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Carine A Bellera1,5*, Gaëtan MacGrogan2, Marc Debled3, Christine Tunon de Lara4, Véronique Brouste1,

Simone Mathoulin-Pélissier1,5

Abstract

Background: The Cox model relies on the proportional hazards (PH) assumption, implying that the factors

investigated have a constant impact on the hazard - or risk - over time. We emphasize the importance of this

assumption and the misleading conclusions that can be inferred if it is violated; this is particularly essential in the

presence of long follow-ups.

Methods: We illustrate our discussion by analyzing prognostic factors of metastases in 979 women treated for

breast cancer with surgery. Age, tumour size and grade, lymph node involvement, peritumoral vascular invasion

(PVI), status of hormone receptors (HRec), Her2, and Mib1 were considered.

Results: Median follow-up was 14 years; 264 women developed metastases. The conventional Cox model

suggested that all factors but HRec, Her2, and Mib1 status were strong prognostic factors of metastases. Additional

tests indicated that the PH assumption was not satisfied for some variables of the model. Tumour grade had a

significant time-varying effect, but although its effect diminished over time, it remained strong. Interestingly, while

the conventional Cox model did not show any significant effect of the HRec status, tests provided strong evidence

that this variable had a non-constant effect over time. Negative HRec status increased the risk of metastases early

but became protective thereafter. This reversal of effect may explain non-significant hazard ratios provided by

previous conventional Cox analyses in studies with long follow-ups.

Conclusions: Investigating time-varying effects should be an integral part of Cox survival analyses. Detecting and

accounting for time-varying effects provide insights on some specific time patterns, and on valuable biological

information that could be missed otherwise.

Background
Survival analysis, or time-to-event data analysis, is

widely used in oncology since we are often interested in

studying a delay, such as the time from cancer diagnosis

or treatment initiation to cancer recurrence or death.

Thanks to the improvement of cancer treatments, and

the induced longer life expectancy, we observe an

increasing number of studies with long follow-up peri-

ods. Statistical models to analyze such data should thus

adequately account for the increasing duration of fol-

low-ups. The Cox proportional hazards (PH) model

allows one to describe the survival time as a function of

multiple prognostic factors [1]. This model relies on a

fundamental assumption, the proportionality of the

hazards, implying that the factors investigated have a

constant impact on the hazard - or risk - over time. If

time-dependent variables are included without appropri-

ate modeling, the PH assumption is violated. As a result,

misleading effect estimates can be derived, and signifi-

cant effect in the early (or late) follow-up period may be

missed. Checking the proportionality of the hazards

should thus be an integral part of a survival analysis by

a Cox model. The assumption, however, is not systema-

tically verified. In a 1995 review of cancer publications

using a Cox model, Altman et al. reported that most
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studies did not report verifying this assumption [2];

similar findings were reported recently by one of the co-

authors of the present work [3].

Although the Cox model has been widely used (more

than 25 000 citations since the publication of the origi-

nal paper by Cox [4]), recent publications suggest a

growing interest in the quality of its applications. Special

papers in statistics have been published in the oncology

literature providing general introductions to survival

analysis [5-8]; topics covered included summarizing sur-

vival data, testing for a difference between groups, pre-

senting existing statistical models, or assessing the

adequacy of a survival model. Others works focused on

providing definition of specific survival endpoints [9], or

on the quality of reporting of survival events [3].

Assessing whether the assumption of proportional

hazards is a central theme in survival analysis, and as

such is discussed in several statistical textbooks [10-14]

as well as in the general statistical literature [15-18]. To

our knowledge however, this topic has been discussed in

few medical journals. Importantly, this strong assump-

tion does not seem to be systematically assessed. For

illustration, a recent review of clinical trials with primary

analyses based on survival end points showed that only

one of the 64 papers that used a Cox model mentioned

verifying the PH assumption [3].

Our objective is to inform clinicians, as well as those

who read and write manuscripts in medical journals,

about the importance of the underlying PH assumption,

the misleading conclusions that can be inferred if it is

violated, as well as the additional information provided

by verifying it. After a theoretical introduction, we

describe techniques to assess if this assumption is vio-

lated, and model strategies to account for, and describe

time-dependency. We illustrate our discussion with a

study on prognostic factors in breast cancer.

