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Abstract

Background: The emergence of Plasmodium falciparum resistance to most anti-malarial compounds has highlighted
the urgency to develop new drugs and to clarify the mechanisms of anti-malarial drugs currently used. Among them,
doxycycline is used alone for malaria chemoprophylaxis or in combination with quinine or artemisinin derivatives for
malaria treatment. The molecular mechanisms of doxycycline action in P, falciparum have not yet been clearly defined,
particularly at the protein level.

Methods: A proteomic approach was used to analyse protein expression changes in the schizont stage of the malarial

quantification (iTRAQ).

parasite P, falciparum following doxycycline treatment. A comparison of protein expression between treated and
untreated protein samples was performed using two complementary proteomic approaches: two-dimensional
fluorescence difference gel electrophoresis (2D-DIGE) and isobaric tagging reagents for relative and absolute

Results: After doxycycline treatment, 32 and 40 P, falciparum proteins were found to have significantly deregulated
expression levels by 2D-DIGE and iTRAQ methods, respectively. Although some of these proteins have been already
described as being deregulated by other drug treatments, numerous changes in protein levels seem to be specific to
doxycycline treatment, which could perturb apicoplast metabolism. Quantitative reverse transcription polymerase
chain reaction (RT-PCR) was performed to confirm this hypothesis.

Conclusions: In this study, a specific response to doxycycline treatment was distinguished and seems to involve
mitochondrion and apicoplast organelles. These data provide a starting point for the elucidation of drug targets and
the discovery of mechanisms of resistance to anti-malarial compounds.

J

Background

The parasitic protozoon Plasmodium falciparum is
responsible for approximately 247 million cases of
malaria and one million deaths each year, particularly in
sub-Saharan Africa [1]. Anti-mosquito measures and new
artemisinin-containing treatments have been recently
adopted in hopes of achieving the global eradication of
malaria. Novel drugs, vaccines and insecticides, as well as
deeper insights into parasite biology, human immunity,
and vector behaviour, are essential to support these
efforts [2].
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Over the past 30 years, experimental observations
obtained in vitro and in clinical studies have demon-
strated the anti-malarial activity of tetracycline and its
derivatives [3]. Daily doxycycline (DOX) has been shown
to be an effective chemoprophylactic in Thailand [4],
Indonesia [5], and Kenya [6]. DOX is currently one of the
recommended chemoprophylactic regimens for travellers
visiting malaria endemic areas in Southeast Asia, Africa
and South America [7]. DOX is now recommended by
the French Consensus Conference for chemoprophylaxis
in countries with a high prevalence of P. falciparum resis-
tance to chloroquine or multiple drugs [8]. However,
while no instances of P. falciparum malaria clinical failure
with DOX have been reported yet, three different pheno-
types (low, medium and high DOX susceptibility groups)
have been identified among P, falciparum clinical isolates
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[9]. These different phenotypes have been associated with
pfmdt and pftetQ copy number variations and pftetQ
sequence polymorphisms [10].

DOX has long been known to inhibit protein synthesis
in bacteria [11] by binding the S4, S7, S9 and S17 proteins
of the small 30S ribosomal subunit and various ribonu-
cleic acids of the 16S rRNA, which prevents the binding
of aminoacyl transfer RNA to site A of the ribosome [12].
In P falciparum, tetracyclines have been reported to
directly inhibit mitochondrial protein synthesis [13] and
also to decrease dihydroorotate dehydrogenase activity,
which is involved in de novo pyrimidine synthesis [14].
DOX inhibits P. falciparum synthesis of nucleotides and
deoxynucleotides [15]. Minocycline, another tetracycline
derivative, also decreases the transcription of mitochon-
drial genes and plastid genes, indicating that it may target
these two organelles [16]. More recently, two research
groups [17,18] reported specific action by cyclines on the
apicoplast of P. falciparum via cell biology and transcrip-
tome approaches. Collectively, these published data indi-
cate that organelles from P falciparum seem to be
primary targets for cyclines; however, the molecular
mechanisms involved in this plastid regulation are not yet
clearly defined, particularly at the protein level.

Proteome studies have contributed substantially to our
understanding of parasite biology and host-parasite inter-
actions [19]. Mass spectrometry (MS) methods have been
used to enable large-scale identification of proteins at dif-
ferent stages of the malarial parasite life cycle [20,21].
However, few proteomic analyses have been undertaken
to better understand the mechanisms of drug action or
resistance in P falciparum. The effects of chloroquine
and artemisinin derivatives on P falciparum have been
studied using different proteomic techniques, such as a
gel-based approach [22], SELDI (Surface Enhanced Laser
Desorption Ionization) TOF (Time of Flight) MS analysis
[23] and, more recently, isoleucine-based SIL (Stable Iso-
tope Labelling) [24]. Until now, P. falciparum proteome
response following doxycycline treatment has not been
studied.

The present study aimed to highlight the metabolic
pathways that are affected in P falciparum following
DOX treatment. To accomplish this objective, two com-
plementary proteomics approaches were used: two-
dimensional fluorescence difference gel electrophoresis
(2D-DIGE) and isobaric tagging reagents for relative and
absolute quantification (iTRAQ). The combination of
these two technologies allowed us to identify proteins
that are deregulated in response to doxycycline and were
involved in various cellular functions such as redox
homeostasis, stress response, protein synthesis, lipid syn-
thesis and energy metabolism. These results indicated
that P falciparum organelles seem perturbed by DOX
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treatment, suggesting that these are the drug's primary
targets.

