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Abstract

Background: Reverse engineering in systems biology entails inference of gene regulatory networks from

observational data. This data typically include gene expression measurements of wild type and mutant cells in

response to a given stimulus. It has been shown that when more than one type of experiment is used in the

network inference process the accuracy is higher. Therefore the development of generally applicable and effective

methodologies that embed multiple sources of information in a single computational framework is a worthwhile

objective.

Results: This paper presents a new method for network inference, which uses multi-objective optimisation (MOO)

to integrate multiple inference methods and experiments. We illustrate the potential of the methodology by

combining ODE and correlation-based network inference procedures as well as time course and gene inactivation

experiments. Here we show that our methodology is effective for a wide spectrum of data sets and method

integration strategies.

Conclusions: The approach we present in this paper is flexible and can be used in any scenario that benefits from

integration of multiple sources of information and modelling procedures in the inference process. Moreover, the

application of this method to two case studies representative of bacteria and vertebrate systems has shown

potential in identifying key regulators of important biological processes.

Background
In the last ten years the development of functional

genomics technologies has provided us with the ability

to generate quantitative data representing the molecular

state of cells and tissues at a genome level [1,2]. These

datasets can be in the form of a time series representing

the dynamics of gene expression profiles (e.g. mRNA,

proteins and metabolites) in response to a given stimu-

lus, such as an environmental perturbation, the effect of

a growth factor or an experimentally induced gene dele-

tion. Despite the relatively large amount of information,

predicting underlying regulatory networks from observa-

tional data is still not trivial and is a matter of intense

research [3].

A number of reverse-engineering approaches have

been proposed. Some of these are designed to infer net-

works from a compendium of perturbation experiments

while others are able to use time course data to develop

dynamical models of gene interaction. Bayesian net-

works have been among the first to be applied to biolo-

gical problems [4]. They work by inferring probabilistic

relationships between variables, can use either time

course or steady state data and allow integration of

prior knowledge in the model. Correlation-based meth-

ods [5,6] compute correlation coefficients between vari-

ables to infer the underlying network topology. State-

space models (SSMs) [7,8], and ODE-based methods

[9,10], on the other hand use time-course data to

develop dynamic models of gene regulatory networks

(GRN). For an extensive overview of these methodolo-

gies see: [11,12].
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The general validity of the principal of integrating

multiple data sources in the reverse-engineering process

is exemplified by the observation that the best perform-

ing methods utilize some degree of integration between

different experiments [13]. For example, the top per-

forming method in the third edition of the “Dialogue for

Reverse Engineering Assessments and Methods”

(DREAM), developed by Yip et al. [14], was based on a

combination of a statistical error-model and ODE mod-

eling to integrate gene knock-out (KO) and time-course

experiments. Interestingly, Yip et al. [14] also noted that

a relatively simple differential gene-expression analysis,

comparing wild-type and mutant strains, was in itself a

very good representation of the underlying gene regula-

tory network. However, not all KO experiments are

likely to be equally informative and identifying a priori

the most relevant genes is not a trivial task. Moreover,

large-scale gene-inactivation experiments are not a

viable option for many non-model species.

Therefore, there is the need to expand the repertoire

of available network inference tools by developing more

methods that allow integration of multiple data sources

and have the flexibility to use a wide range of datasets

and information. In order to achieve this objective, we

set out to develop a computational framework that has

the potential to combine different inference methodolo-

gies, multiple datasets, as well as any pre-existing biolo-

gical knowledge. We based this approach on an ODE

framework combined to a multi-objective optimization

(MOO) procedure for parameter estimation. We named

this method “Network-Inference with Multi Objective

Optimization“ (NIMOO).

Methods
The basic network inference framework: Model Equations

and parameter estimation of a single objective

optimization procedure

Gene interactions in a regulatory network can be modelled

using a set of ordinary differential equations [9,10]. In this

implementation we have used a linear ODE model where

the interaction between genes is additive. In this context,

changes in the expression of a given gene depend on a

weighted linear sum of the expression of its regulators:

ẋi =

N
∑

j=1

wijxj + bixi (1)

where, xi represents expression level for gene i, bi
represents the effect of the external perturbation on

gene i, and, N is the number of genes in the dataset.