Methods and results
Survival analysis

In many studies, the primary variable of interest is a

delay, such as the time from cancer diagnosis to a parti-

cular event of interest. This event may be death, and for

this reason the analysis of such data is often referred to

as survival analysis. The event of interest may not have

occurred at the time of the statistical analysis, and simi-

larly, a subject may be lost to follow-up before the event

is observed. In such case, data are said to be censored at

the time of the analysis or at the time the patient was

lost to follow-up. Censored data still bring some infor-

mation since although we do not know the exact date of

the event, we know that it occurred later than the cen-

soring time.

Both the Kaplan-Meier method and the Cox propor-

tional hazards (PH) model allow one to analyze

censored data [1,19], and to estimate the survival prob-

ability, S(t), that is the probability that a subject survives

beyond some time t. Statistically, this probability is pro-

vided by the survival function S(t) = P (T > t), where T

is the survival time. The Kaplan Meier method estimates

the survival probability non-parametrically, that is,

assuming no specific underlying function [19]. Several

tests are available to compare the survival distributions

across groups, including the log-rank and the Mann-

Whitney-Wilcoxon tests [20,21]. The Cox PH model

accounts for multiple risk factors simultaneously. It does

not posit any distribution, or shape for the survival

function, however, the instantaneous incidence rate of

the event is modeled as a function of time and risk

factors.

The instantaneous hazard rate at time t, also called

instantaneous incidence, death, or failure rate, or risk, is

the instantaneous probability of experiencing an event

at time t, given that the event has not occurred yet. It is

a rate of event per unit of time, and is allowed to vary

over time. Just as the risk of events per unit time, one

can make an analogy by considering the speed given by

a car speedometer, which represents the distance tra-

velled per unit of time. Suppose, that the event of inter-

est is death, and we are interested in its association with

n covariates, X1, X2, ..., Xn, then the hazard is given by:

h t h t x x xx n n( ) ( )exp( )   0 1 1 2 2   (1)

The baseline hazard rate h0(t) is an unspecified non-

negative function of time. It is the time-dependent part

of the hazard and corresponds to the hazard rate when

all covariate values are equal to zero. b1, b2, ..., bn are

the coefficients of the regression function b1x1 + b2x2 +...

bnxn. Suppose that we are interested in a single covariate

then the hazard is:

h t h t xx( ) ( )exp( ) 0  (2)

The hazards for two subjects with covariate values x1
and x2 are thus given respectively by hx1(t) = h0(t) exp

(bx1) and hx2(t) = h0(t) exp(bx2), and the hazard ratio is

expressed as:

HR h t h t x xx x  2 1 2 1( ) / ( ) exp[ ( )] (3)

Taking x2 = x1 + 1, the hazard ratio reduces to HR =

exp(b) and corresponds to the effect of one unit increase

in the explanatory variable X on the risk of event. Since

b = log(HR), b is referred as the log hazard ratio.

Although the hazard rate hx(t) is allowed to vary over

time, the hazard ratio HR is constant; this is the

assumption of proportional hazards. If the HR is greater

than 1 (b > 0), the event risk is increased for subjects

with covariate value x2 compared to subjects with
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covariate value x1, while a HR lower than 1 (b < 0) indi-

cates a decreased risk. When the HR is not constant

over time, the variable is said to have a time-varying

effect; for example, the effect of a treatment can be

strong immediately after treatment but fades with time.

This should not be confused with a time-varying covari-

ate, which is a variable whose value is not fixed over

time, such as smoking status. Indeed, a person can be a

non-smoker, then a smoker, then a non-smoker. Note

however, that a variable may be both time-varying and

have an effect that changes over time.

In a Cox PH model, the HR is estimated by consider-

ing each time t at which an event occurs. When esti-

mating the overall HR over the complete follow-up

period, the same weights are given to the very early HR

which affect almost all individuals and to very late HR

affecting only the very few individuals still at risk. The

HR is thus averaged over the event times. In the case of

proportional hazards, the overall HR is not affected by

this weighting procedure. If, on the other hand, the HR

changes over time, that is, the hazard rates are not pro-

portional, then equal weighting may result in a non-

representative HR, and may produce biased results [22].

It should be noted that the HR is averaged over the

event times rather than over the follow-up time. It is

unchanged if the time scale is changed without disturb-

ing the ordering of events.