Methods

Plasmodium falciparum growth conditions and protein
extraction

Parasites (chloroquine-resistant W2 clone) were main-
tained in continuous culture as described elsewhere [25],
at 10% haematocrit of type A* human RBCs suspended in
supplemented RPMI 1640 (Invitrogen) and 10% heat-
inactivated type A* human serum at 37°C in a gas mixture
of 5% CO, 10% O, and 85% N,. The medium was
changed twice daily. Parasitaemia was monitored daily
via microscope by examination of blood smears stained
with a RAL’"555 kit (Réactifs RAL). Parasite synchroniza-
tion was performed by sorbitol treatment (D-sorbitol,
ICN Biomedicals) as described elsewhere [26]. At the
ring stage, parasites were or were not exposed to DOX
(Sigma) at 10 uM (the IC,, as previously determined [27])
for a period of 24 h. Parasites at the schizont stages dur-
ing the second cycle after DOX exposure were extracted
from the RBCs. Control and treated groups consisted of
four biological replicates for the DIGE experiment and
three biological replicates for the iTRAQ experiment.
IRBCs were washed 3 times in PBS (Invitrogen) and lysed
by 0.1% saponin (Sigma) for 5 min. Free parasites were
sedimented by centrifugation (9,300 g for 5 min) and
washed with PBS 3 times and stored at -80°C. Parasites
were resuspended in 10 mM Tris-HCI buffer (pH 8) and
disrupted by ultrasonication (Vibracell 72412, Bioblock
Scientific) for 5 min on ice at maximum amplitude. After
ultracentrifugation (100,000 g for 1 h at 4°C), soluble pro-
tein fractions were recovered from the supernatant and
the pellet containing membrane protein fractions was
then suspended in 4% (w/v) 3-[(3-cholamidopropyl)dim-
ethylamonio]-1-propanesulfonate (CHAPS) (Sigma). All
of the fractions were precipitated in 100% acetone
(Sigma) to remove lipids, and the protein concentration
of each sample was estimated using the Lowry-based DC
assay (Biorad) according to the manufacturer's instruc-
tions. All of the samples were suspended in standard cell
lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 30 mM
Tris base, pH 8.5 (Sigma)) to obtain a protein concentra-
tion adjusted to 2.5 pug/pL.

2D-DIGE

Protein samples were minimally labelled with CyDye
according to the manufacturer's recommended protocols
(GE Healthcare). Briefly, soluble protein samples from
the control parasites (50 pug) and the DOX-treated para-
sites (50 pg) were labelled with 400 pmol of either Cy3 or
Cy5 (in four biological quadruplicates, with a dye swap)
and an internal standard (50 pg) was labelled with 400
pmol of Cy2, freshly dissolved in N, N-dimethylforma-
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mide (DMF) (Sigma), and incubated on ice for 30 min in
the dark. The reaction was quenched with 1 pL of free
lysine (10 nM) by incubation for 10 min on ice. Cy3-,
Cy5- and Cy2-labeled samples were then pooled, and an
equal volume of 2 x sample buffer was added (8 M urea, 2
M thiourea, 4% (w/v) CHAPS, 10 mM dithiothreitol
(DTT), and 1% (v/v) immobilized pH gradient (IPG) Buf-
fer 3-10 (GE Healthcare). The membrane protein samples
were treated as described above with either IPG Buffer 4-
7 or IPG Buffer 6-11 (GE Healthcare). The mixture of
labelled proteins was then separated by two-dimensional
gel electrophoresis (2-DE) (See additional file 1 for more
details).

2-D Image analysis

Gel images were acquired with a Typhoon™ Trio Image
scanner (GE Healthcare) at different excitation wave-
lengths (Cy3, 580 BP 30/green (532 nm); Cy5, 670 BP 30/
red (633 nm); Cy2, 520 BP 40/blue (488 nm)). Images
were cropped with ImageQuant’ software (GE Health-
care) and further analysed using DeCyder v6.5 (GE
Healthcare). The software was used to perform gel align-
ment, spot averaging and normalization and Student's ¢-
test to determine which protein spots changed in abun-
dance in response to DOX-treatment. The number of
detected spots showing a difference with a p-value of <
0.05 was then determined.

In-gel trypsin digestion

After imaging, the gels were stained either with Sypro
Ruby (Bio-Rad) according to the manufacturer's protocol
and then scanned using the typhoon scanner or with
Coomassie Brilliant Blue (CBB) G-250 as previously
described [28]. Spots of interest were manually excised.
Protein spots were digested overnight at 37°C with
sequencing-grade trypsin (12.5 pg/mL; Promega Madi-
son) in 50 mM NH,HCO, (Sigma). The resulting peptides
were extracted with 25 mM NH,HCO; for 15 min, dehy-
drated with acetonitrile (ACN) (Sigma), incubated with
5% formic acid (Sigma) for 15 min under agitation, dehy-
drated with ACN, and finally completely dried using a
SpeedVac. Samples were then stored at -20°C before anal-
ysis by MS.

iTRAQ labelling and strong cation exchange

After protein precipitation in acetone, the samples were
dissolved in 20 pL of dissolution buffer, reduced, alky-
lated, trypsin-digested and labelled using the iTRAQ
reagents four-plex kit according to the manufacturer's
instructions (Applied Biosystems). The resulting peptide
solutions from control and DOX-treated soluble protein
samples were labelled with iTRAQ114 and iTRAQ117,
respectively, and incubated at room temperature for 1 h.
Labelled peptides were then pooled and acidified by mix-
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ing with the cation buffer load iTRAQ reagent for a total
volume of 1 ml. The peptide mixture was subsequently
fractionated by strong cation exchange (SCX) chroma-
tography (See additional file 1 for more details). The elu-
tion was monitored by absorbance at 214 and 280 nm
(Additional file 2), and 40 fractions were collected. These
experiments were conducted in three different biological
replicates. The same protocol was applied to the mem-
brane proteins samples, but labelling was done with
iTRAQI115 (control) and iTRAQ116 (DOX-treatment).
Each fraction of iTRAQ-labelled sample was dried using
a Speedvac, reconstituted in 12 pL of buffer (1% v/v for-
mic acid in H,O) and analysed by nano-liquid chroma-

tography tandem mass spectrometry (nano-LC-MS/MS).