The parameter matrix w is obtained by minimizing the

Squared Error (ESQE)

ESQE =

N
∑

i=1

∑

t

(

xmeasured
i − xi

)2
(2)

The gene regulatory network (GRN) is then inferred

from the optimized parameter matrix w. The matrix ele-

ment |wij| indicates the strength of the interaction

between genes i and j (with gene j regulating gene i),

and, sign (wij) indicates whether the effect is excitatory

(wij > 0) or inhibitory (wij < 0)

In our implementation of single objective optimisation

(SOO), minimisation of ESQE was achieved using the

trust-region method based on the interior-reflective

Newton method [15,16]. In this method the minimisa-

tion process involves defining a trust region where the

objective function SQE can be approximated with a sim-

pler function q. For successive iterations, function q, in

conjunction with the Preconditioned Conjugate Gradi-

ent Method [16], is used to find a new trust region

where the function SQE is lower. The process is termi-

nated when the change in function value is less than a

pre-determined tolerance (10-6).

Parameter estimation using a multi-objective

optimization procedure

Multi-objective optimisation (MOO) is based on mini-

misation of ESQE in conjunction to additional objective

functions, Eobject, which are built as Euclidean distance

between the parameter matrix w and objectives O con-

structed from additional data and/or existing knowledge:

EObject =
∑

j

∑

t

(

oij − wij

)2
. (3)

To implement multi-objective optimization we have

used the goal attainment method [17,18]. In this method

the problem of simultaneously optimizing multiple func-

tions is reduced to the task of standard minimization. A

set of goals [J1, J2, ...,Jm] and weights [θ1, θ2, ..., θm] are

assigned to the objective functions F = [F1, F2, ..., Fm],

where, F1 = ESQE, F2 = EObject etc. Also, a scalar dummy

variable g is introduced so that the aim is to minimize

for g such that

Fk(w) − θkγ ≤ Jk, k = 1, m. (4)

The term θkg introduces flexibility in the degree of

goals attained. Also, the weight factor θk can be used

to assign relative importance to the objectives: Thus,

from Equation 4, θk = 0 implies hard goal for the cor-

responding objective function Fk. For all results pre-

sented in this paper, unless mentioned otherwise, the

goal and weight corresponding to the objective SQE

were set to 0.
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Overall strategy for the development of a MOO-based

inference method

Figure 1 shows in a schematic format the different pro-

cedures that are part of the NIMOO framework and

their relationships with the experimental datasets.

The principle behind NIMOO, as detailed in the

above sections, is to infer the gene regulatory matrix

(GRM) w by minimizing the ESQE for the ODE system

in conjunction with additional objective functions, Eob-

ject, which represent the distance between the parameter

matrix wij and objectives Oij constructed from additional

information.

In principal, objectives Oij can be constructed from

any data available on the underlying regulatory network.

In this paper, we focused on two possible scenarios.

In the first case, we considered the possibility that

MOO might be used to integrate two different network-

inference procedures, for example applied to indepen-

dent replicates of a time-course experiment. In this

implementation we used time-delayed Spearman rank-

correlation [6] to develop a matrix Oij (Equation 3)

representing the degree of statistical correlation from

any pair of genes within a set time delay interval (Figure

1, objective DSp).

Alternatively, Oij can be built from the results of gene

inactivation experiments. We reasoned that these

experiments might fall in at least two categories. In the

first case the gene is deleted at some stage of the life-

cycle of the organism so that gene expression measure-

ments can only be acquired after the new steady state

Figure 1 Overview of the NIMOO methodology. The figure shows in a schematic format the relationships between type of experiment,

methods used to build the Oij objectives and the MOO procedures. Details are given in the Methods section.
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has been reached. This can be easily achieved, by a

plethora of gene knockouts (KOs) methodologies in

model systems ranging from E. coli to mice. Alterna-

tively, gene inactivation could be achieved by using bio-

chemical inhibitors or RNA interference. In this

scenario mRNA expression can be monitored at differ-

ent time points following intervention. In the context of

MOO both scenarios lead to a gene-expression matrices

where rows are represented by genes and columns by

gene KO experiments. From each of these matrices an

objective Oij can be computed to represent the relation-

ship between every gene pair (Figure 1, objectives Tc,

Tr are derived from expression data at a given time-

point shortly after gene inactivation whereas objectives

Sc and Sr derive from expression data at a single time

point at steady state; for further details on how to com-

pute Oij see sections below).

Different procedures may be used in combination

using an ensemble approach; in this paper we describe

the results of combining MOO-Tr with MOO-Tc (Fig-

ure 1, MOO-Tens) and MOO-Sr with MOO-Sc (Figure

1, MOO-Sens).

All MOO procedures developed within NIMOO have

been compared with the accuracy of an ODE model

developed by minimizing ESQE, a procedure that we

called single-objective optimization (Figure 1, SOO).

