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Abstract
The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV) 
particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral 
particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on 
macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key 
role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them 
protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about 
HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines.
Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an 
intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a 
late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-
vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting 
Complex Required for Transport) machinery in HIV-1 budding, the observation of viral budding profiles in such 
compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with 
macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral 
compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, 
the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular 
proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown 
rapidly with the publication of four independent genome-wide screens. However, their respective roles in infected cells 
and especially in macrophages remain to be characterized. In summary, the complete process of HIV-1 assembly is still 
poorly understood and will undoubtedly benefit from the ongoing explosion of new imaging techniques allowing 
better time-lapse and quantitative studies.

Review
Role of monocytes/macrophages in HIV-1 physiopathology
Rapidly after the discovery of HIV-1, it was established
that HIV-1 has two major targets in vivo; T lymphocytes,
which have been extensively studied, and macrophages.
While the viral replication cycle is usually rapid and cyto-
pathic in T cells, infected macrophages survive for
months in vitro and in vivo, and accumulate large vacu-
oles containing infectious viral particles [1-3]. HIV-1
enters the Central Nervous System (CNS) soon after
peripheral infection of circulating T cells and monocytes
and probably penetrates the CNS at various times during
infection, see review [4]. Immunohistochemistry and in
situ hybridization studies have demonstrated that, in the

CNS, perivascular macrophages and microglia are the
most productively HIV-infected cells and are likely to
mediate CNS dysfunctions observed in individuals
infected with HIV-1 [4]. Intracellular location has long
been considered to provide a privileged niche, protecting
the virus from the immune system as well as from the
action of antiviral drugs. Thus, HIV-1 can persist in a
protected brain reservoir made of infected monocytes/
macrophages despite anti-retroviral therapy. Therefore
upon arrest of highly active antiretroviral therapy, mac-
rophages but also blood monocytes [5] may contribute to
the spread of HIV-1 and the rapid reconstitution of high
viral loads.

Macrophages differentiate from monocytes and repre-
sent a very diverse population of phagocytes, present in
many tissues and involved in various functions (from
bone remodeling to muscle regeneration, see review [6])
acting in both innate and adaptive immunity. Their first
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function is to phagocytose cellular debris and pathogens
either as stationary or mobile cells. Therefore, they pos-
sess a very active endo-lysosomal system, the activity and
rapidity of which may have been underestimated. Look-
ing at the ultra-structural level at human macrophages,
one is struck by the richness of the endo-lysosomal net-
work and the paucity of intermediate compartments sug-
gesting that internalized materials are very rapidly
targeted to lysosomes [7].
Scope of the present review
Despite the importance of macrophages for the physiopa-
thology of AIDS, and the initial interest after their identi-
fication as the second main target of the virus in vivo,
very little is known about the HIV-1 cycle in mac-
rophages. Most studies have been performed in non-
macrophage cell lines. and it is unclear whether such
results hold true in macrophages. Here, we will review
the HIV assembly process within infected primary mac-
rophages, i.e. most commonly, monocyte-derived mac-
rophages.

Current view(s) of HIV-1 assembly
Coordinating viral assembly
In this section, we focus on the late events of viral replica-
tion in macrophages. Currently, it remains unclear how
the various components of the viral particle are targeted
to the assembly compartment of which the exact nature
and localization remain elusive (see Figure 1 for a sum-
mary). Early studies showed that infected macrophages
tend to accumulate intracellular vacuoles that contain
numerous viral particles [1,2,8]. Since budding events
have been observed at the limiting membranes of these
vacuoles, [9,10], they are generally considered as the site
of HIV-1 assembly in macrophages. We will refer to these
vacuoles as the viral assembly compartment in the pres-
ent review.

The trafficking of viral components to the assembly site
as well as their subsequent assembly and release in the
form of an infectious particle are coordinated and regu-
lated through interactions between viral structural pro-
teins and cellular factors. The product of the gag gene has
long been recognized as the main conductor of HIV-1
assembly since its expression alone gives rise to virus-like
particles having the same spherical shell structure as
immature viral particles [11,12]. The current view of
HIV-1 assembly in T cells has been recently reviewed
[13,14], and we will only give here a brief overview of the
process.

