of alert’s
overriding.
We removed new alerts occurring on the day of dis-

charge or after the fifteenth day of stay because it was
not possible to allocate them a status (overridden the
next day or not). Additionally, weekends’ prescriptions
were not present in our sample since the pharmacist
didn’t review prescriptions on these days. The potential
variables of interest included in the model were medical
history (renal impairment, hypertension, thromboem-
bolic disease), wards, Anatomical Therapeutic Chemical
classification drug, number of order lines, type of alerted
error, severity of alerted error and the ith day in the stay.
The GINI criterion was used to determine the best split
at each node. The tree was pruned according to the one
standard error rule with a 50-fold cross validation pro-
cedure [18]. Since we aimed to maximize the number of
true positive alerts (i.e. alerts predicted as overridden
which would actually be) and to minimize the number
false positive alerts (i.e. alerts not overridden the next
day which are predicted as overridden), we respectively
maximised positive predictive value and specificity intro-
ducing weighing factors of misclassification.
All statistical analyses were performed using SAS 9.1

(SAS Institute, Cary, North Carolina, United States) and
R software (version 2.7.2).
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Results
Participants
A total of 204 patients with 214 stays of at least 24
hours (1 594 hospital days) were included in the study:
198 patients (97.1%) had one stay, 6 (3.0%) two stays or
more. Median length of stay for the patient was 6 days
(inter quartile range from 3 to 11 days). Mean number
of order lines in a prescription was 7.9 ± 4.2. Thirty six
percent stays took place in both internal medicine
wards, 17% in clinical immunology, 15% in vascular
medicine, 12% in geriatrics, 11% in diabetes care and 9%
in nephrology.
Eighty four patients (41%) had none of these 3 comor-

bidities: renal impairment, hypertension and throm-
boembolic disease. Eighty seven (43%) patients had only
one co-morbidity, twenty eight patients (14%) had 2 co-
morbidities and 5 patients (2%) had 3 co-morbidities.
Hypertension, renal impairment and thromboembolic
disease concerned respectively 90 patients (44%), 56
patients (27%) and 32 patients (16%).
Outcomes
Primary outcome
During the study period, pharmacists reviewed 12 533
order lines for the 204 patients admitted in the 7 wards

(i.e. 214 stays). Pharmacist detected 117 new prescribing
errors (i.e. prescribing error detecting for the first time)
and these new prescribing errors concerned 77 stays
(36% of the stays). Among these errors, 103 occurred
Monday through Friday and 14 between Saturday and
Sunday.
The histogram in Figure 1 shows the number of new

prescribing errors per 10 order lines according to the
day of stay. More than 51% of these errors (60/117)
occurred on the day of admission (see figures below his-
togram). This rate was 80% over the first three days.
Nine (7.7%) errors were observed in 8 of the 96 stays
(8.3%) which lasted 8 days or more. These 9 errors were
indifferently distributed between the 8th and the 15th

day of stay (see Figure 1). The new prescribing errors
rate per ten prescriptions order lines was maximum the
day of admission and decreased in the first six days of
stay. We observed an increase in the rate between the
sixth and eighth day and after the fourteenth day but
these fluctuations corresponded to small variations in
the number of errors. The level of severity of errors was
not significantly different in the first days of stay (71%
were level C for the first 3 days and 84% for the next
days).
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Figure 1 Number of new prescribing errors per 10 order lines by ith day of stay. Histogram represents the observed data ie the mean
number of new prescribing errors per 10 order lines. The fitted curve with 95% confidence intervals represents the estimation of of the mean
number of new prescribing errors per 10 order lines at ith day derived from the mixed Poisson regression model.
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The results from the GEE regression model are pre-
sented in Table 1. The backward selection process indi-
cated that hypertension, thromboembolic disease, ward
and day of discharge didn’t influence the new prescrib-
ing errors rate in the stay. However, renal impairment,
number of order lines and day of the stay were signifi-
cantly associated with the risk of error. An error was
twice likely to occur among patients with renal impair-
ment than among patients without [OR = 2.2 (95% CI,
1.3-3.5), p = 0.002]. In addition, for a ten increase of the
number of order lines in a prescription, the risk of
error increased 3 times [OR = 3.1 (95% CI, 1.8-5.2), p <

