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Analysis of lifestyle and metabolic predictors of
visceral obesity with Bayesian Networks
Alex Aussem1*, André Tchernof2, Sérgio Rodrigues de Morais1, Sophie Rome3

Abstract

Background: The aim of this study was to provide a framework for the analysis of visceral obesity and its

determinants in women, where complex inter-relationships are observed among lifestyle, nutritional and metabolic

predictors. Thirty-four predictors related to lifestyle, adiposity, body fat distribution, blood lipids and adipocyte sizes

have been considered as potential correlates of visceral obesity in women. To properly address the difficulties in

managing such interactions given our limited sample of 150 women, bootstrapped Bayesian networks were

constructed based on novel constraint-based learning methods that appeared recently in the statistical learning

community. Statistical significance of edge strengths was evaluated and the less reliable edges were pruned to

increase the network robustness. To allow accessible interpretation and integrate biological knowledge into the

final network, several undirected edges were afterwards directed with physiological expertise according to relevant

literature.

Results: Extensive experiments on synthetic data sampled from a known Bayesian network show that the

algorithm, called Recursive Hybrid Parents and Children (RHPC), outperforms state-of-the-art algorithms that

appeared in the recent literature. Regarding biological plausibility, we found that the inference results obtained

with the proposed method were in excellent agreement with biological knowledge. For example, these analyses

indicated that visceral adipose tissue accumulation is strongly related to blood lipid alterations independent of

overall obesity level.

Conclusions: Bayesian Networks are a useful tool for investigating and summarizing evidence when complex

relationships exist among predictors, in particular, as in the case of multifactorial conditions like visceral obesity,

when there is a concurrent incidence for several variables, interacting in a complex manner. The source code and

the data sets used for the empirical tests are available at http://www710.univ-lyon1.fr/~aaussem/Software.html.

Background
Introduction

Recently, Bayesian networks (BN) have become a very

popular tool for biological network reconstruction [1-3],

for genotype-to-phenotype relationship studies [4] and

for clinical and microarray data aggregation [5,6]. BN

are directed acyclic graphs (DAG) that model the prob-

abilistic dependencies underlying the data. These graphi-

cal models are highly attractive for their ability to

describe complex probabilistic interactions between vari-

ables. They offer a coherent and intuitive representation

of uncertain domains of knowledge. The graphical part

of BN reflects the structure of a problem, while local

interactions among neighboring variables are quantified

by conditional probability distributions. Learning a BN

from data requires identifying both the model structure

 and the corresponding set of model parameter

values. Given a fixed structure, however, it is straightfor-

ward to estimate the parameter values. The task can be

efficiently solved according to the maximum likelihood

(ML) or maximum a posteriori (MAP) criterion under

the assumption that the learning data contain no miss-

ing values [7,8]. As a result, research on the problem of

learning BN from data is focused on methods for identi-

fying the structure that best fits the data. Despite signifi-

cant recent progress in algorithm development, the

computational inference of network structure is currently

still very much an open challenge in computational
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statistics [7,9]. To appreciate the complexity of learning a

DAG, we note that the number of DAGs is super-expo-

nential in the number of nodes [7].

Broadly speaking, there are two main approaches to

BN structure learning. Both approaches have advantages

and disadvantages. Score-and-search methods search

over the space of structures (or the space of equivalence

BN classes) employing a scoring function to guide the

search. Another approach for learning BN structures,

known as the constraint-based (CB) approach, follows

more closely the definition of BN as encoders of condi-

tional independence relationships. According to this

approach, some judgments are made about the (condi-

tional) dependencies that follow from the data and use

them as constraints to construct a partially oriented

DAG (PDAG for short) representative of a BN equiva-

lence class. There are many excellent treatments of BN

which surveys the learning methods [7,9]. When data

sets are small, the relative benefits of the two

approaches are still unclear. While none has been pro-

ven to be superior, considerable advances have been

made in the past years in the design of highly scalable

divide-and-conquer CB methods [10-14] in order to

improve the network reconstruction accuracy when the

number of samples is small.