Gag is composed of three polypeptides-- the matrix,
the capsid, the nucleocapsid; and three smaller peptides
that function together to coordinate membrane binding
and Gag-Gag lattice interactions in immature virions
[15]. One of the three peptides is called p6 or the "late
domain" because it is required for virus budding and

release [16]. The Gag precursor is synthesized in the
cytosol and co-translationally myristoylated at its N-ter-
minus, which is required for stable membrane associa-
tion. It is then targeted to the cytoplasmic leaflet of
membranes through mechanisms that are not fully
understood. There, Gag multimerizes into microdo-
mains, which in turn stabilize its membrane association
[17].

Gag can be found in the cytosol as small oligomers
detected by immuno-EM [18], but it is not known
whether Gag oligomerization is a prerequisite for the
spherical Gag lattice formation. Similarly, it remains
unclear whether the transport of the precursor relies on
free cytoplasmic diffusion or if it requires trafficking
along the cytoskeleton. It has also been suggested that
RNA binding to Gag could play a role in the assembly
process by providing a scaffold to stabilize intermolecular
Gag interactions [19,20]. Where and when the interaction
between Gag and viral RNA occurs is still debated, but
the trafficking of genomic RNA may influence Gag cyto-
solic fate [21-24]. Of note, the majority of data concern-
ing intracellular Gag trafficking was obtained from
immortalized cell lines and does not necessarily reflect
the situation in infected primary macrophages.
Host factors involved in assembly
Among the numerous cellular factors reported to be
involved in HIV-1 assembly and budding, the ESCRT cel-
lular machinery (Endosomal Sorting Complex Required
for Transport) is recruited by the p6 domain and plays a
key role in the formation and release of new particles.
This complex has drawn a lot of attention, and much
progress has been made in the last few years in under-
standing its way of functioning in three important pro-
cesses: formation of intraluminal vesicles in multi-
vesicular bodies (MVBs), HIV-1 budding and fission from
membranes, and more recently in fission of the midbody
during cytokinesis. The three processes have in common
the need for severing a thin membrane to allow vesicles,
nascent viral particles, or cells to be released. Since this
large body of work has not been reproduced in mac-
rophages and because the mechanisms involved have
been thoroughly reviewed [13,15,25], they will not be dis-
cussed here.

Additionally, Vpu, one of the accessory proteins of
HIV-1, also plays a crucial role in the terminal step of par-
ticle release (see [13]). Indeed, Vpu has been recently
shown to counteract the activity of a restriction factor
named tetherin/BST-2/CD317 [26-30]. In the absence of
Vpu, viral particles bud from the plasma membrane of T
cells but cannot detach due to the presence of tetherin.
The action of Vpu in T cells may rely on the down-regula-
tion of BST-2 at the cell surface through both relocaliza-
tion and degradation of this factor [31-33]. The molecular
mechanism involved in this tetherin-mediated retention
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remains unknown as well as the exact role of Vpu in dif-
ferent cell types, especially in macrophages [32].
Other cellular players In addition to the ESCRT
machinery many cellular proteins are thought to be
recruited or affected for efficient viral assembly and
release [15,34]. Only a few of those factors have been
characterized in macrophages. One of them is a choles-
terol transporter named ABCA1, which when bound to
Nef could result in the impairment of cholesterol efflux in
infected macrophages [35]. This may be related to the
requirement of cholesterol in the viral envelope for better
infectivity. Another factor reported to be essential for
both productive infection of macrophages and the infec-
tivity of released virions is Annexin2 which binds to Gag
at the limiting membrane of the viral assembly compart-
ment [36]. Annexin 2 seems to be involved in many func-

tions including membrane trafficking and endosome
formation, and its intracellular distribution depends on
cholesterol [37]. Since Annexin2 is not expressed by lym-
phocytes, its expression in macrophages may contribute
to the particular localization of their viral assembly site.