Protein identification by nano-LC MS/MS

Protein digests extracted from excised DIGE gel spots
were analysed by nano-LC-ESI-MS/MS. Purification and
analysis were performed on a C18 capillary column using
a CapLC system (Waters) coupled to a hybrid quadrupole
orthogonal acceleration time-of-flight tandem mass spec-
trometer (Q-TOF Ultima, Waters). Chromatographic
separations were conducted on an RP capillary column
(AtlantisTM dC18, 3 pum, 75 pm x 150 mm Nano
EaseTM, Waters) with a 180-200 nl.min-! rate of flow (See
additional file 1 for more details).

DIGE protein database search

The data were searched using Mascot software against
the P falciparum National Center for Biotechnology
Information non-redundant protein database (NCBInr,
NIH, Bethesda, MD, March 27th, 2008). Search parame-
ters allowed for one missed tryptic cleavage site, the carb-
amidomethylation of cysteine, and the possible oxidation
of methionine; the precursor and product ion mass error
tolerance was < 0.2 Da. All identified peptides had a Mas-
cot score greater than 28 (P falciparum, 12,220
sequences), corresponding to a statistically significant (p
< 0.05) confident identification. Moreover, among the
positive matches, only protein identifications based on at
least two different non-overlapping peptide sequences of
more than six amino acids and with a mass tolerance <
0.05 Da were accepted (Additional file 3). These addi-
tional validation criteria struck a balance that limited the
number of false positive matches without missing real
proteins of interest.

iTRAQ protein database search and quantification

Mascot distiller software (v2.1.1, Matrix Science) was
used to convert MassLynx.raw MS/MS data files into
mascot generic files (mgf). (See additional file 1 for more
details). For protein identification, mgf data files were
searched against a mixed file of Homo sapiens and P, falci-
parum sequences in the NCBInr (NIH, Bethesda, MD)
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protein database (229,804 sequences on September 12th,
2008 for soluble proteins and 230,260 sequences on
October 21st, 2008 for membrane proteins) using the
MASCOT algorithm (v2.2, Matrix Science). (See addi-
tional file 1 for more details). For protein quantification,
data analysis was performed with Multi-Q 1.6.1.1. as
described elsewhere [29]. The MassLynx.raw data files
from the Q-TOF Ultima (Waters) were previously con-
verted into files of the mzXML format by the massWolf
program [30]. (See additional file 1 for more details).
Geometric means of the ratios of DOX-treated protein to
control protein (iTRAQ117/iTRAQ114 for soluble pro-
teins and iTRAQ116/iTRAQ115 for membrane proteins)
and the standard deviation were calculated. Proteins with
ratios < 0.80 or = 1.20 between DOX-treated and
untreated experimental conditions were considered regu-
lated proteins, as reported elsewhere [31].

Bioinformatics predictions of biological processes and
subcellular localization of identified proteins

The NCBI GI (Genelnfo Identifier) numbers of P falci-
parum proteins identified were converted into standard
gene names for retrieval from the UniprotKB ID module
[32]. Then, in UniprotKB, PlasmoDB accession numbers
of proteins were retrieved for further analysis. Biological
processes and subcellular localization of differentially
expressed proteins were assessed using Gene Ontology
annotations downloaded from PlasmoDB [33]. The tran-
sit peptides that enable proteins to target the apicoplast
were identified by the PlasmoAP tool [34].

Quantitative real-time RT-PCR

The same parasite cultures used for the proteomic analy-
sis were also used to perform quantitative RT-PCR. Total
RNA was extracted with TRIZOL' reagent following the
manufacturer's recommendations (Invitrogen) and
treated with DNase (DNAfree’, Ambion). Total RNA was
quantified with the NanoDrop ND-1000 (Labtech), fol-
lowed by quality assessment with the 2100 Bioanalyzer
(Agilent Technologies) according to the manufacturer's
protocol. Acceptable A260/A280 ratios were in the range
of 1.8-2.2. Acceptable rRNA ratios (285/18S) needed to
be > 0.9, and RIN (RNA Integrity Number) values needed
to be > 8.0. Total RNA (1 pg) was reverse transcribed with
the High-Capacity cDNA Archive Kit as described by the
manufacturer (Applied Biosystems). The primer pairs
used (Eurogentec), (Additional file 4) were designed with
Primer Express software v2.0 (Applied Biosystems). Real-
time transcript quantification was performed using a
7900HT Fast Real-Time PCR system (Applied Biosys-
tems). Amplification reactions and the 2-2ACt method of
relative quantification to estimate relative expression of
mRNA targets were performed as previously described
[35]. All data were expressed as means * standard devia-
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tion. A two-tailed Student's ¢-test was employed to com-
pare RT-PCR gene expression levels. Statistical
significance was defined as p < 0.05.

Results

Phenotypic effect of DOX treatment

Ring stage parasites (> 95%) were incubated with 10 pM
DOX (i.e. corresponding to ICy;) for 24 h followed by a
chase period until the end of the successive cycle at 84 h.
Then, parasites were collected at the schizont stage for
several reasons. First, DOX exerts delayed effects against
P falciparum [36], i.e. exposing the parasites to DOX
does not lead to phenotypic effects at the end of the first
cycle but instead at the end of the successive cycle. A
chase period was applied because continuous DOX expo-
sure leads to almost 100% parasite lethality. Secondly, this
drug has an increased potency against the schizont stage
[17], and finally, protein synthesis in parasites is maximal
during trophozoite and schizont stages [37]. At the begin-
ning of the experiments, all cultures had a parasitaemia
equal to 2%. At the end of the experiments, parasitaemia
obtained from untreated and DOX-treated iRBCs were
7.9% + 0.7 and 3.7% + 0.5, respectively. Both control and
treated cultures were at the schizont stage (> 90%).

