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Abstract

We discuss, in more details, our algorithm called Recursive Hybrid Par-
ents and Children (RHPC). RHPC takes a data set as input and returns a
partially oriented DAG (PDAG for short) representative of a bayesian net-
work equivalence class. The latter is obtained by directing the compelled

edges of the skeleton. The skeleton is obtained by running an algorithm
called Hybrid Parents and Children (HPC) algorithm recursively on every
node. RHPC is shown to be sound in the sample limit.

1 Introduction

Constraint-based (CB) bayesian network (BN) structure learning methods are
plagued by a severe problem: the number of false negatives (missing variables)
increases swiftly as the size of the PC set increases. There are mainly two ex-
planations for this phenomenon. The �rst is the unreliability of the conditional
independence tests as the conditioning sets become large. Large conditioning
sets produce sparse contingency tables and unreliable tests. This is why it is
di�cult to learn the neighborhood of a node having a large degree with CB meth-
ods. The number of possible con�gurations of the variables grows exponentially
with the size of the conditioning set. This well known problem is common to all
CB methods and has led several authors to reduce, as much as possible, the size
of the conditioning sets with a view to enhancing the data-e�ciency of their
methods [3]. The second reason is that the decisions for a link to be created
between two nodes in the �nal graph are often too severe and conservative. In
practice, these problems plague all CB methods when variables have many ad-
jacent nodes and relatively few instances. Moreover, CB procedures su�er from
another di�culty: they fail to reconstruct correctly the skeleton when some ap-
proximate deterministic relationships (ADR) exist among groups of variables.
ADRs are pitfalls to watch out for when a conservative procedure is run on data
because it causes the method to miss weakly associated pairs of variables [8].

In this supplementary document, we discuss in more detail the algorithm
called Recursive Hybrid Parents and Children (RHPC) that was used in our
experiments and we brie�y explain how it alleviates the problems discussed
above. RHPC takes a data set as input and returns a PDAG representative
of a bayesian network equivalence class (called an essential graph). The latter
is obtained by directing the compelled edges of the skeleton. The skeleton is
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obtained by running an algorithm called Hybrid Parents and Children (HPC)
recursively on each node [5�7].

2 The Recursive Hybrid Parents and Children

algorithm

The essential graph is obtained by running RHPC (Algorithm 1), based on the
faithfulness assumption. As RHPC calls HPC (Algorithm 2) on each node, we
start discussing HPC �rst. HPC receives a node X and returns its adjacent
nodes PCX . Under this faithfulness assumption, X and Y are not adjacent in
G if and only if ∃Z ∈ U \ {X ∪ Y } such that X ⊥ Y |Z [2]. As an exhaustive
search of Z is intractable for high dimension data sets. HPC performs a heuristic
search with a severe restriction on the maximum conditioning size in order to
signi�cantly increase the reliability of the statistical independence tests. Note
that other similar 'Parent and Children' learning procedures were proposed
recently in the machine learning literature, namely MMPC [10] and GetPC [3].
They could be used as well. Nonetheless HPC was favored in a recent evaluation
using the same conditional independence test, over a range of di�erent networks,
sample sizes and number of variables [5, 7].

Formally, HPC can be viewed as an ensemble method for combining many
weak PC learners in an attempt to produce a stronger PC learner. The al-
gorithm was designed in order to endow the search procedure with the ability
to: 1) handle e�ciently data sets with thousands of variables but comparably
few instances, 2) deal with datasets which present some deterministic relation-
ships among the variables, 3) be correct under the faithfulness condition, and
4) be able to learn large neighborhoods. HPC is based on three subroutines:
Data-E�cient Parents and Children Superset (DE-PCS),Data-E�cient Spouses
Superset (DE-SPS), and Interleaved Incremental Association Parents and Chil-
dren (Inter-IAPC), a weak PC learner based on Inter-IAMB [9] that requires
little computation. HPC may be thought of as a way to compensate for the
large number of false negative nodes, at the output of the weak PC learner with
few data cases, by performing extra computations. HPC receives a target node
T, a data set D and a set of variables U as input and returns an estimation of
PCT . It is hybrid in that it combines the bene�ts of incremental and divide-
and-conquer methods. The procedure starts by extracting a superset PCST of
PCT (line 1) and a superset SPST of SPT (line 2) with a severe restriction on
the maximum conditioning size (Z <= 2) in order to signi�cantly increase the
reliability of the tests. A �rst candidate PC set is then obtained by running the
weak PC learner on PCST ∪ SPST (line 3). The key idea is the decentralized
search at lines 4-8 that includes, in the candidate PC set, all variables in the su-
perset PCST ∪SPST that have T in their vicinity. Note that, in theory, X is in
the output of Inter-IAPC(Y ) if and only if Y is in the output of Inter-IAPC(X).
However, in practice, this may not always be true due the statistical test errors,
especially with few data samples. The decentralized search enables the algo-
rithm to handle large neighborhoods while still being correct under faithfulness
condition. The correctness of is provided in Appendix A.