Studies performed with cells other than macrophages
have revealed many proteins involved in the trafficking of
Gag or Env towards the assembly site or its regulation,
such as Clathrin adaptors AP-1, AP-2 and AP-3 [38-44],
clathrin-binding factors GGAs and their regulator Arf
[45] and TIP47, which could simultaneously bind to Env
and Gag [46]. The microtubule network could play a role
via the inducible host factor SOCS1 in the intracellular
trafficking of Gag [47-49], as well as the kinesin KIF4
which binds to Gag and is required for viral assembly
[50,51]. Moreover, a thorough proteomic analysis of puri-

Figure 1 A current view of HIV assembly in macrophages. The viral genomic RNA transcribed in the nucleus is exported to the cytoplasm. The 
transmembrane envelope (Env) protein is produced in the endoplasmic reticulum and transits through the Golgi apparatus while Gag is synthesized 
on free cytosolic ribosomes. Both Env and the Gag precursors are targeted to the assembly site through unidentified pathways. The sites of Gag/Env 
interaction, Gag multimerization and binding to viral genomic RNA remain elusive as well. The main cellular factors suspected to play a role in these 
trafficking events are indicated; nevertheless most of the time their roles have still to be established in macrophages. The assembly process requires 
the hijacking of the cellular ESCRT machinery and occurs on cholesterol- and tetraspanin-enriched membrane microdomains. The assembly compart-
ment can be connected at least transiently to the plasma membrane through thin microchannels that do not allow virion passage. The limiting mem-
brane of the viral assembly compartment as well as the microchannels often exhibit thick molecular coats of which the composition remains obscure. 
See text for details.
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fied virions produced by HIV-1-infected macrophages
showed the presence of numerous of these host proteins
[52].

The above list of cellular proteins involved is far from
exhaustive. Recently, siRNA-based genome-wide screens
by 4 independent teams have identified cellular proteins
potentially involved at various stages of the viral cycle
[53-56]. These studies have produced large numbers of
candidates of which very few overlap. This may reflect, in
part, differences in the experimental set up used for each
of these screens which used different HIV-1 isolates and
cell lines (HEK293T or HeLa cells and Jurkat cells; see
meta-analysis [57] and comment [58]). While many pro-
teins have been proposed to play roles in the HIV-1
assembly process, their respective contributions and the
temporal order of the events are far from established.

Approaching HIV-1 assembly in primary macrophages
Technical limitations
Many studies have been based on immuno-fluorescent
staining of viral proteins such as Gag in infected mac-
rophages. In fact, Gag has multiple localizations in
infected cells (see an example in Figure 2, typical of day 7

post-infection). Gag goes from a diffuse cytosolic pattern
to small dots in the periphery to large intracellular com-
partments. Moreover, the Gag staining pattern evolves
with time post-infection. Two additional reasons render
the interpretation of these staining even more complex:

i) The poor resolution of the epifluorescent microscopy
technique does not allow one to distinguish mature or
nascent viral particles from Gag aggregates. Note that the
diameter of an immature viral particle is in the range of
100 to 200 nm (mean 129 nm) [59], which is below the
resolution of epifluorescent microscopes.

ii) It is impossible to distinguish incoming virions,
which may fuse or be internalized, from nascent viral par-
ticles eventually being secreted. Similarly, there is no way
to know whether dots observed by immunofluorescence
represent infectious or non-infectious particles. Finally,
we do not know if all the synthesized Gag precursor has a
homogeneous behavior or if several populations of Gag
precursor exist with distinct fate and function. This idea
is supported by Gousset et al. showing that only part of
Gag was redistributed in infected macrophages towards
the synapse formed with non-infected T cells [60].

Some of these problems can be, in theory, circum-
vented by ultrastructural approaches. So far, only
Immuno-electron microscopy (Immuno-EM) allows one
to distinguish viral particles, from viral buds, and from
non-assembled Gag. However, this technique remains
tedious, difficult to master, and only works with very few
antibodies on fixed samples.
How ultrastructural studies have shaped our representation 
of HIV-1 assembly in macrophages
EM studies have greatly influenced our view of the viral
cycle in macrophages. Early work revealed the existence
of large intracellular vacuoles in which viral particles tend
to accumulate. Raposo et al. showed by immuno-EM that
these vacuoles contained not only virions, but also endo-
somal markers such as MHC II and CD63. Based on EM
profiles they also proposed that viral budding takes place
at the limiting membrane of the compartments, and that
fusion of these compartments can occur at the plasma
membrane leading to the release of their contents; HIV-1
particles and exosomes [9]. Pelchen-Matthews et al. con-
firmed these results and provided additional biochemical
evidence that viral particles originate from late endocytic
compartments and carry markers from these compart-
ments [10,61].