The paragraphs below describe in detail how the dif-

ferent objectives were computed.

Construction of a time-delay correlation matrix (objective

DSp)

To test the potential of MOO to combine different net-

work inference approaches we choose to build an objec-

tive based on time-delayed Spearman Rank-correlation

[6] (Figure 1, objective DSp). DSp was computed as fol-

lows: For each gene pair (i,j), the expression profile of

gene i is shifted along the time axis with respect to that

of gene j. The Spearman Rank-correlation coefficient is

calculated for varying time delays and the largest coeffi-

cient from this list forms the (i,j)th element of the

delayed Spearman Rank-correlation matrix d-SRC. We

also construct a time delay matrix dt from the corre-

sponding values. The objective DSp is then obtained

from d-SRC by equating all d-SRC(i,j) = 0 for which dt

(i,j) < to, so that only gene pairs with delay of to or

more are considered.

Construction of a gene KO matrix: a ratios-based

procedure

The objectives Tr and Sr (Figure 1) were constructed by

computing the ratios between the expressions of each

gene i in the mutant j and the expression of gene i in

the wild type. The expression of gene i is taken either at

a given time point tp after inactivation (Tr) or at the

steady state (Sr). We selected tp as the time point where

the largest numbers of genes have the highest derivative

in absolute value. We found that this heuristic rule

allowed us to identify a value of tp, which often (8 out

of 9 networks tested) corresponded to the highest AUC

values within a tolerance of 5% (Figure S1).

Construction of a gene KO matrix: a correlation-based

procedure

The objectives Tc and Sc (Figure 1) were computed by

calculating the correlation between the expressions of

every pair of genes (gene i, gene j) across all KO sam-

ples. Similarly to the ratio procedure, the Tc matrix was

built using the measure of gene i expression at time tp,

where tp was chosen as detailed above.

Combining MOO procedures using an ensemble approach

The ratio and correlation methods were integrated to

produce a single model by using an ensemble approach.

Within this procedure, a GRM wa was constructed so

that |wa(i,j)| = |wr (i,j)| and sign(wa(i,j)) = sign(wc (i,j);

Where wr and wc represent two GRMs obtained from

the ratio and correlation procedures, respectively. As

exemplified in Figure 1, MOO-Sens represent the result

of combining the MOO-Sr and MOO-Sc procedures

whereas MOO-Tens, is the result of combining the

MOO-Tr and MOO-Tc procedures.

Simulated data

The validation study has been performed using the java

application GeneNetWeaver (GNW) http://gnw.source-

forge.net[19]. This network generator has been used as

part of the DREAM Initiative [20]. It builds synthetic

networks by specifying a biologically relevant topology

and implementing an ODE model to generate synthetic

data. GNW grows the initial topology from a seed

node (selected randomly) in a Source Gene Network (E.

Coli in this application) by progressively adding a ran-

domly selected neighbouring node till the desired size

is reached. Each model can be used to generate simu-

lated time course gene expression data either with the

intact network or following deletion of one of the

nodes.

We tested the performance of MOO in conjunction

with the objectives D-Sp (MOO-Sp), Tc (MOO-Tc), Tr

(MOO-Tr), Sc (MOO-Sc) and Sr (MOO-Sr). Each of

these procedures was applied to ten independent net-

works of size 20, 35 and 50 genes. The gene KOs data-

set associated with every network was build by

generating synthetic data after the stepwise deletion of

each gene in the network.

All GNW-generated network-models were used to

simulate time-series datasets (26 time points, t_max =

200) as well as steady-state data for all KOs.
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Data processing and optimisation procedure

Noise was added to the simulated data (5% of the signal)

to mimic variability in experimental replication. Polyno-

mial fitting was used for interpolation of the time-series

data [21] after averaging three experimental replicates.

200 interpolated, equally spaced time-points were then

computed and used as input of the MOO procedures.

Optimisation of the matrix w was initiated from a ran-

domly generated matrix. In order to test the reproduci-

bility of the optimization methods, fifty independent

runs of optimization from each MOO procedure were

carried out for a subset of the GNW networks. We

found that the AUCs values were always within 0.2%.

Network inference accuracy

In order to evaluate various MOO methods we com-

pared the inferred gene-regulatory matrix w with the

true network topologies. The accuracy of the inference

process for undirected networks was quantified by using

the area under curve (AUC) of a ROC plot (False Posi-

tive Rate (FPR) versus True Positive Rate (TPA)). For

direct-signed networks the AUC was computed by plot-

ting TNR (True Negative Rate) versus TPR as described

in [10]. The distribution of AUC values for boxplots and

these represented each batch of networks were com-

pared when appropriate using a Wilcoxon’s non-para-

metric rank sum test [22].