In this study, we apply one of these CB algorithms,

named Recursive Hybrid Parents and Children (RHPC),

for representing the statistical dependencies between 34

clinical variables among 150 women with various

degrees of obesity. Obesity is recognized as a disease in

the U.S. and internationally by governments, health

organizations, researchers and medical professionals. It

is a complex multifactorial condition that needs to be

studied by the means of multidisciplinary approaches

involving biological expertise and new statistical and

data mining tools. Features affecting obesity are of high

current interest. Clinical data, such as patient history,

lifestyle parameters and basic or even more elaborate

laboratory analytes (e.g., adiposity, body fat distribution,

blood lipid profile and adipocyte sizes) form a complex

set of inter-related variables that may help better under-

stand the pathophysiology of visceral obesity and pro-

vide guidance for its clinical management. Gregori et al.

[15] performed a meta-analytic framework for the analy-

sis of obesity and its determinants in children using

Bayesian networks. Only seven lifestyle risk factors were

considered as being potentially related to obesity in this

population. To the best of our knowledge, our study is

the first attempt to use BNs in the context of modeling

the complex relationships between lifestyle and meta-

bolic correlates of visceral obesity among women.

We use the bootstrapping method to generate more

robust network structures as discussed in [6,16]. Statisti-

cal significance of edge strengths are evaluated using

this approach. If an edge has a confidence above the

threshold, it is included in the consensus network. Thus,

if dependencies have enough support in the bootstrap-

ping process they are captured and represented in the

final consensus network. The confidence estimate

assigned to each network edge is represented graphically

on the final network. Such network represents a power-

ful computational tool for identifying putative causal

interactions among variables from observational data.

The consensus network graphically represents the possi-

bly causal independence relationships that may exist in

a very parsimonious manner [17]. In this study, special

emphasis was placed on integrating physiological knowl-

edge into the graph structure. Once the consensus

PDAG was constructed from data, the remaining undir-

ected edges were then directed according to our causal

interpretation and additional latent variables were added

to the graph for the sake of clarity, coherence and concise-

ness. The graphical representation provides a statistical

profile of this sample of obese women, and meanwhile

helps identifying the most important predictors of visceral

obesity. Using the concept of a Markov Blanket we can

identify all the variables that shield off the class variable

from the influence of the remaining network. Therefore,

BNs automatically perform feature selection by identifying

the (in)dependency relationships with the class variable.

We compare our findings with the results obtained using

the same data and more traditional regression models.

Bayesian networks

Formally, a BN is a tuple < , P > where  = <U, E >

is a directed acyclic graph (DAG) with nodes represent-

ing the variables in the domain U, and edges represent-

ing direct probabilistic dependencies between them.

P denotes the joint probability distribution on U. The

BN structure encodes a set of conditional independence

assumptions: that each node Xi is conditionally indepen-

dent of all of its nondescendants in  given its parents

Pa i
 . These independence assumptions, in turn, imply

many other conditional independence statements, which

can be extracted from the network using a simple gra-

phical criterion called d-separation [8].

We denote by X ⊥P Y|Z the conditional independence

between X and Y given the set of variables Z where P is

the underlying probability distribution. Note that an

exhaustive search of Z such that X ⊥P Y|Z is a combina-

torial problem and can be intractable for high dimen-

sion data sets. We use X Y⊥ | Z to denote the

assertion that X is d-separated from Y given Z in  .

We denote by dSep(X, Y), a set that d-separates X from Y.

If < , P > is a BN, X ⊥P Y|Z if X Y⊥ | Z . The converse

does not necessarily hold. We say that < , P > satisfies

the faithfulness condition if the d-separations in 
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identify all and only the conditional independencies in P,

i.e., X ⊥P Y|Z if and only if (iff) X Y⊥ | Z . Two graphs

are said equivalent iff they encode the same set of condi-

tional independencies via the d-separation criterion. The

equivalence class of a DAG  is a set of DAGs that are

equivalent to  . [8] established that two DAGs are

equivalent iff they have the same underlying undirected

graph and the same set of v-structures (i.e., uncoupled

head-to-head meetings X ® Y ¬ Z). So we define an

essential graph (also called a DAG pattern) for a Markov

equivalence class to be the partially directed acyclic graph

(PDAG), that has the same links as the DAGs in the

equivalence class and has oriented all and only the edges

common to all of the DAGs in the equivalence class. The

directed links in the essential graph are called the com-

pelled edges [7].