To our knowledge, only one team observed by
Immuno-EM some ESCRT-related specific staining at the
limiting membrane of these compartments [62]. How-
ever, these ESCRT-components were also present else-
where in the cell and did not appear to be relocated to the
site of viral assembly upon HIV infection [62]. In our
preparations of macrophages, Alix and CHMP4 were
present mainly in virions, but also at the limiting mem-

Figure 2 Immunofluorescent staining of Gag in a HIV-1-infected 
macrophage. Monocyte-derived-macrophages were infected with 
HIV-1 NLAD8 pseudotyped with VSV-G. At day 7 post-infection, cells 
were fixed, permeabilized and stained with a rabbit antiserum anti-
HIV-1 p17 (AIDS Research and Reference Reagent Program, Division of 
AIDS, NIAID, NIH, from Dr. Paul Spearman) revealed by goat anti-rabbit 
antibodies conjugated to Alexa Fluor 488. A three dimensional recon-
struction built from an 8 μm thick section (0.5 μm between planes) is 
presented. It has been generated using the Nikon A1R Confocal laser 
microscope system. The macrophages often appear with this typical 
shape in "sunny side up egg" where the nucleus is a small part of the 
"yolk". The Gag staining appears rich and complex; there is a diffuse cy-
tosolic staining, some structures with intense staining located in the 
"yolk" which may correspond to the viral assembly compartments, and 
very small dots scattered everywhere which could correspond to free 
virions or Gag multimers (the microscope resolution is not good 
enough to estimate their precise size). Scale bar, 5 μm.
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brane of the viral assembly compartment (Figure 3).
However, we did not succeed in finding other ESCRT-
specific antibodies effective for immuno-EM despite test-
ing a large collection. This difficulty may reflect the tight-
ness of the ESCRT multi-protein complex. This also
points to the limitations of the immuno-EM studies for
which few antibodies can be used on ultrathin sections.
Nevertheless, it is now well-accepted that the ESCRT
machinery is recruited by HIV-1 in macrophages as well

as in T cells at their respective locations for HIV-1 assem-
bly, either inside the cell or at the plasma membrane.

Nature of the viral assembly compartment in macrophages
Where does viral assembly take place in infected 
macrophages?
Initial studies suggested the existence of an intracellular
compartment specialized in the assembly and storage of
viral particles. Ultrastructural studies revealed budding
profiles at the limiting membrane of internal compart-
ments [63] in a process and topology similar to the bio-
genesis of internal vesicles or exosomes in MVBs, which
are late endosomes [9]. Similar profiles were reported
later [10,64,65]. Proteomic analysis of the host cell pro-
teins incorporated into highly purified virions produced
by macrophages revealed the presence of many late endo-
somal proteins such as MHC II, CD63, and tetraspanins
[52] which is in agreement with immuno-EM studies
[9,10,61]. Moreover, such virions and macrophage-
derived exosomes had similar protein compositions [66].
Using recombinant viruses in which a tetracysteine tag
was introduced at the C-terminus of the matrix domain
of Gag, it has been possible to visualize Gag trafficking in
living macrophages. Accumulations of Gag were
observed both at the plasma membrane and in internal
compartments carrying late endosome/MVB markers
[60].

Other arguments supporting the idea that productive
intracellular assembly takes place in MVB-like compart-
ments are weak as they come from studies performed in
cell lines such as HeLa, HEK 293 T, or COS cells [67-69].
Viral budding was observed in MVBs from such cells [70],
while Gag was found to be transported to CD63+ MVBs
in an AP3-dependent manner [44]. It has been also sug-
gested that Gag transiently traffics through MVB-like
compartment to recruit the ESCRT machinery before
reaching the plasma membrane in these cell lines [71].
Recently, Joshi et al. used a HIV-1 carrying a Gag-matrix
mutant (29/31KE) which localizes to MVBs in all cell
types, thus showing that efficient intracellular assembly
and release of viral particles occurred not only in mac-
rophages but also in T cells [72]. This study therefore
establishes that endosomal compartments can serve as
productive sites for HIV-1 assembly in both T cells and
macrophages.