Plasmodium falciparum response to DOX treatment
according to 2D-DIGE analysis

Since membrane-associated proteins are generally under-
represented by two-dimensional electrophoresis, proteins
extracted from the schizont stages were separated into
soluble and membrane fractions to circumvent this limi-
tation. Then, four biological replicates from untreated or
DOX-treated samples were divided into soluble or mem-
brane protein fractions and their protein expression pro-
files were compared using 2D-DIGE methods. After
imaging, DeCyder software was used to detect spot levels
that were significantly deregulated by DOX treatment
(Figure 1 and additional file 5). Among the three type of
gels (with 18-cm 3-10, 4-7 and 6-11 linear IPG strips), a
total of 150 spots were considered to be significantly
deregulated (45, 45 and 60 spots respectively in the mem-
branaire protein gels with 4-7 linear IPG strip, in the
membranaire protein gels with 6-11 linear IPG strip and
in the soluble protein gels with 3-10 linear IPG strip); 95
spots (63%) were up-regulated and 55 (37%) spots down-
regulated in response to DOX treatment (p < 0.05, Stu-
dent's ¢-test, and spot ratios < 0.74 or > 1.35). Thirty five
spots (11, 12 and 12 spots respectively) could not be
excised manually (invisible after gel coloration compared
to scanning images with Typhoon). Then, 115 spots were
submitted to identification by nano LC MS/MS (34, 33
and 48 spots respectively). Sixty seven spots were identi-
fied by mass spectrometry (MS) (15, 20 and 32 spots
respectively). Forty eight spots were not identified (19, 13
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Table 1: Differentially expressed proteins in DOX-treated parasites (DIGE quantification).

Accession Name Spot MASCOT Peptides Ratios? Biological processP Predicted Fractiond
number score matched Localizationc©
PF13_0304 Elongation factor 1 alpha 1078 236 5 2.85% Translation Cytoplasm S
1111 226 4 2.65% S
1143 246 5 2.42* S
1026 309 6 231* S
848 411 9 2.04** M (2)
833 306 6 2.03** M(2)
1168 254 6 1.65% S
PF13_0143 Phosphoribosylpyrophosphate 964 174 3 2.36* Carbohydrate metabolism Apicoplast M (2)
synthetase
PFB0445c DEAD box helicase, UAP56 2246 138 2 2.25% Nucleic acid binding Unknown S
PFI1105w Phosphoglycerate kinase 1025 515 10 2.14* Carbohydrate metabolism Unknown S
993 343 6 2.07* S
PF14_0598 Glyceraldehyde-3-phosphate 1288 114 2 2.13% Carbohydrate metabolism Cytoplasm S
dehydrogenase
1295 276 5 1.89* S
1325 472 8 1.81% S
PFI1090w S-adenosylmethionine 1236 88 2 1.99% One carbon compound Cytoplasm M(1)
synthetase metabolism
PFF1300w Putative pyruvate kinase 800 217 4 1.95% Carbohydrate metabolism Apicoplast S
788 120 3 1.86% S
1672 110 2 1.70% M (1)
553 149 3 1.61%* M (2)
PF14_0368 2-Cys peroxiredoxin 1821 116 2 1.94* Anti oxidative stress Unknown M (2)
PFE0690c Rab1 protein 2221 171 4 1.89%* Intracellular protein transport Cytoplasm S
PF11_0396 Protein phosphatase 2C 2309 144 2 1.84* Protein amino acid Cytoplasm S
dephosphorylation
PFF1335c¢ 4-methyl-5(B-hydroxyethyl)- 2198 282 5 1.69* Thiamin biosynthesis Cytoplasm S
thiazol Monophosphate
biosynthesis enzyme
MAL13P1.283 TCP-1/cpn60 chaperonin family 958 828 13 1.64* Protein folding Cytoplasm M (1)
936 315 6 1.38% M (1)
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Table 1: Differentially expressed proteins in DOX-treated parasites (DIGE quantification). (Continued)

PFF1155w Hexokinase 795 123 3 1.61* Carbohydrate metabolism Unknown S
PF14_0425 Fructose-bisphosphate aldolase 1180 552 10 1.60%** Carbohydrate metabolism Unknown S
917 561 10 1.43* M(2)
PF14_0076 Plasmepsin 1 precursor 1406 215 4 1.58%** Haemoglobin Catabolism Membrane S
MAL8P1.69 14-3-3 protein 1647 71 2 1.54* Protein folding Unknown S
PF08_0131 1-Cys peroxiredoxin 2251 83 2 1.52% Anti oxidative stress Unknown M(1)
PF08_0074 DNA/RNA-binding Protein Alba 1237 113 3 1.51* Nucleic acid binding Nucleus M(2)
PF14_0486 Elongation factor 2 1264 164 4 1.48* Translation Cytoplasm S
PF13_0214 Elongation factor 1-gamma 1984 77 2 1.47% Translation Apicoplast S
PF10_0155 Enolase 1066 439 8 1.43%* Carbohydrate metabolism Cytoplasm M (1)
1089 584 10 1.35% M (1)
PFLO960w D-ribulose-5-phosphate 3- 2248 94 2 1.35%* Carbohydrate metabolism Unknown M (1)
epimerase
PF11_0117 Replication factor C subunit 5 1020 106 2 0.70% DNA replication Nucleus M (2)
PF08_0109 Proteasome subunit alpha type 5 2057 79 2 0.63* Ubiquitin dependent protein Unknown S
catabolism
PFLO185¢ Nucleosome assembly protein 1 967 170 4 0.61** Nucleosome assembly Nucleus S
PF11_0313 60S ribosomal protein PO 2081 100 2 0.60* Translation Mitochondrio M (1)
n
PF11_0282 Deoxyuridine 5'-triphosphate 2332 306 5 0.60* DNA replication Nucleus S
nucleotidohydrolase
MAL8P1.95 Conserved Plasmodium protein 1532 24 3 0.58* Unknown Unknown S
PF14_0678 Exp-2 1421 153 3 0.57** Unknown Membrane M (1)
PF11_0183 GTP-binding nuclear protein ran/tc4 1451 98 2 0.49* Nucleus transport Nucleus M (2)
PF13_0033 26S proteasome regulatory subunit 854 341 8 0.47* Ubiquitin dependent protein Nucleus M (2)
catabolism
PF14_0359 HSP40, Subfamily A 648 204 4 0.35% Protein folding Unknown M (2)

