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1 Prior distributions for the number of changepoints and the number of parents
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Figure 1: Prior distributions for the number of CPs (left) and the number of parents (right). The number of
CPs (k) (respectively the number of parents (s)) is sampled from a truncated Poisson with mean X (resp. A),
which is drawn from an Inverse Gamma distribution : A\, A ~ Ga(«, 3). Here we set the maximal number of
CPs k = 10 and the maximal number of Parents 5 = 5. We choose the hyperparameters o = 1 and § = 0.5
in order to limit the dimension and to preserve the network sparsity.



2 Move acceptation based on the network structure only

Following Andrieu and Doucet in their RJ-MCMC approach for model selection [1], we integrate out the
joint posterior distribution for parameters (k*, &, s*,Pa’, ", 0", 2"),

Pr(kzi,gi,si,Pai,Gi,ai,xi) = Pr(k') Pr(¢'|kY)
k/L . . . . . . . . . . . .
x| Pr(=}|&,—1. &, sh, Pay, 05, 04) Pr(s},, Pay, 04]0}) Pr(oh) (1)
h=1

over the parameters (6, 0%) to obtain an expression of the posterior density Pr(k?,¢%, s*, Pa’, z*). The
regression model parameters (6%, %) are not related to the network topology which is our main interest
here. The integration over §;, (normal distribution) and over o}, (inverse gamma distribution) yields,
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where normy and normy are the normalization constants required by the truncation of the Poisson
distributions with mean X and A respectively, and matrices Py, M} and vector dj, are defined as follows,
with I referring to the identity matrix of size m* (&}, — &},_,),

Pi = I-D(w, )MiD(z,,), )
7 52 -

M = 52+1(DT(ITZ)D(ITi)) ’ @
g = MiD'(x,)u )

where the symbol | denotes matrix transposition, ¥p,; = 5‘2D1T:,1i (2)Dpy; (x) and Dp,; (2) is a matrix of
1 = h 3 1

size m* (&}, — &) x (sh + 1) whose first column is a vector of 1s when the regression model includes a
constant and the j + 1" column contains the observed 4(eventually repeated) value

(T})(ei_, —1)<t<(¢i —1)1<i<m for all parent gene j in Paj,.

We use this posterior distribution for the proposals related to the changepoint structure (CP birth or CP
death). The generation of the regression model parameters (67, 07) is only optional, and only used when an
estimation of their posterior distribution is wished for. Also, a changepoint birth or death acceptance is
performed without generating the regression model parameters for the modified phase. Thus the
acceptance probability of the move does not depend on the regression model parameters (6}, 0p) but only
on the network topology in the phases delimited by the changepoint involved in the move.



3 Details of the ARTIVA algorithm
The technical details of the implementation of ARTTIVA herafter. The RJ-MCMC acceptance probability
for a changepoint ‘birth’ can be written as min(1, ry x+1) where

Tk k+1 = (posterior distribution ratio) x (proposal ratio) x (Jacobian). (6)

The changepoint ‘death’ is accepted with probability min(1, 74 x—1). We outline below the computation of
the proposal ratio and the Jacobian in (6). The four different moves are defined using heuristic
considerations; our only consideration is that the correct invariant distribution of the Markov chain is
maintained. As pointed out in [2], a particular choice of move proposal will only influence the convergence
rate of the algorithm but not the properties of the stationary distribution.

3.1 Birth of a changepoint

Let &% be the current changepoint vector containing k? changepoints. When considering the birth of a new
changepoint, we first draw a new changepoint position £* uniformly among those that do not currently
contain changepoints,

EE ~ U s apqery- (7)

The new changepoint is within current phase h* of the target gene ¢, i.e. f,il*_l <E < fz*. This phase
starts at changepoint &;. ; and ends at &;. — 1, where { = 2 and &}, = n+1 as previously defined. The
proposed new changepoint vector is £ = €' U {£*}.
The proposal ratio is given by

dk+1 Q( ga r |£+7F+)
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is the probability of drawing new changepoint £ when adding an extra changepoint to vector £, and ¢(T'")
is the probability of drawing new topology I'" when adding changepoint £* to the current network with
topology defined by (£,T") and
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where p(s*|A) = %;AA)% is a truncated Poisson distribution with parameter A (defined in Equation

(?77in the main text of the paper), normy is the normalization for the truncated Poisson distribution),

p(T*|s*) = (51*) = W and I‘;‘L}L , F%Tﬁ are respectively the segments to the left and to the right of the
: .

new changepoint £*.