0.001]. We found that the risk of a new prescribing
error decreased significantly over time (p < 0.001). This
means that the more distant the day was from the first
day of stay, the less the risk was to have a new prescrib-
ing error. However, this decrease was not constant over
time but “digressive” (modelled with a log-linearity rela-
tionship between the logit and the day). For example
the reduction of the risk of a new prescribing error in
the second day of stay compared to the first day was
more important than the reduction of risk in the fifth
day of stay compared to the fourth day. The mixed Pois-
son regression model of the new prescribing errors rate

Table 1 Estimated Odds Ratio and 95% Confidence Intervals for the GEE* regression model for new prescribing error
in a prescription.

GEE* regression
model

Univariate analysis Final multivariate model†

Variable Crude Odds Ratio [95% CI] P value Adjusted Odds
Ratio

[95% CI] P value

Number of order
lines, for 10 lines
increase

2.34 [1.54-3.55] <0.001 3.13 [1.89-5.16] <0.001

Day, for 1 day increase 0.57 [0.47-0.70] <0.001

Log(day)‡ <0.001 <0.001

day2 versus day 1 0.39 [0.29-0.52] 0.34 [0.25-0.47]

day3 versus day 2 0.57 [0.49-0.67] 0.54 [0.45-0.64]

day4 versus day 3 0.67 [0.60-0.76] 0.64 [0.56-0.73]

day5versus day 4 0.74 [0.67-0.81] 0.71 [0.64-0.79]

day6 versus day 5 0.78 [0.72-0.84] 0.76 [0.69-0.82]

day7 versus day 6 0.81 [0.76-0.86] 0.79 [0.73-0.85]

Renal failure <0.001 0.002

No 1.00 1.00

Yes 2.19 [1.41-3.39] 2.16 [1.35-3.43]

Hypertension 0.49

No 1.00

Yes 0.85 [0.54-1.34]

Thromboembolic
disease

0.061

No 1.00

Yes 1.65 [0.97-2.80]

Ward 0.016

diabetes care 1.00

geriatrics 2.08 [0.62-6.99]

internal medicine
(ward 1)

2.48 [0.72-8.42]

internal medicine
(ward 2)

3.20 [0.95-10.65]

immunology 3.33 [0.99-11.15]

vascular medicine 3.41 [1.03-11.28]

nephrology 6.31 [1.94-20.46]

Day of discharge 0.124

No 1.00

Yes 0.49 [0.19-1.22]

* GEE = Generalized Estimating Equations; † After backward selection with all potential confounders; ‡ The log-linearity relationship traduces that the decrease of
the risk to have a new prescribing error was not constant over time but “digressive”.
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per order lines conducted to similar results. Figure 1
shows the estimation of the mean number of new pre-
scribing errors per 10 order lines with 95% confidence
intervals (CIs) derived from the final multivariate model
(see Additional files 2 and 3 for the results from the
univariate and multivariate analyses). There was a signif-
icant difference in the error rates between the 3 first
days of stay (CIs disjoint). The renal impairment was
significant in the model but the interaction term with
the day of stay was not. This indicated that the mean
number of new prescribing errors was different the day
of admission for patients with and without renal impair-
ment but the decrease was similar along the stay.
Among patients with renal impairment, the mean num-
ber of new prescribing errors per 10 order lines was
estimated to 0.62 (95% CI, 0.44-0.88) the day of admis-
sion, 0.21 (95% CI, 0.16-0.29) the second day of stay,
0.12 (95% CI, 0.08-0.17) the third day of stay, and less
than 0.10 from the fourth day of stay. Among patients
without renal impairment, the expected mean numbers
were respectively 0.34 (95% CI, 0.24-0.48)], 0.12 (95%
CI, 0.08-0.16)], and less than 0.07 from the third day of
stay.