Modelling in vivo tumour development

In order to assess the potential of NIMOO to model

true biological systems we have used two microarray

datasets generated in our laboratory.

We first used an in vivo model of glioblastoma devel-

opment to test the MOO-Sp procedure. In this experi-

mental model [23] U87 human glioma cells (ATCC,

USA) were maintained in DMEM with 10% FBS, anti-

biotics, and l-glutamine. Fertilized chicken eggs (Gallus

gallus; E.A.R.L. Morizeau, Dangers, France) were incu-

bated at 37°C and 80% humidified atmosphere. On day

4 of development, a window was made in the eggshell

after punctuating the air chamber and sealed with Dura-

pore tape. On embryonic day 10, a plastic ring was

placed on the embryo chorioallantoic membrane

(CAM), and 3 million to 5 million U87 cells in 20 μl of

medium were deposited after gentle laceration of sur-

face. Implantation experiments were performed in tripli-

cate, and, from day 11 to day 15, mRNA from the

growing tumour was extracted every 12 hours using the

standard protocol provided in the Qiagen RNeasy kit.

Labelling was performed using protocol V5.7 provided

in Agilent’s Quick Amp One-Colour labelling kit and

hybridized onto human Agilent microarrays (AMA-

DID:014850). Data were normalized using quantile nor-

malization and genes differentially expressed over time

were identified using the statistical methodology SAM

[24]. 58 genes were selected among the most differen-

tially expressed across the time course (Table S3) and

used as input of the modelling procedure.

Modelling E. coli acid stress

In order to fully test the potential of MOO methodology

we have applied the MOO-Sens procedure to model the

E. coli response to mild acid conditions, a stress signal

relevant to pathogenesis in diarrheagenic E. coli strains

[25]. The procedure was used to integrate two microar-

ray datasets representing the dynamic response of the E.

coli MG1655 strain to acid exposure (pH = 5.5) and a

gene KO experiment performed in the related strain E.

coli BW 25113, representing the transcriptional state of

strains mutated in the 26 most differentially expressed

genes. In this analysis we aim to reverse engineer the

interactions between these 26 genes. The time-course

analysis of the response of the E. coli strain MG1655 to

acid exposure was performed maintaining a constant

cell number (OD600 nm = 2) using a media replenish-

ment procedure. Samples were collected every 5 minutes

for 1 hour in three replicated experiments. Mutant

strains representing 26 of the most differentially regu-

lated genes over time were selected from the BW25113

KEIO mutant collection [26] and analysed using micro-

arrays as described below. Experiments were performed

exactly in the same conditions as the MG1655 strain

but only control and 15 minutes in acid were processed

for microarray analysis.

Microarray analysis was performed as follows. 10 ml

of cultures were samples at the different time points

and stabilized by adding a solution of phenol-ethanol

(final concentration of 19% phenol and 1% ethanol). Cell

pellets were recovered by centrifugation and stored at

-80°C. mRNA was extracted using the standard protocol

provided in the Quiagen RNEasy kit (QUIAGEN, USA)

and labelled with Cy5 labelled dCTP (Amersham Bios-

ciences, USA) using the CyScribe Post-Labelling Kit

(Amersham Biosciences, USA). Probes were then puri-

fied using CyScribe purification Kit (Amersham Bios-

ciences, USA) according to the manufacturer’s

instructions. Labelled probes (80 pmol) were then hybri-

dized on Operon E. coli Ultra GAPS microarray slides

(Corning, USA). Slides were washed in AdvaWash auto-

mated washing station (Adavlytix, USA) and scanned

with the ScanArray® GX (PerkinElmer®, USA), using

the ScanArray® software. Data were normalized using

quantile normalization and genes differentially expressed

over time were identified using the statistical methodol-

ogy SAM [25]. We modelled the E. coli datasets by

using the ensemble approach integrating both correla-

tion and ratio procedures as described above. In order

to generate comparable sparse networks we thresholded

Gupta et al. BMC Systems Biology 2011, 5:52

http://www.biomedcentral.com/1752-0509/5/52

Page 5 of 14



the connectivity matrix w to obtain networks with same

number of genes in the networks (25).

Method implementation and datasets availability

NIMOO was implemented in MATLAB [27]. Code and

datasets are available at this URL: http://biptemp.bham.

ac.uk/NI_MOO/NI_MOO.zip.