The essential graph is obtained by running HPC on the every node and
by directing the complelled edges as shown in Algorithm 1. Note that HPC
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Algorithm 1 Recursive HPC

Require: D: data set; U: the set of variables
Ensure: A PDAG G reprentative of the equivalence class containing the compelled

edges

1: for all pair of nodes X,Y ∈ U do

2: Create the link X-Y in G if X ∈ HPC(Y ) OR Y ∈ HPC(X)
3: end for

4: for all uncoupled meeting X − Z − Y ∈ G do
5: if Z /∈ dSep(X,Y ) then
6: Orient X − Z − Y as X → Z ← Y
7: end if

8: end for

9: repeat

10: for all uncoupled meeting X → Z − Y do

11: Orient Z − Y as Z → Y
12: end for

13: for all link X − Y such that there is a path from X to Y do

14: Orient X − Y as X → Y
15: end for

16: for all uncoupled meeting X − Z − Y such that X →W , Y → W and Z −W
do

17: Orient Z −W as Z →W
18: end for

19: until no more edges can be oriented

Algorithm 2 HPC

Require: T : target; D: data set; U: the set of variables
Ensure: PCT : Parents and Children of T

1: [PCST ,dSep]← DE-PCS(T,D)
2: SPST ← DE-SPS(T,D,PCST ,dSep)
3: PCT ← Inter-IAPC(T,D(T ∪PCST ∪ SPST ))
4: for all X ∈ PCST \PCT do

5: if T ∈ Inter-IAPC(X,D(T ∪PCST ∪ SPST )) then
6: PCT ← PCT ∪X
7: end if

8: end for
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Algorithm 3 Inter-IAPC

Require: T : target; D : data set; U: set of variables;
Ensure: PCT : Parents and children of T ;

1: MBT ← ∅
2: repeat

3: * Add true positives to MBT

4: Y ← argmax
X∈(U\MBT \T)dep(T,X|MBT )

5: if T ̸⊥ Y |MBT then

6: MBT ←MBT ∪ Y
7: end if

* Remove false positives from MBT

8: for all X ∈MBT do

9: if T ⊥ X|(MBT \X) then
10: MBT ←MBT \X
11: end if

12: end for

13: until MBT has not changed

* Remove spouses of T from MBT

14: PCT ←MBT

15: for all X ∈MBT do

16: if ∃Z ⊆ (MBT \X) such that T ⊥ X | Z then

17: PCT ← PCT \X
18: end if

19: end for

Algorithm 4 DE-PCS

Require: T : target; D: data set; U: set of variables;
Ensure: PCST : parents and children superset of T ; dSep: d-separating sets;

Phase I: Remove X if T ⊥ X
1: PCST ← U \ T
2: for all X ∈ PCST do

3: if (T ⊥ X) then
4: PCST ← PCST \X
5: dSep(X)← ∅
6: end if

7: end for

Phase II: Remove X if T ⊥ X|Y
8: for all X ∈ PCST do

9: for all Y ∈ PCST \X do

10: if (T ⊥ X | Y ) then
11: PCST ← PCST \X
12: dSep(X)← Y
13: break loop FOR

14: end if

15: end for

16: end for
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Algorithm 5 DE-SPS

Require: T : target; D: data set; U: the set of variables; PCST : parents and children
superset of T ; dSep: d-separating sets;

Ensure: SPST : Superset of the spouses of T ;

1: SPST ← ∅
2: for all X ∈ PCST do

3: SPSX
T ← ∅

4: for all Y ∈ U \ {T ∪PCST } do
5: if (T ̸⊥ Y |dSep(Y ) ∪X) then
6: SPSX

T ← SPSX
T ∪ Y

7: end if

8: end for

9: for all Y ∈ SPSX
T do

10: for all Z ∈ SPSX
T \ Y do

11: if (T ⊥ Y |X ∪ Z) then
12: SPSX

T ← SPSX
T \ Y

13: break loop FOR

14: end if

15: end for

16: end for

17: SPST ← SPST ∪ SPSX
T

18: end for

must have found dSep(X,Y ) (at line 5 of RHPC) and have cached it for later
retrieval. Aternatively, HPC can be run recursively on the adjacent nodes of a
target variable in order to establish a local graph without having to construct
the whole BN �rst as discussed in [4]. RHPC applies standard techniques at
lines 4-19 to identify the compelled edges. The reader is directed to [2], pp. 538,
for further details. The correctness and completeness of the edge orientation
in RHPC are demonstrated in [1]. The correctness of RHPC follows from the
correctness of HPC.