An important concept of BN is the Markov blanket of

a variable, which is the set of variables that completely

shields off this variable from the others. In other words,

a Markov blanket MT of T is any set of variables such

that T is conditionally independent of all the remaining

variables given MT . A Markov boundary, MBT , of T is

any Markov blanket such that none of its proper subsets

is a Markov blanket of T. Suppose < , P > satisfies the

faithfulness condition. Then, for all X, the set of parents,

children of X, and parents of children of X is the unique

Markov boundary of X. A proof can be found for instance

in [7]. We denote by PCT
 , the set of parents and

children of T in  , and by SPT
 , the set of spouses of T

in  , i.e., the variables that have common children with

T. These sets are unique for all  , such that < , P >

satisfies the faithfulness condition and so we will drop

the superscript  .

Bayesian network structure learning

Automatically learning the graph structure of a BN is a

challenging topic of pattern recognition that has

attracted much attention over the last few years. CB

methods systematically check the data for conditional

independence relationships and try to construct a par-

tially directed graphical structure (also called a perfect

map) that encodes perfectly the set of independencies.

Typically, these algorithms run a c
2 independence test

when the dataset is discrete and a Fisher’s z test when it

is continuous in order to decide on dependence or inde-

pendence, that is, upon the rejection or acceptance of

the null hypothesis of conditional independence. There-

fore, conditional independencies that are read off from

the BN structure are in total agreement with the condi-

tional independencies that are obtained by the statistical

tests. Very powerful, correct, scalable and data-efficient

CB algorithms have been recently proposed [10-12].

They are correct (or sound) in the sense that they

return the correct essential graph under the assumptions

that the independence tests are reliable and that the

learning database is a sample from a distribution P faith-

ful to a DAG  . The (ideal) assumption that the inde-

pendence tests are reliable means that they decide (in)

dependence iff the (in)dependence holds in P. In this

paper we adopt one of these CB approaches [11,18].

The essential graph is obtained by running an algorithm

called Recursive HPC (RHPC), where HPC stands for

Hybrid Parents and Children.

Results
Simulation experiments on artificial data

As RHPC relies on HPC to build the whole network

structure, we conducted several experiments on syn-

thetic data to assess the comparative performance of

HPC, and two algorithm proposals that appeared

recently in the literature, namely MMPC [12] and

GetPC [10]. The source code (C++) of HPC as well as

all data sets used for the empirical tests are available at

http://www710.univ-lyon1.fr/~aaussem/Software.html.

The authors’ implementation of MMPC and GetPC can

be found respectively at http://discover.mc.vanderbilt.

edu/discover/public and http://www.ida.liu.se/~jospe.

MMPC was deemed one of the best CB algorithms in

[12] and GetPC was used recently in [2] for modeling

gene networks. We also report the performance of our

weak learner Inter-IAPC for comparison. For GetPC

and MMPC, we used the softwares proposed by the

respective authors (see footnote). The confidence

threshold of the independence test was fixed to a = 0.05

for all algorithms. All the data sets used for the empiri-

cal experiments presented in this section were sampled

from a bio-realistic network that has been previously

used as benchmark for BN learning algorithms, namely

Insulin (35 nodes and 52 edges). The Insulin network

[19] was chosen purposely as it consists of the same

number of nodes as our dataset. Four sample sizes have

been considered: 200, 500, 1000 and 2000. For each

sample size, 100 data sets were sampled. We do not

claim that this benchmark resembles our real-world pro-

blem, however, it makes it possible to compare the out-

puts of the algorithms.

All four algorithms were run on the target node having

the largest degree (13 neighbors) in the Insulin BN to

increase the difficulty of the task. The variables in the out-

put of the algorithms were compared against the true

neighbors. To evaluate the accuracy, we combined preci-

sion (i.e., the number of true positives in the output

divided by the number of nodes in the output) and recall

(i.e., the number of true positives divided by 13, the size of

the true PC set) as ( ) ( )1 12 2
− + −precision recall , to
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measure the Euclidean distance from perfect precision and

recall, as proposed in [10]. Figure 1 summarizes the varia-

bility of the Euclidean distance over 50 data sets in the

form of quadruplets of boxplots, one for each algorithm (i.

e., MMPC, GetPC, Inter-IAPC and HPC). The advantage

of HPC against the other three algorithms is clearly notice-

able. HPC outperforms the other algorithms in terms of

Euclidean distance from perfect precision and recall.