In bold: differentially expressed proteins commonly identified in DIGE and iTRAQ. aSignificant modification in protein ratios between DOX and control cells with * P < 0.05, ** P < 0.01, *** P <
0.001, Student's t-test. PData depicted from PlasmoDB (gene ontology biological process annotation). <Data depicted from PlasmoDB (gene ontology location annotation or PlasmoAP to predict
apicoplast addressing). 9S = soluble, pl 3-10; M = membrane (1) corresponds to pl 4-7 and (2) to pl 6-11.
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Control 1 DOX1 DOX2

Control 2

Figure 1 Examples of 2D and 3D representations of fluorescence
intensity of spots that were up and down regulated in response
to DOX treatment, as visualized with Decyder software in 2D-
DIGE analysis. (A) In the soluble proteins gel with pl 3-10, spot 2057
was down regulated under DOX treatment and was identified as a pu-
tative protein: proteasome subunit alpha type 5 (PF08_0109). (B) In the
membrane proteomic map with pl 4-7, spots 936 and 958 were up reg-
ulated under DOX treatment and identified as isoforms of the same
putative protein: TCP-1/cpn60 chaperon family (MAL13P1.283). (C) In
the membrane proteomic map with pl 6-11, spot 553 was up regulat-
ed and identified as a putative pyruvate kinase (PFF1300w).

and 16 spots respectively) and 20 spots (5, 9 and 6 spots
respectively) were not retained, because comigration of
proteins confounded the ability to identify individual pro-
teins. Finally, 47 protein spots were identified (Table 1).
However, some proteins were detected in more than one
spot, indicating different isoforms. A total of 32 distinct
proteins, according to their accession numbers, were
finally identified (Figure 1) (Table 1, peptide details in
Additional file 2). Among these proteins, 22 were up-reg-
ulated, and 10 were down-regulated. They were classified
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according to their biological functions in Table 1. Some
proteins were identified as being involved in primary
metabolism (e.g., carbohydrate, protein and amino-acid
metabolism, and DNA replication). Proteins involved in
anti-oxidative stress (PF08_0131, 1-Cys peroxiredoxin in
spot 2251 and PF14_0368, 2-Cys peroxiredoxin in spot
1821) and two proteins with unknown functions were
also identified. Several isoforms of the same protein
(PF10_0155, enolase in spots 1066 and 1089; PF14._0598,
glyceraldehyde-3-phosphate dehydrogenase in spots
1288, 1295 and 1325 in Figure 1A and Table 1) were iden-
tified in adjacent spots.