Secondary outcome
Pharmacists posted 117 alerts in response to the 117
new prescribing errors. Among these 117 alerts, 103
were posted the same day. The other 14 alerts were
posted within 1 or 2 days after prescriptions written
between Saturday and Sunday. These were excluded
from further analyses (figure 2).
Characteristics of the 117 new prescribing errors and

status of the alert the next day are described in Table 2.
More than half of the alerts (56.4%) targeted inappropri-
ate choice of drug and/or drug dose. Twenty four
(20.5%) alerts targeted drug omissions. No alert high-
lighted life-threatening error.
Among these 103 alerts, 7 occurred on the day of dis-

charge or on the fifteenth day of the stay, so that it was
not possible to evaluate whether or not they would have
been overriden. Analysis of alert’s overriding behavior
therefore concerned the 96 remaining alerts (figure 2).
Fifty (52%) alerts have been overridden (i.e. error
remained uncorrected by prescriber the following day.
Drug omissions were the most frequently alerts taken
into account by prescribers: 64% (14/22) of these alerts
were corrected.

117 new prescribing errors 

117 new alerts 

103 alerts corresponding to errors made between 
monday and friday 

14 alerts were posted within 1 
or 2 days after prescriptions 
written during saturday and 

sunday

50 alerts were 
overridden 

46 alerts were not 
overridden by the 

physician and 
followed by a 

correction  

7 alerts indeterminate 
(overridden or not) 

because corresponding 
to error occurred the day 
of the discharge or 15th

day of stay 

Figure 2 Flow charts of the alerts.
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Figure 3 shows the results of the classification and
regression tree (CART) analysis. The final tree should
be read from top to bottom. The 4 terminal nodes are
presented as rectangles, whereas the nodes that are split
further are presented as ellipses. The classifying vari-
ables selected by the model are indicated in the ellipses
as questions and the splitting rules are printed at the
branches that lead to the resulting nodes. Thus, each
node represents a particular subset of alerts resulting
from the application of all splitting rules that are higher
in the tree structure. The numbers given within the
nodes report the number of observed alerts in this node.
In the terminal nodes, the number and the proportions
of correctly predicted outcomes by the tree (respectively
incorrectly predicted) are presented as “correct decision”
(respectively “incorrect decision”). After removal of the
new alerts which occurred on the day of discharge or
on the fifteenth day of the stay, 96 alerts were classified
among which 50 (52%) were alert’s overriding the next
day and 46 (48%) were not overridden. The ward was
the first discriminating variable, i.e. most influential rea-
sons for alert’s overriding. For the vascular medicine
and geriatrics wards (23 alerts), alert’s overriding was
dependent from the first level of the ‘Anatomical Thera-
peutic Chemical classification’. Among the alerts due to
‘Alimentary tract and metabolism, Systemic hormonal
preparations, excluding sex hormones and insulins,
Musculo-skeletal system, Nervous system, Respiratory
system, Sensory organs and Various’ errors (n = 14), it
correctly classified 100% of the alerts with an overriding
on the next day. Among the errors belonging to the

categories ‘Blood and blood forming organs, Cardiovas-
cular system, Anti-infectives for systemic use’ (n = 9), it
correctly classified 5 alerts (56%) with a non-overriding
on the next day and missed 4 alerts’ overriding. For the
other wards (internal medicine 1, clinical immunology,
internal medicine 2, diabetes care, and nephrology), the
next differentiating factor was type of errors. For new
alerts with ‘Inappropriate choice of drug and/or drug
dose, Wrong unit, Wrong route, Drug omission or
Duplicate order’ errors, the classification and regression
tree predicted a non-overriding of the alert whereas for
‘Drug-drug interaction’ error, it anticipated an overrid-
ing on the next day.
Two alerts which were not overridden were predicted

as overridden by the tree (false positive) and 27 overrid-
den alerts were predicted as not overridden (false-nega-
tive). This corresponds to a specificity of 96% (95% CI,
89-100), sensitivity of 46% (95% CI, 32-60), and a high
positive likelihood ratio: 10.6 (95%CI, 2.6-42.4). Positive
and negative predictive values were respectively 92%
(95% CI, 81-100) and 62% (95% CI, 50-74).

Discussion
The originality of this study lies in the analysis of the
chronology of prescribing errors during hospital stay.
We found that 0.9% of all drug orders during a period
of 15 days were detected by pharmacists for potential
prescribing errors. Among all errors, 25% were signifi-
cant (level C) or serious (level B) and no one was life-
threatening during the period of analysis. We found that
51% of them occurred the first day of stay and the error

Table 2 Description of the 117 new prescribing errors and status of the alert the next day.