Simulation experiments on the sample of women

The consensus PDAG obtained by running RHPC on

the present sample of women is shown in Figure 2. Line

thickness corresponds to the relative confidence of the

edges. The edges that appeared more than 25% in the

networks were included in the aggregate PDAG. The

threshold was tuned on the previous Insulin benchmark

samples to maximize accuracy. As may be seen, the

directionality of the arrows was partially identifiable: 14

edges out of 34 were directed, indicating the presence of

several robust uncoupled head-to-head meetings (T ®

Y ¬ X).

Physiological knowledge integration into the model

Several interconnected groups of variables were identi-

fied, e.g., beer consumption, wine consumption and

spirit consumption; cigarettes per day and low exercise;

OM and SC fat cell sizes. In each of these densely con-

nected subgraphs, the variables were highly interdepen-

dent and a common cause is likely to explain the

observed correlations. Hence, we added some extra

nodes and directed some of the links according to phy-

siological knowledge available in the literature. The

result is the partially directed acyclic graph (PDAG) that

Figure 1 Validation of the learning method on the Insulin benchmark. Empirical experiments on synthetic data sets from the Insulin BN.

Each algorithm is run on the node having the largest neighborhood (13 nodes). Four sample sizes were considered: 200, 500, 1000 and 2000.

The figure shows the distribution over 100 data sets of the Euclidean distance from perfect precision and recall, in the form of boxplots.
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is shown in Figure 3. Dashed nodes and arrows are the

latent variables that were added for sake of clarity and

coherence. By definition, these latent variables are not

observed, nor recorded in our data set. For example, the

variable high alcohol intake was added as a common

“cause” to beer consumption, wine consumption and

spirit consumption; the variable unhealthy lifestyle was

added as a common cause to cigarettes per day, high

alcohol intake and low exercise; the latent variables fat

storage and prevailing hormonal conditions were added

as two distinct common causes to SC fat cell size and

OM fat cell size.

Almost all the undirected edges were oriented based on

current literature as follows. Edges directed from the age

variable were oriented based on the well-documented

impact of ageing on visceral adipose tissue accumulation,

blood pressure and plasma LDL-cholesterol levels

[20,21]. The edge between age and tea consumption is

based on the 2004 Canadian Community Health Survey,

which showed a steady increase in tea consumption from

19 to more than 71 years of age [22]. The edge between

tea consumption and blood pressure was oriented based

on literature showing lower cardiovascular disease risk

in tea consumers [23] and a direct effect of black tea

consumption on peripheral blood flow and arterial stiff-

ness [24]. The edge between age and the number of live

children was attributed to the slight decrease in Canadian

birth rates observed between 1961-66 and 1981-86 [25],

which corresponds approximately to the period in which

women of the study had their children. Accordingly,

older women of the sample were more likely to have

delivered slightly more children. Orientation of the edge

between the number of pregnancies and the number of

live children is self-explanatory.

The edge between the number of live children and

OM fat cell size was derived from literature supporting

that post-pregnancy weight retention is an important

risk factor for obesity [26]. The finding of a specific

association between the number of children and OM fat

cell size was novel and warrants further investigation.

The edges between OM and SC fat cell sizes and the

variables obesity or visceral fat is self explanatory since

the excess adipose tissue mass of obese or abdominal

obese individuals is constituted of larger fat cells. Asso-

ciations between fat cell size and obesity have been pre-

viously observed [27]. The edges between visceral fat or

large OM fat cells and metabolic variables such as

LDL-cholesterol, triglycerides and blood pressure was

Figure 2 Consensus PDAG of visceral obesity related variables

in women returned by RHPC. Consensus PDAG obtained by

running RHPC on bootstrapped samples. Labels are self-explanatory.

Line thickness corresponds to the relative edge strength.

Figure 3 BN of visceral obesity related variables in women

after physiological knowledge integration into the graph.

PDAG of Figure 2 oriented according to biological knowledge. Dash

nodes and arrows are latent variables that were added based on

current literature.
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oriented based on the ‘portal vein hypothesis’, which

states that visceral fat is a causal agent for metabolic

disturbances [28]. However, this hypothesis has not yet

been fully proven as operative and has been challenged

by a number of investigators. Further studies are

required to firmly establish causality. However, the fact

that the association between visceral fat and metabolic

disturbances is independent from overall obesity is well-

accepted [29,30]. The edges between the various compo-

nents of body composition (i.e., bone density, lean body

mass and obesity) were logical but it was difficult to

provide causal direction between these variables. Indeed,

many genetic, epigenetic, developmental and environ-

mental factors can contribute to determine body built of

a given individual. Moreover, the sizes of all compart-

ments generally evolve in a more or less coordinated

manner throughout the individual’s existence [31,32]. It

was expected that the variable 5-yr maximal weight

would be a strong correlate of the level of obesity and

lean body mass since these variables are the main com-

ponents of body composition [32] and that most

patients reported a stable weight in the five years pre-

ceding their inclusion in the study.