Results
Combining different inference methodologies within the

MOO framework improves the accuracy of network

reconstruction

The first scenario we considered involved combining

two network inference methods to model replicated

time course experiments. To achieve this, we used

delayed Spearman Rank-correlation [6] to build the

objective Oij (Equation 3) for MOO.

We discovered that the simple time-delayed correla-

tion matrix DSp (Figure 1) was more effective than

SOO to reverse engineer undirected networks of size 20

and 35 (up to 10% increase, p < 0.05) (Figure 2A, C and

Table 1). The MOO-DSp procedure was always more

effective than SOO (up to 11% increase, p < 10-3) (Fig-

ure 2A, C, D and Table 1) and gave higher AUC values

than the simple DSp matrix for networks of size 50 (8%

increase, p < 0.05) (Figure 2D and Table 1). With direc-

ted-signed networks the d-SP matrix was more effective

than SOO although p values were borderline except for

Figure 2 Distribution of AUC values for the MOO-Sp procedure. Boxplots representing the distribution of AUC values for 20, 35 and 50-gene

networks. Accuracy of GRN reconstruction for both undirected (panels A, C and E) and directed-signed (panels B, D and F) networks is given for the

SOO, D-Sp and MOO-dSp procedures. p values are indicated in red when significant (a = 0.05). Borderline p values and indicated in black (a = 0.2).
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the larger 50 genes network size (7% increase, p < 0.01)

(Figure 2B, D, F and Table 1).

Overall, we can conclude that in the event that only

replicated time-course experiments are available, a situa-

tion which is not uncommon, the integration between

two methodologies can lead to a dynamical model with

better accuracy than one solely based on a SOO

procedure.

Integrating time-course and gene inactivation

experiments within the MOO framework: A ratio-based

procedure

Having shown that MOO is an effective approach to

combine different network-inference methodologies we

set to test whether it may also provide a solution to

integrate time-course and gene-inactivation experiments.

We initially approached this challenge by applying the

MOO-Sr and MOO-Tr procedures to simulated data,

representing gene expression in KO experiments either

at the steady state or at a single time point tp after inac-

tivation. We discovered that AUC could vary consider-

ably (up to 25%) depending on the value of tp (Figure

S1 in Additional File 1), suggesting that the choice of

the right time-point was an important factor. We also

observed that the time point at which the largest num-

ber of gene expression profiles had the highest deriva-

tive often lead to higher AUC values within a tolerance

of 5% (Figure S1 in Additional File 1). Although this has

not to be considered a criterion to identify the optimal

tp value we believe it represents a useful guideline.

MOO substantially improved the prediction of undir-

ected networks, with all network sizes tested. The lar-

gest gain we observed was a 20% increase respect to

SOO with 35-gene networks, with the MOO-Sr proce-

dure (p < 10-3) (Figures 3A, C, E, Table 1 and Table 2).

Overall, the MOO-Sr procedure also gave consistently

higher AUC values than MOO-Tr although p values

were borderline significant (p value = 0.16). Combining

T-r with S-r in the MOO procedure (MOO-(Tr+Sr))

did not further improve the accuracy of network infer-

ence (Figures 3A, C and 3E and Table 2). For direct-

signed networks, only MOO-Tr gave consistent higher

AUC values respect to SOO although p values were bor-

derline significant (p value = 0.12) (Figures 3B, D, F and

Table 2).

Integrating time course and gene inactivation

experiments within the MOO framework: A correlation-

based procedure

In this section, we describe the results of the correla-

tion-based procedure to construct MOO objectives from

mutant gene expression data. As detailed in the methods

section, this approach works by computing the correla-

tion between the expression profiles of every pair of

genes across the mutant samples.

We discovered that inference accuracy of the ratio

and correlation methods had opposite trends with

respect to undirected and directed-signed networks.

More precisely, the correlation-based objectives gave

higher AUC values for direct-signed networks and

lower AUC values than the ratio method for undir-

ected networks. The differential in AUC values

between the two methods was statistically significant

for both undirected and directed-signed networks (up

to 12% with undirected networks and up to 37% with

directed-signed networks, p < 0.05 and p < 10-3

respectively) (Figure 4 and Table 2) Interestingly, the

largest differential corresponded to the directed-signed

larger 50-gene networks (37%, p < 10-3).

We discovered that the method of correlation is effi-

cient even when a partial dataset is available. Figure 5

shows the results of the analysis for a 50-gene network

when KO data is available for 50% of the genes. We did

not observe any increase in inference accuracy for

undirected networks with the MOO-Sc and MOO-Tc

procedures (Figure 5A and Table 3). However, a consid-

erable increase in accuracy was detected when inferring

directed-signed networks (Figure 5A and Table 3, up to

27% improvement versus a SOO approach, p < 10-3).