Example

We applied some of the presented methods to breast

cancer patients as time-varying effects have been

reported, such as for nodal or hormone receptor status,

[23-26]. We studied women with non-metastatic, oper-

able breast cancer who underwent surgery between 1989

and 1993 at our institution, and who did not receive

previous neoadjuvant treatment. Exclusion criteria

included a previous history of breast carcinoma, concur-

rent contralateral breast cancer, and pathologic data

missing. Follow-up was performed according to the Eur-

opean Good Clinical Practice requirements and con-

sisted of regular physical examinations, and annual X-

ray mammogram, and additional assessments in case of

suspected metastases. Clinical and pathological charac-

teristics were analyzed according to the hospital-

recorded file at the time of treatment initiation. Patholo-

gical tumour size (≤ or > 20 mm) was measured on

fresh surgical specimens. A modified version of the

Scarff-Bloom-Richardson grading system was used (SBR

grade I, II, or III). PVI (Yes, No) was defined as the pre-

sence of neoplastic emboli within unequivocal vascular

lymphatic or capillary lumina in areas adjacent to the

breast tumour. Exploratory immuno-histochemical ana-

lyses were performed on a tissue microarray (TMA) to

assess hormone receptor (HRec) status (positive if ER-

positive and/or progesterone receptor [PgR]-positive).

ER and PgR expression levels were evaluated semi-quan-

titatively according to a standard protocol with cut-off

values at 10% positive tumor cells. Her2 expression level

was evaluated according to the Herceptest scoring sys-

tem [27]. Mib1 expression level was evaluated semi-

quantitatively. Information on all factors was available

for 979 women (Table 1). The median follow-up time

was 14 years (95% confidence interval: 13.7 - 14.2) and

264 women developed metastases.

Working example

The prognostic factors were initially selected based on

current knowledge regarding risk of metastases. They

were next analyzed using a conventional Cox regression

model; all were statistically significant at the 5% level in

Table 1 Characteristics of the study population.

N (%)

Year of diagnosis

1989 231 23.6

1990 207 21.1

1991 182 18.6

1992 189 19.3

1993 170 17.4

Metastases following surgery

Yes 264 27.0

No 715 73.0

Age at diagnosis

≤ 40 years 76 7.8

> 40 years 903 92.2

SBR Grade

Grade I 275 28.1

Grade II 444 45.3

Grade III 260 26.6

Tumor size

≤ 20 mm 753 76.9

> 20 mm 226 23.1

Lymph node involvement

No 554 56.6

Yes 425 43.4

Peritumoral vascular invasion

No 700 71.5

Yes 279 28.5

Hormone Receptor status

Both ER- and PR- 178 18.2

At least ER+ or PR+ 801 81.8

Her2 status

Positive 100 10.2

Negative 879 89.8

Mib1 status

Negative 691 70.6

Positive 288 29.4
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the univariate analyses, and were then entered onto a

multivariate Cox model. The risk of metastases was

increased for women with younger age compared to

older age; grade II and III tumours compared to grade I

tumours; large compared to small tumour sizes; lymph

node involvement compared to no involvement; and

PVI compared to no PVI (Additional file 1: Estimated

log hazard ratios (log(HR)), and hazard ratios (HR = exp

( ̂ )) with 95% confidence intervals (95% CI) and p-

values for model covariates when fitting a multivariate

conventional Cox model and a Cox model with time-by-

covariate interactions.). Based on this model, all vari-

ables, but hormone receptor, Her2 and Mib1 status, sig-

nificantly affected the risk of metastases.

Assessing non-proportionality: Graphical strategy

In the presence of a categorical variable, one can plot

the Kaplan-Meier survival distribution, S(t), as a func-

tion of the survival time, for each level of the covariate.