Status of the alert
the next day

Alert
Overridden

Alert
Not overridden

Indeterminate* Alerts posted within
1 or 2 days after
prescriptions †

All

Error N = 50 N = 46 N = 7 N = 14 N = 117

Type – no (%)

Inappropriate
choice of drug

and/or drug dose

27 (55.6) 26 (57.4) 2 (28.6) 11 (78.6) 66 (56.4)

Drug-drug
interaction

10 (20.0) 3 (6.5) 1 (14.3) 2 (14.3) 16 (13.7)

Wrong unit 4 (8.0) 1 (2.2) 1 (14.3) 1 (7.1) 7 (6.0)

Wrong route 1 (2.0) 1 (2.2) 0 (0.0) 0 (0.0) 2 (1.7)

Drug omission 8 (16.0) 14 (30.4) 2 (28.6) 0 (0.0) 24 (20.5)

Duplicate order 0 (0.0) 1 (2.2) 1 (14.3) 0 (0.0) 2 (1.7)

Potential severity
– no (%)

Life-threatening 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Significant or
serious

14 (28.0) 7 (15.2) 2 (28.6) 8 (57.1) 31 (26.5)

None 36 (72.0) 39 (84.8) 5 (71.4) 6 (42.9) 86 (73.5)

* error occurring at the end of follow-up period (the day of discharge or 15th day of stay).
† alerts posted within 1 or 2 days after prescriptions written during the week end.
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rate decreased drastically in the first three days of stay.
Moreover, in our setting 80% of the errors occurred on
the 3 first days. In practice, patients are admitted most
often by junior doctors who try to know the medication
history. This could explain the high proportion of errors
that occured on the first day. In order to reduce this
rate, we would like to perform a systematic pharmacist
consultation with the patient the day of the admission
in order to accurate medication history.
These results are in agreement with those reported by

Cornish et al. et Bobb et al. studies who respectively
found that 53% and 64% of prescribing errors occurred
at the time of admission to the hospital [12,13]. Consid-
ering the risk of prescribing errors thereby shown to be
maximal at admission and during the first three days of
stay, the role of pharmacists in alerting for prescribing
error could be focused during this period. This sugges-
tion is strengthened by the fact that more than 80%
occurring later during the stay have a level C of severity.

In a previous study performed in the same setting, we
found a similar rate of prescribing errors which is con-
sistent with various results published in other studies,
whether they considered prescribing errors alerted by a
CPOE [13,19] of by pharmacists [20,21]. Furthermore,
renal impairment was significantly associated with the
risk of error. Indeed, patients with renal impairment
have a twice as high risk of error than patients without.
These data were in agreement with other studies where
drug dosage are inappropriate for 20 to 46% of prescrip-
tions requiring dosage adjustments based on renal func-
tion [16,17].
The main limit of our study is the low number of new