Plasmodium falciparum response to DOX treatment
according to iTRAQ analysis

The same soluble and membrane protein extracts used
for 2D-DIGE analysis were subjected to iTRAQ analysis.
For this analysis, three biological replicates from
untreated or DOX-treated parasites were digested, and
the peptides were labelled with different isobaric tags. Of
the soluble protein samples, 422 proteins were confi-
dently identified including 246 plasmodial proteins
(58.3%) and 176 human proteins (41.7%) in the three bio-
logical replicates. Among them, 169 were quantified (i.e.,
with at least 4 labelled, non-degenerated peptides),
including 14 human proteins (8.3%) and 155 plasmodial
proteins (91.7%). Twenty-two proteins displayed signifi-
cant differences in expression levels (proteins with fold
change < 0.80 or = 1.20 were considered as differentially
expressed proteins); 18 of these proteins were up-regu-
lated, and four were down-regulated following DOX
exposure (Table 2). In membrane protein samples, 308
proteins were confidently identified, including 204 plas-
modial proteins (66.2%) and 104 human proteins (33.8%)
in the three biological replicates. Among them, 156 were
quantified, including 9 human proteins (5.8%) and 147
plasmodial proteins (94.2%). Eighteen proteins displayed
significant differences in expression; 14 of these proteins
were up-regulated and four were down-regulated follow-
ing DOX exposure. In total, 40 proteins were differen-
tially expressed in response to DOX treatment (Table 2);
80% were up-regulated (32 out of 40), and 20% were
down-regulated (8 out of 40). The proteins up-regulated
by DOX treatment were associated with haemoglobin
catabolism, protein synthesis, protein processing, anti-
oxidative stress and phospholipid metabolism. Down-
regulated proteins were mostly associated with protein
synthesis/processing or nuclear transport. A substantial
proportion of the proteins (20%, 8 out of 40) have not
been assigned to a biological function yet. Two up-regu-
lated proteins were identified as human proteins: biliver-
dine reductase and S100-calcium binding protein A4.
Their function and location in human cells were precised
in Table 2.
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Table 2: Differentially expressed proteins in DOX-treated parasites (iTRAQ quantification).
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Accession Name Peptides Ratios + SD Biological Predicted
number2 quantified processb Localization¢
PF13_0130 Vacuolar ATP synthase subunit g 3 247 £1.07 Vacuolar Membrane
acidification
PFC0735w 40S ribosomal protein S15A 3 1.93+0.71 Translation Cytoplasm
putative
PF08_0074 DNA/RNA-binding Protein 6 1.82+0.08 Nucleic acid Nucleus
Alba, putative binding
MAL13P1.214 Phosphoethanolamine N- 6 1.79£0.47 Phosphatidylcholi Unknown
methyltransferase ne biosynthesis
PF10_0068 RNA binding protein putative 3 1.76 £0.16 Nucleic acid Apicoplast
binding
PFB0340c Serine repeat antigen 5 (SERA-5) 8 1.76 £ 0.37 Proteolysis Unknown
PFC0920w Histone H2A variant putative 3 1.59+0.25 Nucleosome Apicoplast
assembly
PFI1090w S-adenosylmethionine 5 1.57 £0.25 One carbon Cytoplasm
synthetase compound
metabolism
PFB0915w Liver stage antigen-3 4 1.54£0.04 Unknown Membrane
PFL1545c¢ Chaperonin cpn60 3 1.52+0.40 Protein folding Apicoplast
PFF0835w Conserved Plasmodium protein 5 1.50 +0.01 Unknown Unknown
PF08_0110 Rab18 GTPase 3 1.49+0.13 Intracellular Cytoplasm
protein transport
PF14_0078 Plasmepsin Ill|HAP protein 6 1.48 £ 0.04 Haemoglobin Membrane
Catabolism
PF14_0324 Hsp70/Hsp90 organizing protein 17 1.46 £0.21 Protein folding Unknown
putative
PF10_0115 QF122 antigen 9 1.45+0.04 Nucleic acid Apicoplast
binding
PF14_0655 RNA helicase-1 putative 5 1.44 +£0.01 Translation Cytoplasm
PF14_0201 Surface protein putative Pf113 6 1.44 £0.07 Unknown Membrane
PF14_0486 Elongation factor 2 16 1.41+0.30 Translation Cytoplasm
PF10_0323 Early transcribed membrane 4 1.40 +0.08 Unknown Membrane
protein 10.2
PFL1170w Polyadenylate-binding protein 12 1.35+0.05 Transcription Unknown
putative
gi|544759 Biliverdin reductase B 2 1.35+£0.16 Porphyrin Cytoplasm
metabolism
PFE0870w Transcriptional regulator 4 1.34+£0.10 Transcription Nucleus
putative
gi|4506765 $100 calcium-binding protein A4 2 1.34 +0.06 Cell growth Cytoplasm
PF11_0062 Histone H2B 7 1.34+0.12 Nucleosome Apicoplast
assembly
PF14_0391 60S ribosomal protein L1 2 1.32+£0.13 Translation Cytoplasm
putative
MALS8P1.69 14-3-3 protein 6 1.30+0.19 Protein folding Unknown
MAL13P1.56 M1-family aminopeptidase 5 1.28 +0.06 Haemoglobin Apicoplast
Catabolism
PF14_0439 Leucine aminopeptidase 4 1.27+0.18 Haemoglobin Apicoplast
putative Catabolism
PF08_0096 RNA helicase putative 3 1.24+0.04 Transcription Unknown
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Table 2: Differentially expressed proteins in DOX-treated parasites (iTRAQ quantification). (Continued)

PF08_0131 1-Cys peroxiredoxin 9

PFE0585¢ Myo-inositol 1-phosphate 10
synthase putative

PFL1720w Serine hydroxymethyltransferase 3

PF14_0167 Prefoldin subunit 2 putative 4

PFI1780w Plasmodium exported protein 2
(PHISTc)

MAL8P1.95 Conserved Plasmodium protein 5

PFE0290c Conserved Plasmodium protein 3

PFAO110w Dnal protein putative 5

PF08_0087 Importin alpha putative 5

PFD0090c Plasmodium exported protein 4
(PHISTa)

PF11_0351 Heat shock protein hsp70 6
homologue

1.22+0.15 Anti oxidative Unknown
stress
1.22+£0.03 Phospholipid Unknown
biosynthetic
process
1.21£0.01 One carbon Unknown
compound
metabolism
0.80 £ 0.05 Protein folding Cytoplasm
0.80+0.19 Unknown Apicoplast
0.76 = 0.09 Unknown Unknown
0.75 +0.06 Unknown Unknown
0.74+0.24 Protein folding Membrane
0.73+0.12 Nucleus transport Nucleus
0.61+0.14 Unknown Apicoplast
0.54 +£0.04 Protein folding Mitochondrion

In bold: differentially expressed proteins commonly identified in DIGE and iTRAQ. aPlasmoDB accession number, except for two human
proteins (NCBI accession number). PData depicted from PlasmoDB (gene ontology biological process annotation). <Data depicted from
PlasmoDB (gene ontology location annotation or PlasmoAP to predict apicoplast addressing).