If the PH assumption is satisfied, the curves should stea-

dily drift apart. One can also apply a transformation of

the Kaplan-Meier survival curves and plot the function

log(-log(S(t))) as a function of the log survival time,

where log represents the natural logarithm function. If

the hazards are proportional, the stratum specific log-

minus-log plots should exhibit constant differences, that

is be approximately parallel. These visual methods are

simple to implement but have limitations. When the

covariate has more than two levels, Kaplan-Meier plots

are not useful for discerning non-proportionality

because the graphs become to cluttered [10]. Similarly,

although the PH assumption may not be violated, the

log-minus-log curves are rarely perfectly parallel in prac-

tice, and tend to become sparse at longer time points,

and thus less precise. It is not possible to quantify how

close to parallel is close enough, and thus how propor-

tional the hazards are. The decision to accept the PH

hypothesis often depends on whether these curves cross

each other. As a result, the decision to accept the PH

hypothesis can be subjective and conservative [28], since

one must have strong evidence (crossing lines) to con-

clude that the PH assumption is violated. In view of

these limitations, some suggest providing standard

errors to these plots [29]. This approach however can

be computationally intensive and is not directly available

in standard computer programs. Kaplan-Meier and log-

minus-log plots are available from most standard statis-

tical packages (Table 2).

Working example (cont’)

Kaplan-Meier survival curves and log-minus-log plots

are shown for some variables (Figures 1 and 2). The

Kaplan-Meier survival curves appeared to steadily drift

apart for all but the hormone receptor status, Her2 sta-

tus, and mib1 status. The log-minus log plots looked

approximately parallel for Age, size of the tumour,

lymph node involvement, and PVI. Again, plots for the

hormone receptor status, Her2 status, and mib1 status

tended to indicate a violation of the PH assumption.

There was also some suspicion with respect to the SBR

grade.

Assessing non-proportionality: Modelling and testing

strategies

Graphical methods for checking the PH assumption do

not provide a formal diagnostic test, and confirmatory

approaches are required. Multiple options for testing

and accounting for non-proportionality are available.

Cox proposed assessing departure from non-propor-

tionality by introducing a constructed time-dependent

variable, that is, adding an interaction term that involves

time to the Cox model, and test for its significance [1].

Suppose one is interested in evaluating if some variable

X has a time-varying effect. A time-dependent variable

is created by forming an interaction (product) term

between the predictor, X (continuous or categorical),

and a function of time t (f(t) = t, t2, log(t), ...). Adding

this interaction to the model (equation 2), the hazard

then becomes:

h t h t x x f tx( ) ( )exp[ . . ( )] 0   (5)

The hazard ratio is given by HR(t) = hx+1(t)/hx(t) =

exp[b + g.x.f(t)] for a unit increase in the variable X,

and is time-dependent through the function f(t). If g > 0

(g < 0), then the HR increases (decreases) over time.

Testing for non-proportionality of the hazards is

Table 2 Statistical software

R/Splus© SAS© SPSS© Stata©

Graphical checks survfit function lifetest procedure Survt command sts command

Time-by-
covariate
interactions

programming required. phreg procedure (definition of
interactions)/test statement.

time program command (definition of
interactions)/cox reg command.

tvc option/stcox
command

Scaled Schonfeld
residuals

cox.zph function phreg procedure/ressch option Not directly available/programming
required

stphtest command

Cumulative
residuals

Timereg/gof libraries/
cum.residuals function

phreg procedure/assess
statement/ph option

Not directly available/programming
required

Not directly available/
programming required
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equivalent to testing if g is significantly different from

zero. One can use different time functions such as poly-

nomial or exponential decay but often very simple fixed

functions of time such as linear or logarithmic functions

are preferred [28]. This modeling approach also provides

estimates of the hazard ratio at different time points

since values t of time can be fitted into the hazard ratio

function. Time-dependent variables provide a flexible

method to evaluate departure from non-proportionality

and an approach to building a model for the depen-

dence of relative risk over time. This approach however

should be used with caution. Indeed, if the function of

time selected is mis-specified, the final model will not

be appropriate. This is a disadvantage of this method

over more flexible approach.

Working example (cont’)

We created time-by-covariate interactions for each vari-

able of the model, by introducing products between the

variables and a linear function of time. As shown in

Additional File 1 (Estimated log hazard ratios (log(HR)),

and hazard ratios (HR = exp( ̂ )) with 95% confidence

intervals (95% CI) and p-values for model covariates

when fitting a multivariate conventional Cox model and

a Cox model with time-by-covariate interactions.), sig-

nificant time-by-covariate interactions involved the SBR

grade, hormone receptor status, Her2 status, and PVI (p

< 0.05). Thus these results indicated that the hazard

ratios associated with these factors were not constant

over time. The parameters ( ̂ ) associated with most

interactions were negative, suggesting that the hazard

ratios were decreasing over time. The estimated hazard

ratio associated with an SBR grade II (versus grade I) as

a function of time t was given by: HR(t) = exp(1.71 -

0.14t). Hazard ratios were 4.8, 3.6, and 2.7 at respec-

tively 1, 3, and 5 years. Similarly, the estimated hazard

ratio associated with the hormone receptor status was:

HR(t) = exp(0.73 - 0.14t), that is hazard ratios of 1.8,

1.3, and 1.0 at respectively 1, 3, and 5 years. While the

conventional Cox model did not show any significant

effect for hormone receptors, Her2 and Mib1, these

variables had a significant effect once time-by-covariate

interactions were included.