errors to model the evolution of the error incidence risk
after the 5th day, and this may alter the robustness of
the chronological model. However, our data were col-
lected prospectively on a daily basis through routine
pharmacy validation tasks and from the list of alerts
posted the same day.
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Figure 3 CART tree for predicting alert’s overriding among new alerts. Numbers in ellipses and rectangles report the number of observed
alerts. Classifying variables are indicated in the ellipses as questions and splitting rules are printed at the branches. In the terminal nodes
(rectangles), the number and the proportions of correctly predicted outcomes by the tree (respectively incorrectly predicted) are presented as
“correct decision” (respectively “incorrect decision”). The ward was the first discriminating variable, i.e. most influential reasons for alert’s
overriding. For the vascular medicine and geriatrics wards (23 alerts), alert’s overriding was dependent from the first level of the ‘Anatomical
Therapeutic Chemical classification ‘. Among the alerts due to ‘Alimentary tract and metabolism, Systemic hormonal preparations, excluding sex
hormones and insulins, Musculo-skeletal system, Nervous system, Respiratory system, Sensory organs and Various’ errors (n = 14), it correctly
classified 100% of the alerts with an overriding on the next day. Among the errors belonging to the categories ‘Blood and blood forming
organs, Cardiovascular system, Anti-infectives for systemic use’ (n = 9), it correctly classified 5 alerts (56%) with a non-overriding on the next day
and missed 4 alerts’ overriding. For the other wards (internal medicine 1, clinical immunology, internal medicine 2, diabetes care, and
nephrology), the next differentiating factor was type of errors. For new alerts with ‘Inappropriate choice of drug and/or drug dose, Wrong unit,
Wrong route, Drug omission or Duplicate order’ errors, the classification and regression tree predicted a non-overriding of the alert whereas for
‘Drug-drug interaction’ error, it anticipated an overriding on the next day.
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We found that 52% of alerts were overridden. Two
explanations of this important rate of overriden alerts
could be discussed. First, clinical pharmacy is rapidly
expanding in France and its impact among prescribers is
still modest and little known. Additionally, as we
observed in a previous study [11]), the alerts sent by the
pharmacist are not readily visually accessible to the pre-
scriber in our CPOE system. Five clicks are required to
reach and read the content of alerts. Moreover, drug
omissions were the alerts most frequently taken into
account by prescribers. Classification and regression tree
(CART), analysis showed that ward was the first discri-
minating variable influencing reasons for alert’s overrid-
ing. Since all wards provide similar acute care in
conventional hospital beds, this discriminating effect
may be rather explained by different behaviors of medi-
cal staff and different degrees of collaboration with
pharmacists. The ward, the Anatomical Therapeutic
Chemical class of prescribed drug and the type of
potential error allowed to predict the overriding of the
alert with a positive predictive value of 92%. According
to the classification and regression tree (CART) analysis
and although the renal impairment is known as a risk
factor of error, this criterion doesn’t appear as predictive
of the consideration of the posted alert.
The sensitivity of the classification and regression tree

(CART) model was only of 46%. This analysis of predic-
tive factors for alerts overriding is limited by the low
number of new errors in our data. The qualification of
alerts by type and severity was performed by five phar-
macists well trained to routine validation tasks. The
classification used was derived from published and com-
monly accepted ones [6,22-24] and used for several
years by the pharmacists team [2,11].
Various studies have addressed the frequency and

explanation of overriding alerts. In a systematic review
of 17 studies, Van der Sijs et al. identified 9 studies
which quantitatively analysed overriding in hospital set-
ting [25]. The reported overriding rate varied from 40%
to 96% and the alerts most often overridden concerned
orders renewals, interaction with topical drugs, and
uncertain allergies. All these studies concentrated on
alerts automatically targeted by a CPOE. In another
qualitative study, Van der Sijs investigated which types
and objects of alerts were deemed useless enough by
clinicians to be turn off in the CPOE system. For three
among the 24 alerts studied, more than 50% of clini-
cians agreed to turn them off: 1) coumarins and amio-
darone or propafenone, 2) beta-blockers and non-
steroidal anti-inflammatory drugs and 3) selective beta-
blockers and insulin [26].

Conclusions
In the French regulation context of drug prescription
and pharmacy validation, this study can help the phar-
macists to orient their time and resource investments
on validation tasks. Since 80% of the prescribing errors
occurring on the first 3 days of the hospital stay, the
analysis of the drug computerized orders by pharmacists
should concentrate over this period. The restriction of
the analysis of prescriptions to the first day of stay may
be safer than the daily analysis all along the patient stay.
Moreover, the implementation of alerts to the physi-

cian could complement the pharmacist’s validation tasks
and make the prevention of prescribing errors more effi-
cient. In this perspective, the difference of overriding
behavior between wards and according drug Anatomical
Therapeutic Chemical class or type of error should
guide the choice and specification of these alerts.