Combining ratio and correlation-based procedures further

improve inference acuracy

Since we have shown that correlation and ratio-based

methods provide complementary information, we

decided to test whether combining them using an

ensemble approach could result in an even higher accu-

racy of the network inference process.

This approach was successful. AUC values for the

ensemble models built from combining the MOO-Tr

and MOO-Tc approaches (MOO-Tens) were comparable

to the best performing MOOTc models (Figure 6A, C

and 6E and Table 2) whereas models built from combin-

ing MOO-Sr and MOO-Sc (MOOSens) yield even higher

AUC values than MOO-Sc models for the larger 35 and

50-gene networks (15% and 10% increased AUC values,

p < 0.05) (Figure 6D and 6F and Table 2).

Table 1 Accuracy of GRN inference with MOO-dSp

Type Size SOO D Sp MOO dSp

Undirected 20 0.68 0.77 0.79

Undirected 35 0.68 0.73 0.79

Undirected 50 0.65 0.68 0.76

Directed-signed 20 0.27 0.32 0.23

Directed-signed 35 0.27 0.30 0.22

Directed-signed 50 0.24 0.30 0.31

The table shows the average AUC values obtained for 20, 35 and 50-gene

networks, for undirected and directed-signed networks, with the SOO, D-Sp

and MOO-dSp procedures.
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Figure 3 Distribution of AUC values for ratio-based inference procedures. Boxplots representing the distribution of AUC values for 20, 35

and 50-gene networks. Accuracy of GRN reconstruction for both undirected (panels A, C and E) and directed-signed (panels B, D and F)

networks is given for the SOO, MOO-Tr, MOO-Sr, MOO-(Tr+Sr) procedures. p values are indicated in red when significant (a = 0.05). Borderline p

values and indicated in black (a = 0.2).

Table 2 Accuracy of GRN inference by integrating gene KO datasets in the MOO framework

Type Size Ratio methods MOO-Sr/MOO-Tr Corr. methods MOO-Sc/MOO-Tc Ensemble MOO Sens/MOO Tens

Undirected 20 0.77/0.70 0.70/0.65 0.77/0.70

Undirected 35 0.88/0.79 0.75/0.70 0.88/0.79

Undirected 50 0.85/0.79 0.75/0.69 0.85/0.79

Directed-signed 20 0.23/0.24 0.42/0.36 0.47/0.39

Directed-signed 35 0.18/0.21 0.54/0.49 0.69/0.57

Directed-signed 50 0.17/0.22 0.54/0.45 0.64/0.51

The table shows the AUC values obtained for 20, 35 and 50-gene networks, for undirected and direct-signed networks with MOO procedures integrating time

course and gene KO datasets. Ratio, correlation and ensemble-based methods are shown in separate columns. AUC values for different procedures within each

column are separated by a forward slash. Note that we marked the AUC values in bold to highlight the opposite trend in inference accuracy of the ratio and

correlation procedures.
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Overall, MOO-Sens was the best performing procedure

in inferring directed-signed networks. Therefore, we

concluded that if both time-course and KO data are

available for a sub-set of genes of interest, MOO-Sens
may be the procedure of choice.

Modelling biological systems with NIMOO

In order to test the validity of NIMOO to model real

biological systems, we have analysed two datasets

generated in our own laboratory. The first was a repli-

cated gene-expression-profiling time-course experiment

representing a model of in vivo glioblastoma develop-

ment. A sub-set of these data were modelled with the

MOO-Sp procedure. The second dataset included a

time course representing the transcriptional response of

E. coli during acid adaptation and the expression profil-

ing of a compendium of 26 mutants exposed to acid.

Because of the availability of both time-course and

Figure 4 Comparison of AUC values for ratio and correlation based inference procedures. In this figure the distributions of AUC values for ratio

and correlation-based methods are represented on the same plots for comparison. Accuracy of GRN reconstruction for both undirected (panels A, C

and E) and directed-signed (panels B, D and F) networks is given for the SOO, MOO-Tc, MOO-Tr, MOO-Sc and MOO-Sr procedures. Distribution of AUC

value for ratio-based procedures are represented by notched boxplots whereas these for correlations-based procedures are represented by rectangular

boxplots. p values are indicated in red when significant (a = 0.05). Borderline p values and indicated in black (a = 0.2).
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mutant steady-state data we applied the MOO-Sens
procedure.