Departure from non-proportionality can also be inves-

tigated using the residuals of the model. A residual

Figure 1 Kaplan-Meier survival curves for SBR grade, tumour size, PVI, hormone receptor status.
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measures the difference between the observed data, and

the expected data under the assumption of the model.

Schoenfeld residuals are calculated and reported at

every failure time under the PH assumption, and as

such are not defined for censored subjects [15,30]. They

are defined as the covariate value for the individual that

failed minus its expected value assuming the hypotheses

of the model hold. There is a separate residual for each

individual for each covariate. A smooth plot of the

Schoenfeld residuals can then be used to directly visua-

lize the log hazard ratio [15]. Assuming proportionality

of the hazards, the Schoenfeld residuals are independent

of time. Thus, a plot suggesting a non-random pattern

against time is evidence of non-proportionality. Graphi-

cally, this method is more reliable and easier to interpret

than plotting the log(-log(S(t)) function presented ear-

lier. The presence of a linear relationship with time can

be tested by performing a simple linear regression and a

test trend. A slope significantly different from zero

would be evidence against proportionality: an increasing

(decreasing) trend would indicate an increasing

(decreasing) hazard ratio over time. It is recommended

to carefully look at the residual plot in addition to

performing this test as some patterns may be apparent

on the plots (quadratic, logarithmic), but remain unde-

tected by the statistical test. Moreover, undue influence

of outliers might become obvious [10]. Although, the

method based on the smoothed Schoenfeld residuals

provides time-dependent estimates, it can have some

drawbacks [14,18]. The uncertainty estimates associated

with the resulting time-dependent estimates can be diffi-

cult to use in practice, and the estimator provided may

not have good statistical properties, such as consistency.

Importantly, p-values resulting from trend tests based

on the Schoenfeld residuals are obtained independently

for each covariate of the model, assuming the Cox

model is justified for the other covariates of the model;

as such, results should be interpreted carefully. Tests

based on the Schoenfeld residuals can be easily imple-

mented in most standard statistical packages (Table 2).

Working example (cont’)

For each covariate, scaled Schoenfeld residuals were

plotted over time, and tests for a zero slope were per-

formed. The corresponding p-values, as well as the p-

value associated with a global test of non-proportionality

are reported in Table 3. The global test suggested strong

Figure 2 Log(-log(survival)) curves as a function of time (log scale) for SBR grade, tumour size, PVI, hormone receptor status.
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evidence of non-proportionality (p < 0.01). Variables

that deemed most likely to contribute to non-propor-

tionality were the SBR grade (p < 0.01), PVI (p = 0.05)

and hormone receptor status (p = 0.05). These numeri-

cal findings suggest a non constant hazard ratio for

these variables. Residuals help visualizing the log hazard

ratio ̂ over time for each covariate (figure 3). We

added dashed and dotted lines representing respectively

the null effect (null log hazard ratio) and the averaged

log hazard ratio estimated by the conventional Cox

model. With respect to the SBR grade, the plots sug-

gested strong effect over the first five years. This effect

tended to diminish afterwards. Similarly, the impact of

PVI changed over time, with again higher risks of

metastases in the early years, and then this effect tended

to vanish. Concerning hormone receptor status, plots

suggested that a negative status increased the risk of

metastases early on, and became protective afterwards.

The cumulative sum of Schoenfeld residuals, or

equivalently the observed score process can also be used

to assess proportional hazards [31]. Graphically, the

observed score process is plotted versus time for each

variable of the model, together with simulated processes

assuming the underlying Cox model is true, that is,

assuming proportional hazards. Any departure of the

observed score process from the simulated ones is evi-

dence against proportionality. These plots can then be

used to assess when the lack of fit is present. In particu-

lar, an observed score well above the simulated process

is an indication of an effect higher than the average one,

and conversely. This method is particularly well illu-

strated in a recent publication by Cortese et al. [18].