The edges around the number of hours of work and

the number of meals out per week were oriented based

on the demonstration that increased working time was

associated with food choice coping strategies [33], which

we suggest is reflected by the edges to number of meals

out per week, beer, wine and coffee consumption. On

the other hand, the number of meals out per week was

related to obesity. Accordingly, the frequency of restaurant

food consumption was previously found to be positively

related to body fatness [34]. Wine consumption was

related directly with plasma levels of HDL-cholesterol.

This edge was oriented based on epidemiological data

showing a protective effect of moderate wine consumption

on HDL-cholesterol levels [35]. Low leisure time physical

activity was linked together with smoking habits under a

latent causal variable that we termed unhealthy lifestyle.

These variables were also linked with coffee and beer con-

sumption, but had no direct link with the level of obesity.

We were unable to provide orientation for these edges.

Moreover, we were not able to readily explain a small

number of edges. For example, the link between age at

menarche, which reflects timing of puberty, and dietary

supplement use is not intuitive. Further analyses and other

samples will be required to clarify this apparent

association.

Statistical validation

We noticed from the PDAG that OM fat cell size, visc-

eral fat, blood pressure, tea consuption and age belonged

to the triglycerides Markov boundary, though the edge

between OM fat cell size and triglycerides was only

moderate in strength. The influence of OM fat cell size

on triglycerides was mostly mediated by visceral fat. We

observed that age and triglycerides were marginally inde-

pendent according to the d-separation rule. However,

they became dependent conditioned on visceral fat. The

PDAG was consistent with multivariate linear regression

analyzes performed a posteriori on the sample (Table 1).

In model 1, plasma triglyceride levels were predicted

using computed tomography-measured visceral adipose

tissue area (visceral fat variable) and total body fat mass

(which is included in the variable obesity). Visceral fat

explained 31.9% of the variance in triglyceride levels

whereas overall obesity was not a significant predictor of

triglyceride levels. A similar analysis in which plasma tri-

glyceride levels were predicted by OM and SC fat cell

size was also performed (Table 1, model 2). OM fat cell

size explained 21.2% of the variance in triglyceride levels,

whereas SC fat cell size was not a significant predictor of

triglyceride levels in the model.

Discussion
The purpose of this paper was to introduce the BN meth-

odology in the context of clinical studies, specifically obe-

sity, and to show its effectiveness, as a component of

general data mining/knowledge discovery approaches in

epidemiology research. We have evaluated a consensus

BN learning approach based on boot-strapping techni-

ques on synthetic data with satisfactory results. Although

our approach did not use any prior information, it was

successful in uncovering biologically relevant dependen-

cies and conditional independencies. Once the most

interesting dependencies are ascertained, traditional

statistical methods (e.g. linear or logistic regression, etc.)

can be used to rigorously scrutinize the resulting smaller

subnetworks.

In this study, special emphasis was put on integrating

physiological expertise and statistical data analysis

together. It is well beyond the scope and purpose of

this paper to delve deeper into the problem of infer-

ring causalities from observational data. However, the

usefulness of BN stems partly from their causal inter-

pretation. As we have seen, the graphical representa-

tion is useful as it allows tighter collaboration between

the modeler and the biologist. The integration of med-

ical knowledge into data-driven models is not only

desirable, but it is also far easier and less subjective

than constructing the whole BN with a priori knowl-

edge. In this spirit, most edges were directed according

to plausible causal inference although interpretation of

edges as carriers of information does not necessarily

imply causation.

Conclusions
Thirty-four predictors related to lifestyle, adiposity, body

fat distribution, blood lipids and adipocyte sizes have

Aussem et al. BMC Bioinformatics 2010, 11:487

http://www.biomedcentral.com/1471-2105/11/487

Page 6 of 9



been considered as potential correlates of visceral obe-

sity in women. The analysis was performed with a novel

scalable and effective constraint-based bayesian network

structure learning algorithm called RHPC.