Modelling in vivo tumour development

Our model identified a network organized around three

main hubs (NFE2L2, ERBB2 and HSPB1) (Figure 7B).

NFE2L2 (Nuclear factor E2 p45-related factor 2; com-

monly called Nrf2) is a transcription factor that binds to

the cis-regulatory, antioxidant response element and

transcriptionally up-regulate an environmental stress

response program [28]. Nrf2 is critical for protection

against a wide range of inflammatory conditions, hyper-

oxia, fibrosis, hepatotoxicity, carcinogenesis, neurode-

generation, cardiovascular disease and aging [29].

Inactivation of Nrf2 in some cancers, promote tumori-

genicity and resistance to an array of chemotherapeutic

compounds [30]. The biological role of Nrf2 as a master

regulator of a crucial response is fully reflected in our

model that identifies Nrf2 as the most upstream net-

work node with the highest number of connections.

Note that without the application of the MOO metho-

dology this network feature was not inferred (Figure

7A).

The other network hubs are also known important

signalling factors. ERBB2 is a gene that encode for a

member of the epidermal growth factor (EGF) receptor

family of receptor tyrosine kinases. This protein has no

ligand-binding domain but it does bind tightly to other

ligand-bound EGF receptor family members enhancing

kinase-mediated activation of downstream signaling

pathways. HSPB1has a cytoprotective function and sup-

port of cell survival under stress conditions. This gene is

also involved in the apoptotic signalling pathway and

interacts with actin and intermediate filaments to pro-

tect actin filaments from fragmentation. It also preserves

the focal contacts fixed at the cell membrane. These

observations support the hypothesis that Nrf2 sits high

in the hierarchy of events leading to the development of

a fully vascularized tumour.

Reverse engineering an E coli acid response network

Both single objective (SOO) and multiobjective (MOO)

optimization methods were applied to investigate regula-

tory networks representative of E. coli acid adaptation.

In order to test the full potential of the NIMOO metho-

dology, we used both time-course and gene-inactivation

experiments.

The networks identified using either the time course

data (SOO procedure) or the combination of time

course and gene KO profiles (MOO procedure) are

represented in Figure 7C and 7F respectively. In order

to validate the model, we have compared our results

with the gene interactions known in literature or

extracted from the REGULON DB database [31].

The SOO method identified a number of gene con-

nections that were known to play a role in acid adapta-

tion. These included the interaction between two of the

glutamate-dependent acid-stress response genes gadW

and gadX [32]. However, in this model the directions of

Figure 5 MOO with incomplete gene KO datasets. Boxplots representing the distribution of average AUC values for 50 gene undirected

(panel A) and directed-signed (panel B) networks. Accuracy of GRN reconstruction is given for the SOO, MOO-Tc50% and MOO-Sc50% procedures.

p values are indicated in red when significant (a = 0.05). Borderline p values and indicated in black (a = 0.2).

Table 3 Accuracy of GRN inference with partial coverage

gene KO datasets

Type Size SOO MOO-Tc50% MOO-Sc50%

Undirected 50 0.64 0.64 0.67

Directed-signed 50 0.17 0.38 0.44

The table shows the average AUC values obtained for 50-gene networks, for

undirected and directed-signed networks, with the MOO-Tc50% and MOO-

Sc50% procedures.
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the gene interactions are mostly incorrect and not

representative of the known E. coli acid response

mechanisms. For example, the coding glutamate decar-

boxylase gene gadB is unlikely to be involved in the

modulation of the two-component system PhoP/PhoQ.

On the contrary, the gene regulatory network derived

from the application of the MOO procedure (Figure 7D)

includes several gene interactions known to be impor-

tant in acid adaptation.

A key interaction involved the two-component system

PhoP/PhoQ [33]. This complex is a known upstream

regulator of acid adaptation. The model we developed

(Figure 7C) reflects the upstream regulatory role of this

complex and correctly predicted its influence in the reg-

ulation of the acid resistance genes gadW and hdeA

[34]. The network also shows the known negative inter-

action between gadX and gadW [32] and the inhibition

of the crp gene by fis [35,36]. Another validated interac-

tion found by the MOO procedure is represented by the

link between the histone-like protein hns and cadA [37].

Our model shows that hns may activate the expression

of cadA. The connection is consistent with the litera-

ture, however, in GNB7145K hns mutants Shi et al. [37]

have shown that hns acts as a repressor.