Additional file 1: Description of the classifications for type and
severity of prescribing errors. This file is a classification of the type and
degree of severity of the prescribing errors.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1472-6963-10-
13-S1.DOC ]

Additional file 2: Estimated mean number of new prescribing errors
per 10 order lines and 95% Confidence Intervals for the univariate
Poisson regression model.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1472-6963-10-
13-S2.DOC ]

Additional file 3: Estimated mean number of new prescribing errors
per 10 order lines and 95% Confidence Intervals for the
multivariate Poisson regression model.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1472-6963-10-
13-S3.DOC ]

Author details
1Department of pharmacy, APHP, Georges Pompidou European Hospital,
75015 Paris, France. 2Laboratoire Interdisciplinaire de Recherche en
Economie de Santé, Paris, France. 3Department of Hospital Informatics,
Evaluation and Public Health, APHP, Georges Pompidou European Hospital,
75015 Paris, France. 4INSERM, UMR S 872, Equipe 20, Paris, France. 5Centre
de Recherche des Cordeliers, Université Paris Descartes, Paris, France.
6INSERM, Centre D’investigation Épidémiologique 4, Paris, France. 7Université
Paris Descartes, INSERM U765, 4 avenue de l’Observatoire, 75006 Paris,
France.

Authors’ contributions
TC extracted and analysed the data and prepared a draft of the manuscript
and contributed to all other aspects of the study. IC prepared a revised
version of the manuscript and provided intellectual input into study design
and statistical analysis. FG performed the statistical analyses. VB extracted the
data. DB participated in the design of the study. PP and PD contributed to
the final version of the manuscript. BS participated in the design of the
study, the critical revision of the manuscript and its supervision. All authors
have given final approval of the submitted manuscript.

Competing interests
The authors declare that they have no competing interests.

Caruba et al. BMC Health Services Research 2010, 10:13
http://www.biomedcentral.com/1472-6963/10/13

Page 9 of 10



Received: 22 July 2009
Accepted: 12 January 2010 Published: 12 January 2010

References
1. Bates DW, Boyle DL, Vander Vliet MB, Schneider J, Leape LL: Relationship

between medication errors and adverse drug events. J Gen Intern Med
1995, 10:199-205.

2. Dean B, Schachter M, Vincent C, Barber N: Prescribing errors in hospital
inpatients: their incidence and clinical significance. Qual Saf Health Care
2002, 11(4):340-4.

3. Bates DW, Teich JM, Lee J, Seger D, Kuperman GJ, Ma’Luf N, Boyle D,
Leape L: The impact of computerized physician order entry on
medication error prevention. J Am Med Inform Assoc 1999, 6:313-21.

4. Kuperman GJ, Gibson RF: Computer physician order entry: benefits, costs,
and issues. Ann Intern Med 2003, 139:31-9.

5. Kaushal R, Shojania KG, Bates DW: Effects of computerized physician order
entry and clinical decision support systems on medication safety: a
systematic review. Arch Intern Med 2003, 163:1409-16.

6. Bates DW, Leape LL, Cullen DJ, Laird N, Petersen LA, Teich JM, Burdick E,
Hickey M, Kleefield S, Shea B, Vander Vliet M, Seger DL: Effect of
computerized physician order entry and a team intervention on
prevention of serious medication errors. JAMA 1998, 280:1311-6.

7. Bizovi KE, Beckley BE, McDade MC, Adams AL, Lowe RA, Zechnich AD,
Hedges JR: The effect of computer-assisted prescription writing on
emergency department prescription errors. Acad Emerg Med 2002, 9:1168-
75.

8. Lustig A: Medication error prevention by pharmacists-an Israeli solution.
Pharm World Sci 2000, 22:21-5.

9. Bond CA, Raehl CL, Franke T: Clinical pharmacy services, hospital
pharmacy staffing, and medication errors in United States hospitals.
Pharmacotherapy 2002, 22:134-47.

10. Buurma H, De Smet PA, Leufkens HG, Egberts AC: Evaluation of the clinical
value of pharmacists’ modifications of prescription errors. Br J Clin
Pharmacol 2004, 58:503-11.

11. Estellat C, Colombet I, Vautier S, Huault-Quentel J, Durieux P, Sabatier B:
Impact of pharmacy validation in a computerized physician order entry
context. Int J Qual Health Care 2007, 19:317-25.

12. Cornish PL, Knowles SR, Marchesano R, Tam V, Shadowitz S, Juurlink DN,
Etchells EE: Unintended medication discrepancies at the time of hospital
admission. Arch Intern Med 2005, 165:424-9.