From a biological point of view, the present study

confirms, among other interesting findings, that visceral

fat is the predominant predictor of triglyceride levels in

obese individuals. It is reassuring that an unsupervised

BN analysis uncovered previously established relation-

ships between visceral fat, blood pressure, aging and tri-

glyceride levels. The advantage of BN method is not

that it will identify the “true causes”, but rather that it

will perform initial data exploration to unearth new

knowledge in a semi-automated and rapid fashion.

In conclusion, we suggest that BNs are valuable data

mining tools for the analysis of clinical data. In addition,

BNs can explicitly combine both expert knowledge from

the field and information studied from the data. A need

for such multi-step processes (hypothesis generation

step followed by a traditional hypothesis testing step) is

essential. Finally, an extension to our existing framework

would be to consider Bayesian model averaging as an

alternative to a single consensus model selection. This

extension is currently underway.

Methods
The Recursive Hybrid Parents and Children algorithm

RHPC is based on the faithfulness assumption. As

RHPC calls HPC on each node, we start discussing HPC

first. HPC receives a node X and returns its adjacent

nodes PCX. Under this faithfulness assumption, X and Y

are not adjacent in  if and only if ∃ Z Î U\{X, Y}

such that X ⊥ Y|Z [7]. As an exhaustive search of Z is

intractable for high dimension data sets. HPC perfoms a

heuristic search with a severe restriction on the maxi-

mum conditioning size in order to significantly increase

the reliability of the statistical independence tests. Note

that other similar ‘Parent and Children’ learning proce-

dures were proposed recently in the machine learning

literature, namely MMPC [12] and GetPC [10]. They

could be used as well. Nonetheless HPC was favored in

a recent evaluation using the same conditional indepen-

dence test, over a range of different networks, sample

sizes and number of variables [11].

Formally, HPC can be viewed as an ensemble method

for combining many weak PC learners in an attempt to

produce a stronger PC learner. The algorithm was

designed in order to endow the search procedure with

the ability to: 1) handle efficiently data sets with thou-

sands of variables but comparably few instances; 2) deal

with datasets which present some deterministic relation-

ships among the variables; 3) be correct under the faith-

fulness condition; and 4) be able to learn large

neighborhoods. HPC is based on three subroutines:

Data-Efficient Parents and Children Superset (DE-PCS),

Data-Efficient Spouses Superset (DE-SPS), and Inter-

leaved Incremental Association Parents and Children

(Inter-IAPC), a weak PC learner based on Inter-IAMB

[36] that requires little computation. HPC was shown to

be correct in the sample limit under the faithfulness

assumption [11,18]. For the sake of conciseness, we only

discuss the main HPC routine. The algorithm details are

omitted here for brevity: RHPC and its sub-routines are

thoroughly described in additional file 1 for the sake of

conciseness.

HPC may be thought of as a way to compensate for the

large number of false negative nodes, at the output of the

weak PC learner with few data cases, by performing extra

computations. HPC receives a target node T, a data set

 and a set of variables U as input and returns an esti-

mation of PCT. It is hybrid in that it combines the bene-

fits of incremental and divide-and-conquer methods. The

procedure starts by extracting a superset PCST of PCT

(line 1) and a superset SPST of SPT (line 2) with a severe

restriction on the maximum conditioning size (Z <= 2)

in order to significantly increase the reliability of the

tests. A first candidate PC set is then obtained by running

the weak PC learner on PCST ∪ SPST (line 3). The key

idea is the decentralized search at lines 4-8 that includes,

in the candidate PC set, all variables in the superset

PCST ∪ SPST that have T in their vicinity. Note that, in

theory, X is in the output of Inter-IAPC(Y) if and only if

Y is in the output of Inter-IAPC(X). However, in practice,

this may not always be true, due to the statistical test

errors that should appear, especially with few data sam-

ples. The decentralized search enables the algorithm to

handle large neighborhoods while still being correct

under faithfulness condition.