We now discuss the subroutines in more detail. Inter-IAPC (Algorithm 3)
is a fast incremental method that receives a data set D and a target node T
as its input and promptly returns a rough estimation of PCT , hence the term
�weak� PC learner. Inter-IAPC is an straightforward extension of the algorithm
Inter-IAMB [9]. Notice that neither MMPC [10] nor GetPC [3] should be used
to implement this weak PC learner. The reason is that any break of symmetry
of the PC relation in the output of these algorithm is an indication of a false
positive member; the decentralized search would not aid in reducing the number
of false positives variables at all. Inter-IAPC starts with a two-phase approach
to infer MBT , that is, the Markov boundary of T . A growing phase attempts
to iteratively add the best candidate variables toMBT , followed by a shrinking
phase that attempts to remove as many irrelevant variables as possible, that is,
the false positives in the current set MBT . The function dep(T,X|MBT ) at
line 4 returns a statistical estimation of the association between T and X given
the current set MBT . The shrinking phase is interleaved with the growing
phase. Interleaving the two phases allows to eliminate as soon as possible some
of the false positives in the current Markov blanket as the algorithm progresses
during the Markov boundary search. PCT is obtained by removing the spouses
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of the target from the �nal MBT (lines 14-19). Inter-IAPC is very fast and
sound (the proof of soundness is provided in A), despite its data-ine�ciency
in practice. The decentralized search in HPC is an attempt to alleviate this
problem as discussed earlier.

The subroutines DE-PCS (Algorithm 4) and DE-SPS (Algorithm 5) search a
superset ofPCT and SPT respectively with a severe restriction on the maximum
conditioning size (|Z| <= 1 in DE-PCS and |Z| <= 2 in DE-SPS) in order to
signi�cantly increase the reliability of the tests. The variable �ltering has two
advantages : i) it allows HPC to scale to hundreds of thousands of variables by
restricting the search to a subset of relevant variables, and ii) it eliminates many
ADRs that produce many false negative errors in the ouput of the algorithm,
as explained in the last section. DE-SPS works in two steps. First, a growing
phase (lines 4-8) adds the variables that are d-separated from the target but still
remain associated with the target when conditioned on another variable from
PCST . The shrinking phase (lines 9-16) discards irrelevant variables that are
ancestors or descendants of a target's spouse. Pruning such irrelevant variables
speeds up HPC.
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A Proof of correctness

A structure learning algorithm from data is said to be correct (or sound) if it
returns the correct DAG pattern (or a DAG in the correct equivalence class)
under the assumptions that the independence tests are reliable and that the
learning data set is a sample from a distribution P faithful to a DAG G. The
(ideal) assumption that the independence tests are reliable means that they de-
cide (in)dependence if and only if the (in)dependence holds in P . Consequently,
a parents and children learning algorithm is said to be correct (or sound) when
under the assumptions that the independence tests are reliable and that the
learning data set is a sample from a distribution P faithful to a DAG G, the
algorithm returns the correct set of parents and children of the target, that is,
the target direct neighborhood. Correctness is a desirable asymptotic property
though the underlying assumptions may not hold in practice. In general, we
would want an edge to mean a direct dependence. Several de�nitions and inter-
mediate theorems are required before we demonstrate HPC 's correctness under
faithfulness condition.

De�nition 1 A Markov blanket MT of T is any set of variables such that T is
conditionally independent of all the remaining variables given MT . A Markov
boundary,MBT , of T is any Markov blanket such that none of its proper subsets
is a Markov blanket of T .

Theorem 1 Suppose < G, P > satis�es the faithfulness condition. Then for
each variable X, the set of parents, children of X, and parents of children
(spouses) of X is its unique Markov boundary.

A proof can be found in [2]. Indeed, as PCST ∪ SPST is a subset of U,
a di�culty arises: a marginal distribution PV of V ⊂ U may not satisfy the
faithfulness condition with any DAG even if PU does. This is an example of
embedded faithfulness, which is de�ned as follow:

De�nition 2 Let PV be a distribution of the variables in V where V ⊂ U and
let G =< U,E > be a DAG. < G, PV > satis�es the embedded faithfulness
condition if G entails all and only the conditional independencies in PV, for
subsets including only elements of V.

We obtain embedded faithfulness by taking the marginal of a faithful distri-
bution as shown by the next theorem:
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Theorem 2 Let PU be a joint probability of the variables in U with V ⊆ U
and G =< U,E >. If < G, PU > satis�es the faithfulness condition and PV is
the marginal distribution of V, then < G, PV > satis�es the embedded faithful
condition.

