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The second term can also be developed
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We can see that
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Thus
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ÊUj = 0, which implies that
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In the presence of tied observations, the proof can be obtained in the same but more burdensome way.

The property given above implies that
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. The sum of the Wj , as well as the

sum of the Uj is thus composed of k terms (where k is the number of failure times).
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write the following equalities:
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