Goodness-of-fit tests can be implemented based on the

cumulative residuals. The cumulative residuals based

approach overcomes some drawbacks encountered with

the Schoenfeld residuals, since resulting estimators tend

to have better statistical properties, and justified p-

values are derived [14]. The cumulative residuals

approach is implemented in some standard statistical

packages (Table 2).

Working example (cont’)

Tests based on cumulative residuals are presented in

Table 4. At the 5% significance level, test statistics sug-

gest non-constant effect over time for the grade of the

tumor, as well as the status of the hormone receptors,

her2, and Mib1. For illustration, we also plotted the

resulting score process for some variables (Figure 4). In

accordance with the test statistics based on the cumula-

tive residuals, we observe strong departure of the

observed processes from the simulated curves under the

model for the grade and hormone receptor status. These

plots are particularly useful in identifying where the lack

of fit is present. For example, the initial positive score

process associated with hormone receptors, suggests

that the effect of this variable is initially higher than the

average effect, and thus lower than the average effect

afterwards. That is, the risk of metastases is increased

initially for women with both negative hormone recep-

tors compared to the average risk, and decreased

afterwards.

Another simple approach for testing time-varying

effects of covariates involves fitting different Cox models

for different time periods. Indeed, although the PH

assumption may not hold over the complete follow-up

period, it may hold over a shorter time window. Unless

there is an interest in a particular cut-off time value,

two subsets of data can be created based on the median

event time [10]. That is, a first analysis is conducted by

censoring everyone still at risk beyond this time point,

and a second one by considering only those subjects

still at risk thereafter. In such case, the interpretation of

the models is conditional on the length of the survival

time, and results should thus be interpreted with cau-

tion. Even if the period of analysis is shortened, one

should still ensure that the PH assumption is not vio-

lated within these reduced time periods. Moreover,

since fewer event times are considered, analyses can suf-

fer from a decreased power. Finally, although this

method is particularly simple to implement and might

provide sufficient information in some settings, that is if

one is interested in a short time window, it should be

noted that this method is not directly testing the PH

assumption, and a different parametrization would be

needed to perform such a test.

Working example (cont’)

The median event time was 4.3 years. A Cox model was

applied censoring everyone still at risk after 4.3 years,

while only those subjects still at risk beyond this time

point were included in another model (Additional file 2:

Estimated hazard ratios (exp( ̂ )) with 95% confidence

intervals (95% CI) and p-values for model covariates in

two independent Cox models for two different time

Table 3 Test for non-proportionality based on the scaled

Schoenfeld residuals from the conventional Cox model

(see table 1).

Variable p-value

Age 0.10

Grade II <0.01

Grade III <0.01

Size 0.32

Lymph node involvement 0.22

PVI 0.05

Hormone receptor 0.05

Her2 0.08

Mib1 0.07

GLOBAL <0.01
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periods.). All variables but age were statistically signifi-

cant in the first model as negative hormone receptor

status, positive Her2 status and Mib1 positive status

were associated with an increased risk of metastases. In

women still at risk past 4.3 years, younger age, greater

tumor size, and lymph node involvement were asso-

ciated with an increased risk of metastases. The effects of

other variables have disappeared. Interestingly, hormone

receptor negative status had a significant protective effect

in this second model (HR = 0.5), while the first analysis

suggested a significant increased risk for (HR = 1.7).

Tests for non-proportionality based on the cumulative

residuals suggested a persistent time-varying effect of the

grade for the analysis restricted to the first 4.3 years.

It is also possible to account for non-proportionality by

partitioning the time axis as proposed by Moreau et al.

[32]. The time axis is partitioned and hazard ratios are

then estimated within each interval. Thus, testing for

non-proportionality is equivalent to testing if the time-

specific HR are significantly different. Results can how-

ever sometimes be driven by the number of time intervals

[33], and time intervals should thus be carefully selected.

Figure 3 Scaled Schoenfeld residuals for SBR grade, PVI, and hormone receptor status (with 95% confidence interval).
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Abandoning the assumption of proportional hazards,

and as such, the Cox model, is another option. Indeed,

other powerful statistical models are available to account

for time-varying effects, including additive models,

accelerated failure time models, regression splines mod-

els or fractional polynomials [33-36].