Some of the interactions in the network represent

potentially novel regulatory mechanisms in E. coli

Figure 6 Combining MOO procedures. Boxplots representing the distribution of AUC values for 20, 35 and 50-gene networks obtained by the

application of ensemble approach combining correlation and ratio-based MOO procedures. Accuracy of GRN reconstruction for directed-signed

networks is given for the MOO-Tr, MOO-Tc, MOO-Tens procedures (panels A, C and E) and for the MOO-Sr, MOO-Sc, MOO-Sens procedures (panels

B, D and F). p values are indicated in red when significant (a = 0.05). Borderline p values and indicated in black (a = 0.2). p values are indicated

in red when significant (a = 0.05). Borderline p values and indicated in black (a = 0.2).
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response to acid stress. An example is the hypothesis

that phoP may be involved in the activation of narX, a

nitrite/nitrate sensor protein. This is a gene that is part

of a two-component system regulating a component of

anaerobic metabolism, which is a function known to be

regulated during acid response [38].

Discussion
In this paper we presented the gene regulatory network

inference method “Network Inference with Multi Objec-

tive Optimization” (NIMOO).

When tested on simulated and “real world” datasets,

NIMOO performs well even if incomplete data are avail-

able. The main feature of this methodology is that it can

be used to develop dynamical models of gene regulatory

networks integrating multiple data sources and combin-

ing any existing network inference methodology to iden-

tifying the network topology.

Although other methods have the potential to include

prior knowledge in the inference process the ability to

plug-in different inference methods in the same model-

ling procedure is so far a unique feature of NIMOO. In

this paper we tested this concept and demonstrated that

the approach can be successful even if a relatively sim-

ple procedure is integrated in the ODE model parameter

estimation. However, a more comprehensive testing may

be required to explore the full potential of this

approach, for example combining more advanced meth-

ods in the MOO optimization procedure.

In terms of data integration, we have mainly focused

on gene KO experiments. However, some of the proce-

dures we have tested (e.g. MOO-Tc and MOO-Sc) are

directly applicable to other types of experimental data.

For example, a compendium of environmental and

growth factor-induced perturbations could be employed

to develop an objective compatible with these

A B 

C D 

Figure 7 Inference of of biologically relevant networks. Gene regulatory networks obtained from the glioblastoma (panels A, B) and E. coli

acid stress datasets (panels C and D). Networks obtained from SOO (panels A and C) and MOO (panels B and D) procedures are shown.
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procedures. Such objectives could be for example com-

puted by using the information theoretical approach

ARACNE [5].

Moreover, additional information, for instance the

confidence level in transcription factor binding consen-

sus sequences in a gene’s promoter region could also be

incorporated within the optimisation process. More gen-

erally, in the event that multiple objectives are used

within a MOO procedure, each function’s relative

importance could be weighted by adjusting the optimi-

zation parameters, such as weights θk (Equation 4).

Additionally, any definite qualitative knowledge of the

presence or absence of gene connections may be used

as a constraint on the inferred gene-regulatory matrix

(hard prior).

Because of the ability to integrate different methods

the user can very easily customize NIMOO. In this

respect, NIMOO is an integration framework rather

than a specific method. Comparing its performance

with existing methods is therefore not necessarily con-

sequential. However, we have performed an initial

assessment comparing some implementations of

NIMOO to other methods. For example, all NIMOO

procedures outperformed TSNI [10] in inferring undir-

ected networks (Table S1 in Additional File 1) and the

MOO-Sens and MOO-Tens performed better with both

undirected and direct-signed networks (Table S1 in

Additional File 1). Moreover, NIMOO performed in a

comparable manner to the method developed by Yip et

al. [15], which won the DREAM3 competition http://

wiki.c2b2.columbia.edu/dream/index.php/ (Table S2 in

Additional File 1).

So far the application of multi-objective optimization

methods to inferring biological networks has been lim-

ited: For example, van Someren et al. [39] and Fome-

kong-Nanfack et al. [40] used MOO to incorporate

multiple constraints arising from the requirement of sta-

bility and robustness of gene networks, and, Liu and

Wang [41] have used MOO to infer biochemical net-

works by simultaneously minimizing for the concentra-

tion error and the slope error. However, in all these

cases a single data set and a single reverse engineering

criterion were used.

Conclusions
The network-inference framework NIMOO is flexible

and can be used in many different scenarios, even when

available information is incomplete. The application of

NIMOO to biological datasets representing two different

“real world” scenarios produced very interesting results.

The analysis of the experimental datasets illustrated that

inclusion of additional objectives from the same dataset

could significantly improve our ability to identify key

regulators of relevant biological processes.

Additional material

Additional File 1: A method comparison study and additional tables

and figures as detailed in the body of the paper.
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