A characteristic of the endocytic pathway is its progres-
sive acidification which allows the activation of degrada-
tive enzymes. Endosomes would therefore constitute a
hostile environment for HIV-1 which is a fragile virus
sensitive to low pH and proteases [73]. However, HIV-1
remains infectious in macrophages, even after residing in
macrophages for long periods of time [3]. Simultaneous
identification by immuno-EM of viral assembly compart-
ments and estimation of their pH were carried out on

Figure 3 Localization of Alix and CHMP4 at the viral assembly 
compartment. Monocyte-derived-macrophages infected with HIV-1 
NLAD8 for 14 days were processed for cryosectioning as described 
[65]. (A) Two examples of virus-containing compartments that were tri-
ple labeled for p17/p55 Gag with protein A coupled to gold particles 
of 5 nm or PAG5, for Alix with PAG10, and for CD63 with PAG15. Alix la-
beling was found on the virions and at the limiting membrane of the 
viral assembly compartment (black arrowheads). Note the labeled mi-
tochondria nearby (small arrow). (B) Cryosections were triple labeled 
for p17/p55 Gag with PAG5, for CHMP4B with PAG10, and for CD63 
with PAG15. CHMP4B was present in many virions (black arrowheads). 
In panels (A) and (B), CD63 was at the limiting membrane of the com-
partment, in small internal vesicles or incorporated in the membrane 
of virus particles. (B') Two examples of viral compartments double la-
beled for CHMP4B with PAG10, and p17/p55 Gag with PAG15. 
CHMP4B was associated with a thick molecular coat present at the lim-
iting membrane of the assembly compartments (black arrowheads). 
Bars, 100 nm.
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infected macrophages [65]. While the extended network
of lysosomes present in infected macrophages was cor-
rectly acidified, viral compartments were not. Endosomal
acidification is required for maturation along the endo-
cytic pathway and fusion with lysosomes. Therefore,
HIV-1 may have evolved a strategy for survival in mac-
rophages.

It has been proposed that intracellular virions observed
in HIV-1-infected macrophages represent endocytosed
particles produced by neighboring cells [74]. Several
arguments can be put forward to rule out this hypothesis:
1) Immuno-EM profiles obtained by several teams show
viral particles at various stages of budding at the limiting
membrane of the compartment [2,9,10,65]. Moreover, the
viral particles seen in these compartments were often
immature virions, as judged by their electron lucent
material at the core and electron dense material at the
periphery (see Figure 1 a schematic representation). 2)
Shortly after exposure of macrophages to HIV-1, most
virions are found in macropinosomes or in acidic endo-
somes and are subsequently degraded [65,75]. 3) In all the
studies mentioned, the HIV-1 strains used expressed
Vpu, which promotes virus release but also inhibits virus
uptake by endocytosis [28,76]. Taken together, this
strongly suggests that the majority of viral particles
detected in intracellular compartments of HIV-1 infected
macrophages have been de novo produced rather than
recently endocytosed.
A compartment connected to the plasma membrane
Despite the numerous evidence showing that HIV-1
assembly occurs in macrophages in MVB-related com-
partments, recent studies have challenged this view. They
were based on the usage of the ruthenium red (RR),
which is a membrane-impermeant dye added during the
fixation of infected macrophages and before their analysis
by electron microscopy. Deneka et al. suggested that at
least some of the virus-positive, "intracellular" structures
in macrophages were actually connected to the plasma
membrane via very thin microchannels allowing access of
the RR dye [77]. Another team achieved similar results
[64], and both concluded that the viral assembly com-
partment originates from the plasma membrane in
infected macrophages. We also observed in our mac-
rophage preparations that some viral compartments were
RR+; however, 80% of them remained negative (Figure 4
and [65]). Interestingly, we frequently noticed in the
vicinity of the viral compartments numerous electron-
dense lipid droplets that were heavily stained by the RR
dye (Figure 4A, see white asterisks) in agreement with the
known capacity of RR to bind lipids and suggesting their
connection to the extracellular space. As previously
reported for other cell types [78,79], our pictures on Fig-
ure 4 reveal however the presence of electron-dense RR+
areas in the cytoplasm and mitochondria near lipid drop-

lets, and thus indicates that the RR dye is not totally
membrane-impermeant in macrophages.

A very recent study based on ion-abrasion scanning
electron microscopy indicates that HIV-1-infected mac-
rophages possess an extensive network of tubules occa-
sionally connecting virus containing compartments with
the cell surface [80]. These virion-containing tubules have
a diameter of 150-200 nm and thus may differ from the
narrow (< 20 nm) virion-free microchannels mentioned
above. Future work will aim at confirming and quantify-
ing the presence of these microchannels or tubules using
alternative techniques.