The proof can be found in [2]. Note that not every distribution does ad-
mit an embedded faithful representation. This property is useful to prove the
correctness of HPC under the faithfulness condition. Let PCUX denote the vari-
ables Y ∈ U so that there is no set Z ⊆ U \ {X,Y } such that X ⊥P Y |Z. If
< G, PU > satis�es the faithfulness condition, PCUX are the parents and chil-
dren of X in U. In any case, PCUX is the unique set of the variables Yi that
remain dependent on X conditioned on any set Z ⊆ U \ {X,Yi}.

Theorem 3 Let U be a set of random variables and G =< U,E > be a DAG.
If < G, PU > satis�es the faithfulness condition, then every target T admits a
unique Markov boundary MBUT . Moreover, for all V such that MBUT ⊆ V ⊆
U, T admits a unique Markov boundary over V and MBVT =MBUT .

Proof: If MBUT is the Markov boundary of T in U, then T is independent
of all variable Y ∈ [V \ (MBUT ∪ T )] conditionally on MBUT , then MBUT is
a Markov blanket in V. Moreover, none of the proper subsets of MBUT is a
Markov blanket of T in V, so MBUT is also a Markov boundary of T in V. So
if it is not the unique MB for T in V there exists some other set ST not equal
to MBUT , which is a MB of T in V. Since MBUT ̸= ST and MBUT cannot be a
subset of ST , there is some X ∈MBUT such that X ̸∈ ST . Since ST is a MB for
T , we would have T ⊥P X|ST . If X is a parent or child of T , we would not have
T ⊥G X|ST which means we would have a conditional independence that is not
entailed by d-separation in G, which contradicts the faithfulness condition. If
X is a parent of a child of T in G, let Y be their common child in U. If Y ∈ ST

we again would not have T ⊥G X|ST . If Y ̸∈ ST we would have T ⊥P Y |ST

because ST is a MB of T in V but we do not have T ⊥G Y |ST because T is a
parent of Y in G. So again we would have a conditional independence which is
not a d-separation in G. This proves that there can not be such set ST . �

Theorem 4 Let U be a set of random variables and T a target variable. Let
G =< U,E > be a DAG such that < G, PU > satis�es the faithfulness condition.
Let V be such that MBUT ⊆ V ⊆ U then, PCVT = PCUT .

Proof: Clearly PCUT ⊆ PCVT as MBUT ⊆ V ⊆ U. If X ∈ PCVT and
X ̸∈ PCUT , ∃Z ⊆MBUT \X such that T ⊥P X|Z because all non adjacent nodes
may be d-separated in G by a subset of its Markov boundary. AsMBUT =MBVT
owing to Theorem 3, so X and T can be d-separated in V \ {X,T}. Therefore,
X cannot be adjacent to T in V. �

Theorem 5 Let U be a set of random variables and T a target variable. Let
G =< U,E > be a DAG such that < G, PU > satis�es the faithfulness con-
dition. Let V be such that MBUT ⊆ V ⊆ U. Under the assumption that the
independence tests are reliable, Inter-IAPC(T,D,V) returns PCUT . Moreover,
let X ∈ V \ T , then ∀T ∈ V, T is in the output of Inter-IAPC(X,D,V) i�
X ∈ PCUT .
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Proof: We prove �rst that Inter-IAPC (T,D,V) returns PCUT . In lines 1-13,
Inter-IAPC seeks a minimal set ST ⊆ V\T that renders V\ST independent of
T conditionally on ST . This set is unique owing to Theorem 3, therefore ST =
MBVT = MBUT . In the backward phase, Inter-IAPC removes the variables
X ∈MBVT such that ∃Z ⊆ (MBVT \X) for which T ⊥ X | Z. These variables are
the spouses of T in G, so Inter-IAPC (T,D,V) returns PCUT . Now, if X ̸∈ PCUT
then X ̸∈ PCVT owing to Theorem 4. So there is a set Z ⊆ V \ {X,Y } such
that T ⊥ X | Z. Therefore, X cannot be in the output of Inter-IAPC (T,D,V),
nor T can be in the output of Inter-IAPC (X,D,V). �

Theorem 6 Under the assumptions that the independence tests are reliable and
that the data set is a sample from a probability distribution PU faithful to a DAG
G, then HPC(T,D,U) returns PCUT .

Proof: Let V = (PCS ∪ SPS), then V is a superset of MBUT . Based on
what is stated by Theorem 3 we know thatMBVT =MBUT . If T is in the output
of Inter-IAPC(X,V,D) then X should be in the output of Inter-IAPC(T,V,D)
owing to Theorem 5. So HPC returns PCUT . �.
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