Comparison of differentially expressed proteins identified
by 2D-DIGE and iTRAQ

Of the deregulated proteins identified by DIGE, 19% (six
out of 32) were also identified by iTRAQ. The proteins
identified by both approaches (DIGE and iTRAQ) were
similarly deregulated; for example, S-adenosylmethionine
synthetase (DIGE fold change of 1.99 in Table 1 and 1.57
with iTRAQ in Table 2) and 1-Cys peroxiredoxin (fold
change of 1.52 with DIGE and 1.22 with iTRAQ). The
metabolic processes in which the proteins are involved
are similar and, for the most part, changes in protein
expression levels were similar between the two
approaches (Figure 2). The main metabolic systems iden-
tified by both proteomics approaches were protein
metabolism, the anti-oxidant response mechanism,
nucleic acid binding and transport mechanisms. Both
approaches revealed a down-regulation of proteins
involved in protein synthesis metabolism and transport
mechanism and an up-regulation of proteins involved in
protein metabolism and anti-oxidant response mecha-
nisms (Figure 2). However, proteins involved in nucleic
acid binding were characterized differently by the two
methods; these proteins were up-regulated according to
the iTRAQ data and down-regulated according to the
DIGE data. Proteins involved in carbohydrate metabo-
lism were all up-regulated and only identified by the
DIGE method (Table 1). In addition, proteins involved in
specific metabolic pathways were only identified by

iTRAQ (Figure 2 and Table 2). Those proteins identified
by iTRAQ alone were either membrane proteins involved
in vacuolar acidification or enzymes involved in phos-
pholipid metabolism (Table 2). Fifteen soluble proteins
were identified in the soluble fractions but not in the
membrane fractions (Table 1). Fourteen proteins were
identified only in membrane fractions, but only two are
actually thought to belong to the membrane, calling into
question the effectiveness of the 2D-PAGE approach for
characterising membrane proteins. The iTRAQ method,
in contrast, allowed identification and quantification of a
large number of high molecular weight proteins and
membrane proteins (Table 2).

Subcellular localization of regulated proteins

As predicted by gene ontology in PlasmoDB and Plas-
moAP (for apicoplast addressing), the cellular localiza-
tion (Table 1 and Table 2) of the 64 differentially
regulated plasmodial proteins identified by the two pro-
teomic approaches was as follows: 21% in the cytoplasm,
19% in the apicoplast, 13% in the membrane, 13% in the
nucleus, 5% in the mitochondria and 29% unknown.
Cytoplasmic, apicoplastic and membrane proteins were
generally up-regulated, while nuclear and mitochondrial
proteins were more often down-regulated (Figure 3). All
of the identified apicoplastic proteins were encoded by
the nuclear genome of P, falciparum and not by its plastid
genome.
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iTRAQ

2D DIGE

Up-regulated
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Figure 2 Functional classification of differentially expressed proteins under DOX treatment identified in iTRAQ and DIGE experiments.

® Protein metabolism

® Nucleic acid binding

m Anti oxidative stress

B Transport

m Lipid metabolism

= Carbohydrate metabolism
@ Thiamin biosynthetis
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RT-PCR quantifications

To validate the proteomics results, quantitative RT-PCR
was performed because antibodies against P. falciparum
are not commercially available, and the proteomics data
suggest that apicoplast function was particularly per-
turbed by DOX-treatment. Thus, three apicoplast tran-
scripts were chosen to evaluate the modifications
observed in this organelle following DOX-treatment.
PFI1090w (the S-adenosylmethionine synthetase) and

m Up-regulated @ Down-regulated

16

lias.l

Figure 3 Number of differentially expressed proteins, identified
by iTRAQ and DIGE experiments, corresponding to different
functions and subcellular localizations.

MALS8P1.95 (a conserved Plasmodium protein), which
had similar expression profiles (up and down regulation
respectively) according to both DIGE and iTRAQ, also
had similar expression profiles at the transcript level
(Table 3). PF14_0439 (leucine aminopeptidase) was
shown to be upregulated by iTRAQ analysis and was also
up-regulated at the transcript level. Moreover, mRNA for
the PftufA, PfsufB and PfclpC proteins encoded by the
plastid genome, which were not quantified at the protein
level by DIGE or iTRAQ, were down-regulated at the
transcript level. Two transcripts of PF07_0033 (CG4) and
PFE1195w (Karyopherin beta) proteins were used as pos-
itive controls in RT-PCR experiments (Their qRT-PCR
ratios were 1.05 + 0.09 and 0.98 + 0.12 respectively)
because they were not deregulated in iTRAQ proteomic
approach (iTRAQ ratios were 1.01 + 0.03 and 1.07 + 0.05
respectively), (Table 3).

Discussion

In the present study, proteome changes was researched in
Plasmodium falciparum following DOX treatment in
order to clarify the action mechanisms of this drug using
two proteomic approaches, 2D-DIGE and iTRAQ. These
techniques have been shown to be complementary in
studying protein changes as they have distinct physico-
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Table 3: Quantitative RT-PCR results.
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Accession nr Description DIGE ratios iTRAQ ratios qRT-PCR ratios?
PFCOMPIRB-TufA TufA NA NA 0.30 +£0.04
PFCOMPIRB-SufB SufB NA NA 0.32+0.12
PFCOMPIRB-ClpC ClpC NA NA 0.26 £ 0.08
PFI1090w S-adenosylmethionine 1.99 1.57+£0.25 1.72+0.16
synthetase
MAL8P1.95 Conserved 0.57 0.76 + 0.09 0.44 +0.03
Plasmodium protein
PF14_0439 Leucine NA 1.27+£0.18 1.48 £0.23
aminopeptidase
putative
PF07_0033 Cg4 protein NA 1.01£0.03 1.05+0.09
PFE1195w Karyopherin beta NA 1.07 £0.05 0.98 £0.12

agRT-PCR ratios correspond to the relative expression of target mRNA between the DOX treated and the control (mean of three biological

replicates). NA: not available.

chemical properties that favour identification of different
proteins [38,39]; that is the reason why a 19% overlap was
observed between deregulated proteins identified by the
both methods. Analysis of the DIGE results detected dif-
ferentially expressed proteins with PTMs (post transla-
tional modifications) after DOX treatment (Table 1 and
Figure 1). In particular, enolase and aldolase have previ-
ously been reported to possess several differentially
expressed isoforms during the schizont stages of P, falci-
parum [40]; these two proteins are localized in Maurer's
cleft [41] and in the food vacuole [42]. However, little is
known about the role of these PTMs in the plasmodial
regulation of protein expression under either physiologi-
cal conditions or anti-malarial treatment.