It is currently not known whether these connections to
the plasma membrane are transient or permanent. How-
ever, they may account for the lack of acidification of the
viral compartment mentioned above. They could also
occur as an early event during the establishment of the
intracellular vacuole; or on the contrary, they may pre-
cede an exocytosis process of the viral particles, although
the diameter of the microchannels appears too small to
accommodate virus trafficking (around 20 nm, [77]).

Figure 4 Ruthenium red staining of HIV-1 infected macrophages. 
Monocyte-derived-macrophages infected with HIV-1 (NLAD8) for 14 
days were fixed on ice in the presence of ruthenium red (RR) dye and 
embedded in Epon for transmission electron microscopy as described 
[65]. (A) Viral assembly compartments negative for the RR dye were ob-
served such as the one which is framed. Electron-dense deposits of ru-
thenium red-positive material were seen in lipids droplets, which lied 
deep within macrophages and were especially numerous near HIV-1 
virus-containing vacuoles (see white asterisks). However, a majority of 
virus-containing compartments remained RR negative (see black as-
terisks). (A') Enlargement of the framed area in A. (B) Viral assembly 
compartments containing viral particles positive for the RR dye were 
also observed. Note the presence of a microchannel emanating from 
the central compartment (black arrowhead). (C) A "sponge-like struc-
ture" is shown in the center of the panel exhibiting highly intercon-
nected membranes. Such structures were positive for the RR dye and 
very frequently were found in the vicinity of viral compartments (see 
above the structure). Below the structure, note the presence of numer-
ous secondary lysosomes containing small osmiophilic particles (a few 
examples are pointed by black arrowheads). Bars, 400 nm.
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Despite hundreds of EM profiles of HIV-1-infected
macrophages analyzed, we never saw any budding event
taking place at the plasma membrane like we observed in
T cells (M. J. and P. B., unpublished observations). Impor-
tantly, three studies on macrophages showed that the
viral compartments were accessible to Transferrin, but
not to BSA-gold or immunoglobulin-coated gold beads
added to the extracellular medium [2,64,65], supporting
the concept of a compartment separated from the endo-
cytic pathway but capable of exchanges with the recycling
compartment. Alternatively, Transferrin access may be
due to the microchannel connections to the plasma
membrane.

Altogether it remains unclear whether the viral com-
partments observed in HIV-infected macrophages corre-
spond to invaginations of the plasma membrane. We
favor the notion of an intracellular compartment sepa-
rated from the endocytic pathway, possessing a neutral
pH and transiently connected via microchannels to the
plasma membrane. However, more work is needed to
resolve the nature of the viral compartment in mac-
rophages.
Composition of the compartment
The limiting membrane of the compartment where viral
budding takes place will eventually wrap the nascent viral
particle. Therefore the lipid and protein composition of
the viral membrane may reflect the origin of the assembly
compartment (see [81]). The HIV-1 membrane is
enriched in cholesterol, GM1 and tetraspanins, support-
ing the idea that HIV-1 budding could take place on lipid
raft-like membranes. However, several proteins known to
be normally associated with rafts like CD14 and CD45
are not found in viral envelope, whereas some proteins
present in HIV-1 envelope appear excluded from lipid-
rafts [66].

Tetraspanins such as CD9, CD53, CD81 and CD82
were enriched both in the compartment and in the viral
membrane [10,61,82]. Although CD63 was specifically
associated with HIV-1 assembly compartments in mac-
rophages, it was dispensable for the production of infec-
tious virus [82]. However, opposite results were obtained
also in macrophages [83]. Learning more about the func-
tion of CD63, which remains elusive, will probably help to
solve this discrepancy.

The limiting membrane of the viral compartment often
appears to contain molecular coats (see [77] and Figure
3B') of which, the composition remains elusive. These
coats are reminiscent of flat clathrin lattices found in
MVBs [84] but they appear less flat, do not contain clath-
rin and are also observable on the microchannels con-
necting the compartments to the plasma membrane [77].
The "sponge-like structures"
Deneka et al. reported the frequent presence of "sponge-
like" structures in the immediate vicinity of viral assembly

compartments in infected macrophages [77]. These
structures are very rich in highly interconnected mem-
branes and accessible to the RR dye. We also observed in
our macrophage preparations such RR+ structures (Fig-
ure 4C), of which the nature and function remain so far
unknown. As previously noticed [77], their morphology
appears similar to structures observed in primary mac-
rophages that have been exposed to aggregated low-den-
sity lipoproteins and that are also efficiently stained by
RR (see [85]).