Finally, one can perform a statistical analysis stratified

by the variable suspected to have a time-varying effect;

this variable should be thus categorical or be categor-

ized. Each stratum k has a distinct baseline hazard but

common values for the coefficient vector b, that is, the

hazard for an individual in stratum k is hk(t) = exp(bx)

Stratifying assumes that the other covariates are acting

in the same way in each stratum, that is, HRs are similar

across strata. Although stratification is effective in

removing the problem of non-proportionality and sim-

ple to implement, it has some disadvantages. Most

importantly, stratification by a non-proportional variable

precludes estimation of its strength and its test within

the Cox model. Thus, this approach should be selected

if one is not directly interested in quantifying the effect

of the variable used for stratification. Moreover, a strati-

fied Cox model can lead to a loss of power, because

more of the data are used to estimate separate hazard

functions; this impact will depend on the number of

subjects and strata [10]. If there are several variables

with time-varying risks, this would require the model to

Table 4 Test for non-proportionality based on the

Cumulative residuals from the conventional Cox model

(see table 1).

Variable p-value

Age 0.97

Grade II 0.02

Grade III <0.01

Size 0.16

Lymph node involvement 0.75

PVI 0.11

Hormone receptor <0.01

Her2 <0.01

Mib1 <0.01

Figure 4 Observed score process for SBR grade, lymph node involvement, and hormone receptor status (with 95% confidence interval).
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be stratified on these multiple factors, which again is

likely to decrease the overall power.

Discussion
While ensuring that the PH assumption holds is part of

the modeling process, it is also useful in providing valu-

able information on time-varying effects. In our illustra-

tive example, the conventional Cox model suggested

that all factors but HRec, Her2, and Mib1 status were

strong prognostic factors of metastases. Additional tests

indicated that the PH assumption was not satisfied for

some variables of the model. Tumour grade had a sig-

nificant time-varying effect, but although its effect

diminished over time, it remained strong. According to

the conventional model hormone receptor status did

not significantly impact relapses. Additional tests pro-

vided strong evidence of a time-varying effect. Impor-

tantly, both tests based on residuals suggested that

negative hormone receptor status increased the risk of

metastases early but became protective thereafter, in

accordance with the analysis partitioned on event time.

This reversal of effect may explain the non-significant

averaged hazard ratio provided by the conventional Cox

model and reported earlier [26].

Applying a Cox model without ensuring that its

underlying assumptions are validated can lead to nega-

tive consequences on the resulting estimates [28,37]. For

variables not satisfying the non-proportionality assump-

tion, the power of the corresponding tests is reduced,

that is, we are less likely to conclude for a significant

effect when there is actually one. If the hazard ratio is

increasing over time, the estimated coefficient assuming

PH is overestimating at first and underestimating later

on. For those variables of the model with a constant

hazard ratio, the power of tests is also reduced as a con-

sequence of an inferior fit of the model.

Once non-proportionality is established, time-depen-

dency can be accounted for in different ways. The strat-

egy will depend on the study objectives. If there is no

interest in longer time periods, one can shorten the fol-

low-up time as non-proportionality is less likely to be

an issue on short time intervals. If there is no particular

interest in the variable with the time-varying effect, one

could stratify on this variable in the statistical analysis,

however no association between the stratification vari-

able and survival can be tested. If one wants to describe

the effect of the variable over time, it is possible to rely

on time by covariate interactions or on plots of residuals

to estimate of relative risks at different time points.

Methods to test and account for non-proportionality are

available in most standard statistical software (Table 2).

It is difficult to propose definite guidelines for the best

strategy for testing for non-proportionality. Each

method has its advantages and limitations, and

depending on the study objective some approaches

might be preferred. Before performing statistical model-

ing, the study objectives should be clearly stated in

advance, as well as the statistical tests that will be

employed. Departure from non-proportionality can be

investigated using graphical and numerical approaches.

Plotting methods involve visualizing the Kaplan-Meier

survival curves for the variable tested for non-propor-

tionality. This graphical method requires categorical

variables, and is particularly appropriate for binary data;

however they do not provide formal diagnostic tests.