Few proteomic studies have been undertaken to eluci-
date the mechanisms of drug action in P. falciparum but
all share some common features with the present work
[22,24,43]. After exposure to anti-malarial treatment,
proteome analysis has generally revealed a low number of
differentially expressed proteins with an upregulation of
proteins involved in glycolysis, chaperoning or redox
metabolism. In a stable isotope labelling experiment after
artemisinin and chloroquine treatment in schizont stages
of P. falciparum, among more than 800 quantified pro-
teins, only 41 and 38 were up-regulated, respectively [24].
However, none of these proteins were associated with
heat shock response or glycolysis functions, probably
because the design of the study did not allow it, e.g. the
SILAC method, which explores only newly synthesized
proteins, was used. In a gel-based study, arthemeter and
lumefantrine treatment were respectively associated with
an up-regulation of 22 and 41 proteins [43]. In another
study, chloroquine treatment increased the number of
oxidized proteins in the schizont stage of parasites [22].

In these two last studies, four glycolysis enzymes (eno-
lase, aldolase, phosphoglycerate kinase and glyceralde-
hyde-3-phosphate dehydrogenase) and one heat shock
protein (HSP 70 homolog) were commonly identified as
up-regulated proteins under lumefantrine or chloroquine
treatment, which was similar to the results seen under
DOX treatment. The increased expression of redox
metabolism proteins (1-Cys peroxiredoxin, 2-Cys perox-
iredoxin) and 11 other "associated proteins" (Table 1 and
Table 2), which have been recently shown to be potential
targets of thioredoxin, glutaredoxin and plasmoredoxin
[44], might represent another non-specific common fea-
ture of parasite responses to drug treatment.

Alternately, some metabolic pathways (Figure 4) might
represent a specific response of parasites to DOX. Several
studies have shown that tetracyclines, which are mem-
bers of the DOX family, directly inhibit mitochondrial
protein synthesis [13,45,46]. This inhibition would lead to
a decrease in the mitochondrial respiratory chain activity
[16] because the plasmodial mitochondrial genome
encodes cytochrome ¢ oxidase subunits I and III and apo-
cytochrome b. The mitochondrial respiratory chain is
coupled to dihydroorotate dehydrogenase activity, which
has been shown to be depressed under tetracycline treat-
ment [14]. This enzyme is involved in de novo pyrimidine
biosynthesis, and its inhibition is associated with
decreased levels of nucleotides and deoxynucleotides in P
falciparum in response to tetracycline treatment [15].
DOX inhibition of mitochondrial protein synthesis could
be responsible for DNA replication impairment as sug-
gested in the present study, i.e. replication factor C sub-
unit 5 and deoxyuridine 5'-3P nucleotidohydrolase were
down-regulated (Figure 4).
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Figure 4 Overview of metabolic pathways affected by doxycycline treatment in P. falciparum schizont stages adapted from Ginsburg, Ha-
sites.huji.ac.il/malaria/. Metabolic pathways are indicated by boxes and metabolic steps by arrows.
Up- and down-regulated proteins under DOX treatment are indicated in red and blue, respectively. Abbreviations: ALA, aminolevulinic acid; DOXP,
deoxyxylulose phosphate; ER, endoplasmic reticulum; GA, Golgi apparatus; GA3P, glyceraldehydes-3-phosphate; GPI, glycosyl phosphatidylinositol;
Hb, haemoglobin; PEP, phosphoenolpyruvate; PDH, phosphate dehydrogenase; PG, phosphoglycerate; PPT, phosphoenolpyruvate transporter; PYK,

Nuclear encoded proteins

18 up-regulated proteins
2 down-regulated proteins

Two recent works have confirmed specific action by the
cyclines on the P. falciparum apicoplast [17,18]; replica-
tion and transcription of the plastid genome as well as the
import of nuclear encoded proteins into the plastid
matrices' were inhibited in response to cycline treatment.
Cyclines are assumed to inhibit plastid protein synthesis,
but the precise mechanism of action has not yet been
identified. The apicoplast genome encodes different
tRNAs, rRNA, TufA (a translational elongation factor),
SufB (involved in iron metabolism and modification of
tRNAs [47]), ClpC (a protease required for nuclear-
encoded protein import into the apicoplast) and a DNA
dependent RNA polymerase (involved in transcription).
This organelle is implicated in fatty acid and isoprenoid
precursor synthesis and in heme biosynthesis in tight
association with mitochondria [48]. In the present study,
ClpC, TufA and SufB were found to be down-regulated
under DOX treatment, but only at the transcriptional

level. The inhibition of ClpC could explain the defect in
protein import into the apicoplast and consequently the
overexpression of 12 encoded nuclear proteins that are
localized to the apicoplast (Figure 4).

Conclusions

The present study has given the first insights into changes
in protein regulation in P falciparum upon DOX treat-
ment, suggesting that P, falciparum apicoplasts and mito-
chondria are the targets of DOX. It has also confirmed
that 2D-DIGE and iTRAQ are powerful and complemen-
tary techniques in studying protein changes in response
to drug treatment. However, more experiments will be
needed to characterize the specific molecular mecha-
nisms of DOX treatment. In order to prove that DOX
inhibits plastid or mitochondrial translational further
biochemical approaches would probably be required.
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