13. Bobb A, Gleason K, Husch M, Feinglass J, Yarnold PR, Noskin GA: The
epidemiology of prescribing errors: the potential impact of
computerized prescriber order entry. Arch Intern Med 2004, 164:785-92.

14. Potts AL, Barr FE, Gregory DF, Wright L, Patel NR: Computerized physician
order entry and medication errors in a pediatric critical care unit.
Pediatrics 2004, 113:59-63.

15. National Coordinating Council for Medication Error Reporting and
Prevention (NCC MERP): NCC MERP Taxonomy of Medication Errors, 1998.
http://www.nccmerp.org/pdf/taxo1999-05-14.pdf, (accessed: 7th July 2007).

16. Salomon L, Deray G, Jaudon MC, Chebassier C, Bossi P, Launay-Vacher V,
Diquet B, Ceza JM, Levu S, Brücker G, Ravaud P: Medication misuse in
hospitalized patient with renal impairment. Int J Qual Health Care 2003,
15:235-40.

17. Chertow GM, Lee J, Kuperman GJ, Burdick E, Horsky J, Seger DL, Lee R,
Mekala A, Song J, Komaroff AL, Bates DW: Guided medication dosing for
inpatients with renal insufficiency. JAMA 2001, 286:2839-44.

18. Breiman L, Friedman JH, Olshen R, Stone CJ: Classification and regression
trees. Belmont, CA: Wadsworth International Group 1984.

19. Bates DW, Cullen DJ, Laird N, Petersen LA, Small SD, Servi D, Laffel G,
Sweitzer BJ, Shea BF, Hallisey R, et al: Incidence of adverse drug events
and potential adverse drug events. Implications for prevention. ADE
Prevention Study Group. JAMA 1995, 274:29-34.

20. Leape LL, Cullen DJ, Clapp MD, Burdick E, Demonaco HJ, Erickson JI,
Bates DW: Pharmacist participation on physician rounds and adverse
drug events in the intensive care unit. JAMA 1999, 282:267-70, Erratum in:
JAMA 2000, 283:1293.

21. Kucukarslan SN, Peters M, Mlynarek M, Nafziger DA: Pharmacists on
rounding teams reduce preventable adverse drug events in hospital
general medicine units. Arch Intern Med 2003, 163:2014-8.

22. Tam VC, Knowles SR, Cornish PL, Fine N, Marchesano R, Etchells EE:
Frequency, type and clinical importance of medication history errors at
admission to hospital: a systematic review. CMAJ 2005, 173:510-5.

23. Kuperman GJ, Gibson RF: Computer physician order entry: benefits, costs,
and issues. Ann Intern Med 2003, 139:31-9.

24. Field TS, Rochon P, Lee M, Gavendo L, Subramanian S, Hoover S, Baril J,
Gurwitz J: Costs associated with developing and implementing a
computerized clinical decision support system for medication dosing for
patients with renal insufficiency in the long-term care setting. J Am Med
Inform Assoc 2008, 15:466-72.

25. Sijs van der H, Aarts J, Vulto A, Berg M: Overriding of drug safety alerts in
computerized physician order entry. J Am Med Inform Assoc 2006, 13:138-
47.

26. Sijs van der H, Aarts J, van Gelder T, Berg M, Vulto A: Turning off
frequently overridden drug alerts: limited opportunities for doing it
safely. J Am Med Inform Assoc 2008, 15:439-48.

Pre-publication history
The pre-publication history for this paper can be accessed here:http://www.
biomedcentral.com/1472-6963/10/13/prepub

doi:10.1186/1472-6963-10-13
Cite this article as: Caruba et al.: Chronology of prescribing error during
the hospital stay and prediction of pharmacist’s alerts overriding: a
prospective analysis. BMC Health Services Research 2010 10:13.

Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Caruba et al. BMC Health Services Research 2010, 10:13
http://www.biomedcentral.com/1472-6963/10/13

Page 10 of 10

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Setting
	Collection of data
	Statistical analysis
	Primary outcome
	Secondary outcome


	Results
	Participants
	Outcomes
	Primary outcome

	Secondary outcome

	Discussion
	Conclusions
	Author details
	Authors' contributions
	Competing interests
	References
	Pre-publication history