Table 1 Prediction of plasma triglyceride levels

Independent variable Parameter estimate P value Partial R2× 100 Total R2× 100

Model l Visceral fat 1.0568 0.0001 31.9 31.9

Obesity (Total body fat mass) 0.0425 NS 0.0

Model 2 OM fat cell size 0.0088 0.0001 21.2 21.9

SC fat cell size 0.0031 NS 0.0

Multivariate regression models for the prediction of plasma triglyceride levels with adiposity measures (top); or fat cell size in the omental (OM) and

subcutaneous (SC) compartment (bottom). Variables with non-normal distributions (Shapiro-Wilk test p < 0.05) were log-10- or Box Cox-transformed for the

analysis.
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The essential graph is obtained by running HPC on

the every node and by directing the compelled edges as

shown in RHPC. Note that HPC must have found dSep

(X, Y ) (at line 5 of RHPC) and have cached it for later

retrieval. Alternatively, HPC can be run recursively on

the adjacent nodes of a target variable in order to estab-

lish a local graph without having to construct the whole

BN first as discussed in [2]. RHPC applies standard

techniques at lines 4-19 to identify the compelled edges.

The reader is directed to [7], pp. 538, for further details.

The correctness and completeness of the edge orientation

in RHPC are demonstrated in [37].

Network aggregation

As discussed in the introduction, our practical goal is to

extract a BN structure that encodes the conditional inde-

pendencies between 34 variables given our sample of 150

women. The most common approach to discovering the

structure is to use learning with model selection to pro-

vide us with a single model. However, model selection is

known to be sensitive to the particular data set, especially

with few instances. Had we sampled another data set of

the same size from the same distribution, model selection

would have learned a different model [16]. So we cannot

simply accept our chosen structure as a true representa-

tion of the under-lying distribution. Averaging over the

sampled structures that are generated by a sampling pro-

cess produces models that are more robust, have greater

confidence and place less reliance on a single dataset.

Several approaches exist: generating samples of the BN

structure from its marginal posterior distribution using

Monte Carlo Markov chain (MCMC) [16,38-40], using

bootstrapping methods for computing a statistical confi-

dence features within a BN [6,16]. In this study, we make

use of the bootstrapping method to generate a more

robust network structure. The ‘re-shuffled’ dataset is gen-

erated from the original dataset (re-sampling with repla-

cement), the graph is built from this re-shuffled set and

then the procedure is repeated a sufficient number of

times. Confidence in a particular edge is measured as a

percentage of the number of times this edge actually

appears in the set of reconstructed graphs. If an edge has

a confidence above the threshold, it is included in the

consensus network. Thus, if dependencies have enough

support in the bootstrapping process, they are captured

and represented in the final consensus network. When

computing confidence estimates, we define a feature as

the existence of an edge between two nodes in the

PDAG. Thus, the bootstrapped network has a confidence

estimate assigned to each network edge. Where directed

edges are present in a PDAG, they contribute only to the

confidence estimate for the edge in that direction,

whereas undirected edges contribute to the confidence

estimate for an edge in both directions. If an edge has a

confidence above the threshold, it is included in the con-

sensus PDAG, and if edges are found in both directions

(e.g. from node Xi ® Xj and Xj ¬ Xi), then the edge is

undirected. Thus, if directional dependencies have

enough support in the bootstrapping process, they will be

captured and represented in the final PDAG.

Biological data

The sample of 150 obese women used for these analyzes

consists of 34 variables related to lifestyle such as alco-

hol consumption, smoking habits, leisure time activity

and eating patterns. Dual energy x-ray absorptiometry

was used to obtain whole-body measures of body com-

position (bone density, lean body mass, total body fat

mass). Computed tomography was used to assess body

fat distribution at the abdominal level. These measures

include adipose tissue areas of the abdominal fat com-

partments located subcutaneously and inside the

abdominal cavity (visceral fat). Finally, the variables

examined also include average adipocyte sizes measured

both in the omental (OM) and subcutaneous (SC) adi-

pose tissue compartments from adipose tissue samples

obtained during surgery. Women included in these ana-

lyses have been the object of previous publications on

other topics [41,42]. All women who participated in the

protocols signed an informed consent document. The

projects were approved by the ethics committee of Laval

University Medical Center.

Additional material

Additional file 1: Description of the Recursive Hybrid Parents and

Children algorithm. This file contains a detailed discussion of our

algorithm called Recursive Hybrid Parents and Children (RHPC). RHPC

takes a data set as input and returns a partially oriented DAG (PDAG for

short) representative of a bayesian network equivalence class. The latter

is obtained by directing the compelled edges of the skeleton. The

skeleton is obtained by running an algorithm called Hybrid Parents and

Children (HPC) algorithm recursively on every node. RHPC is shown to

be sound in the sample limit.
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