Numerical tests involve for example testing for covari-

ate-by-time interactions or for the presence of a trend

in the residuals of the model. Including a covariate-by-

time interaction is particularly simple within the Cox

model; however, results are strongly dependent on the

choice of the functional form of the time function. Tests

based on cumulative residuals tend to have better statis-

tical properties than those based on the Schoenfeld resi-

duals. As a result, performing a test based on the

cumulative residuals seems to be a more powerful

approach in detecting covariates with time-varying

effects.

Note that the Cox model involves multiple types of

residuals including the martingale, deviance, score and

Schoenfeld residuals, which can be particularly useful as

additional regression diagnostics for the Cox model.

Martingale residuals are useful for determining the func-

tional form of a covariate to be included in the model

and deviance residuals can be used to examine model

accuracy. Additional details can be found in [10,11].

Statistical testing raises the issue of power, that is, the

ability of tests to find true effects. We have seen for

example that some simple strategies, such as shortening

the observation period can suffer from reduced power

as fewer events are considered. This might be a limita-

tion with small datasets. Simulations have shown that

stratified Cox modeling usually leads to wider confi-

dence intervals, that is, reduced power compared to

unstratified analysis [38]. Statistical tests for time-vary-

ing effects have different power to detect non-propor-

tionality. It has been shown that tests requiring

partitioning of the failure time have less power than

other tests, while tests based on time-dependent covari-

ates or on the Schoenfeld residuals have equally good

power to detect non-proportionality in a variety of non-

proportional hazards and are practically equivalent [17].

The issue of power naturally leads to the question of

sample size. Clinical trials are usually designed with just

enough power to detect the treatment effect. In this

context, one should not expect to have enough details

about the actual shape of the HR over time. Assuming a

trial designed with an 80% power to detect a treatment

effect, Therneau and Grambsch showed that the test
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based on the residuals was able to detect non-propor-

tionality, but could not distinguish between a linear and

a discrete increase of the hazard ratio over time [10].

Observational studies are usually designed for explora-

tory analyses and do not rely on a formal estimation of

the sample size. There might not always be enough

power to detect a specific time trend. The question of

lack of power should not be interpreted as an argument

against testing for non-proportionality. Just as any other

statistical model, one should ensure that major assump-

tions are not violated.

Since its original publication in 1972, the Cox propor-

tional-hazards model has gained widespread use and has

become a popular tool for the analysis of survival data

in medicine. After performing an online search, we

found that the original paper by Cox had been cited

approximately 25, 000 times, with about 8, 000 citations

in oncology papers [4]. While time dependency has

been accounted for and reported in oncology publica-

tions, such as in breast or colon cancer studies

[26,33,39-42,42], the verification of the PH assumption

is unfortunately far from being systematic. In a 1995

review of five clinical oncology journals including about

130 papers, Altman et al. reported that only 2 out of the

43 papers which relied on a Cox model, mentioned that

the PH assumption was verified [2]. Similarly, about ten

years later Mathoulin et al. assessed the quality of

reporting of survival events in randomized clinical trials

in eight general or cancer medical journals [3]. The

authors reported that only one of the 64 papers that

used a Cox model mentioned verifying the PH

assumption.

Our objective was to familiarize the reader with the

PH assumption. We also highlighted that detecting and

accounting for time-varying effects provide insights on

some specific time patterns and valuable biological

information that could be missed otherwise. Given the

possible consequences on parameter estimates, checking

the proportionality of hazards should be an integral part

of a survival analysis based on a Cox model. In the pre-

sence of variables with time-varying risks, plots should

be used to augment the results and indicate where non-

proportionality is present. This seems particularly

appropriate in the context of oncology studies, as long

follow-ups are common and non-constant hazards have

already been reported.

Conclusions
Investigating time-varying effects should be an integral

part of Cox survival analyses. Detecting and accounting

for time-varying effects provide insights on some speci-

fic time patterns, and on valuable biological information

that could be missed otherwise.

Additional File 1: Estimated log hazard ratios (log(HR)), and hazard

ratios (HR = exp( ̂ )) with 95% confidence intervals (95% CI) and p-

values for model covariates when fitting a multivariate conventional Cox

model and a Cox model with time-by-covariate interactions.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2288-10-

20-S1.DOC ]

Additional File 2: Estimated hazard ratios (exp( ̂ )) with 95%

confidence intervals (95% CI) and p-values for model covariates in two

independent Cox models for two different time periods.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2288-10-

20-S2.DOC ]
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