HIV-1 is known to wrap into cholesterol-rich mem-
branes that are required for viral production and infectiv-
ity. Since cholesterol efflux is inhibited in HIV-1-infected
macrophages through a Nef-dependent mechanism [35],
this accumulation of lipids may contribute to the appear-
ance of the sponge-like structures. However, Nef does not
promote the intracellular accumulation of viral particles
in macrophages [3] and is dispensable for effective HIV-1
replication in macrophages [86,87]. Future work will elu-
cidate the connection between lipid homeostasis, Nef and
the assembly process in macrophages.

Conclusions
Features of the HIV-1 cycle in macrophages still need to
be better established but appear to be different at many
steps from what is known during infection of CD4+ T
cells (see accompanying reviews in the present issue of
Retrovirology). Studying HIV-1 assembly in primary mac-
rophages remains a difficult task for several reasons:
Macrophages are refractory to most transfection proce-
dures, and their very strong adherence to plastic culture
dishes makes them very difficult to detach. They are ter-
minally differentiated and thus cannot be expanded.
Upon HIV infection, macrophages tend to form large
syncitia and display quite a bit of donor-to-donor vari-
ability. There is a crucial need for quantitative studies
that cannot be performed using conventional techniques.
Several recent studies have been carried out using time-
lapse based technologies, with the help of recombinant
HIV-1 viruses engineered to produce fluorescent parti-
cles [20,88,89]. Recombinant viral particles can be
tracked by spinning-disk confocal or TIRF microscopy.
Such studies have been performed essentially with cell
lines, but also in primary T cells. So far they have shed
light and brought information regarding the dynamics of
viral transmission between T cells, or between mac-
rophages and T cells, and on viral entry in HeLa cells.

Despite the recent advances, many features of the HIV-
1 assembly process in macrophages remain to be eluci-
dated. Beside the exact nature and biogenesis of the viral
assembly compartment, several questions have to be
addressed. Among them: what are the stimuli and pro-
cesses leading to the release of viral particles by infected
macrophages? Is there a way of controlling this release,
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for example through a targeted delivery of the viral parti-
cles at the virological synapse? Given that the molecular
mechanisms involved in exosome secretion are just
beginning to be approached [90], a lot remains to be
done. The impact of viral secretion by macrophages on
cell-to-cell transmission could be very important from a
physiopathological point of view, especially when highly-
active anti-retroviral therapies are stopped. Virological
synapses allow HIV-1 trans-infection from infected to
uninfected macrophages [60]. Rapid transfer of HIV-1
particles from macrophages to autologous CD4+ T cells
can occur across transient virological synapses [91].
Finally, HIV-1 also appears able to hijack tunneling nano-
tubes for its own spreading [92].

Another important open question is why the viral
assembly compartment occurs in an internal compart-
ment in macrophages and not in T cells. Obviously some-
thing has to differ between the two cell types, leading to
distinct trafficking events. Defining the molecular basis
of these phenomena may provide valuable new therapeu-
tic targets. Among many possible hypotheses to explain
the specificity of the viral assembly in macrophages, a
mechanism involving the miRNA pathway could be pro-
posed. Indeed, miRNA expression patterns are modified
by HIV-1 infection [93-96], and correlate with cell per-
missivity to HIV-1 in the monocyte/macrophage lineage
[97].

In the future, new improvements of fluorescent micros-
copy allowing resolution close to tens of nanometers such
as photoactivated localization microscopy [98] could be
used for more precise localization of Gag and other viral
components. Electron tomography as well as correlative
light-electron microscopy could also be of interest, espe-
cially for the fine characterization of the relation between
the viral assembly compartment and the plasma mem-
brane. No doubt that the rapid development of imaging
techniques, allowing the monitoring of dynamic and
rapid events with high-resolution, will benefit the field of
HIV assembly in primary cells and should yield very
promising and exciting findings.
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