Furthermore q(&, T, TF) = q(€|€T)q(T]&, T+, £€T) is the probability of removing changepoint £* = £T\¢
when removing a changepoint from the changepoint vector £+ where

q(&ler) =

(k+1)
and

1
5 T £TH

q(D|E, T, ¢7) = or
1 D% =T%,

as the topology of the new segment is the topology of one of the two merged segments.
Finally, the proposal ratio writes,
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(10)

The Jacobian equals 1. Let s = s U {s*} and 77 = 7 U {7*} define the sets of predictors of the phases

delimited by the proposed new changepoints vector £7. We compute the posterior distribution ratio

Pr(k+1,6%,st 7t |y)
Pr(k.£,s,7|y)

from equation (2). Then from proposal ratio (8), we compute,
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where, for all hin {1,..,ki+1}, T, =T (0%) The birth of the proposed changepoint is
accepted with probability,

anger1(6,67) = min{1, 71 (§,67)} (12)
If a birth is accepted then the sample of new parameters (a*,c*) from (21,22) for the new phase whose set

of predictors is defined by (s*,7*) and the state of the Markov chain becomes (k + 1,£T,sT, 77, a%,07),
where a™ = aU {a*} and 0" = o U {o*}. Otherwise the Markov chain remains unchanged.

3.2 Death of a changepoint

When considering the death of an existing changepoint, we first draw an existing changepoint 52 uniformly
from {gﬁ}ghéki and collapse the neighbouring phases of changepoint ffl into a single phase. The proposed
new changepoint vector is £~ = £\{¢}}, and the set of parents for the new phase is the set Paﬁl of parents
of gene 4 in phase h with probability 1/2; the set Pafl 41 of parents in phase h + 1 otherwise. The
acceptance probability is then given by,

Oék’k;,l(gi,g_) :min{l,rl;l_l)ki(é_,fi)}. (13)
If accepted, the neighbouring phases are collapsed into one and the state of the Markov chain becomes
(k* — 1,6 ,s7,Pa”,07,07) where the parameters with superscript ”—" are the reduced parameter set

after deletion of one phase.



3.3 Shift of a changepoint position

Moves of changepoint positions are implemented via a Metropolis update. We first choose an existing
changepoint ¢! uniformly from {fﬁ}lghg xi- Then we propose to update changepoint ¢! by drawing a new
position £}* uniformly from [max{¢, —W/2,&;, | +1},¢&, — 1 U[&), + 1, min{&, + W/2,&),,, — 1}], where W
is a tunable window size. For short time-series, we choose W = 2. The new changepoint vector £*,
obtained by replacing & with £}*, is accepted with probability ay(£%,£*) = min{1, r (&%, £*)} where,

_ Pr(ki €%, 5% Pallz) q(¢7]€)
Pr(ki, &', ', Palz) q(§*]€7)”

and ¢(£*|¢%) is the probability of drawing new changepoint £* given . The number of new changepoint

vectors that can be proposed by changing the position of one element of vector £ is equal to k'W — e

where e is the number of impossible position changes because the gap between two successive changepoints

is smaller than W/2.

We thus have

(€€ (14)
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where xz* refers to the gene ¢ expression levels observed in phase h of the changepoint vector £* and P,ﬁ* is
the projection matrix build from «}* as defined in (3).

3.4 Phase Update (Updating the network topology within phases)

For regression model change moves we use a second level of RJ-MCMC computations based on the model
selection procedure by Andrieu and Doucet [1,2]. When such a move is chosen, we consider regression
model changes within all current phases. So for all phases h of target gene i, we successively propose three
different moves: birth of a new parent, death of an existing parent or update of the regression model
parameters (fp,: ,0},). The parent birth and death moves represent changes from s}, to sj, + 1 or sj, — 1

parents in the regression model. The probability for choosing theses moves are, respectively, bsﬁ , dé”ﬁ and
Vi, and satisfy bsfh, + dS;:? v =1 They are defined as follows,
) Prs(s} +1) ) Prs(si — 1)
bS;ll = Cr min {].7 T(s;l) and dgz = Cr Imin ].7 T(S%) . (16)

We take cg = 0.5 so that parent birth or death moves are often proposed. This allows us to range over the
set of all possible model structures. When considering a parent birth, a new parent is uniformly drawn
from {1, ...7p}\{Pa§L} and we set the new parents subset Paj" = Paj U {j*}. A parent birth move, that is a
change from Paﬁl_to Paﬁj‘, is accepted with acceptance probability

ast,s§L+l (Pa;u Pa‘?—) = min{l, rsi,s}ﬂrl (Paéu Pa;j—)} Where,
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The computation of r: . +1(Paj},, Pait) is carried out by following Andrieu and Doucet [1]. In the same

manner, a parent death move is accepted with probability Qi s _,(Pal, Pajf) =

min{1, 7‘:,;1 . (Paj~,Pay)}. The update of regression model parameters is computed from equations (21)
“h—1""h

and (22) in Algorithm 1.



Algorithm 1: Phase update move

Edge birth
Choose a new parent j* ~ Uy 3\ (pai ) and set Pa/" = Paj, U {j*}.
Compute o i 41 (Pay, Pajt) = min{l, rsi st 1(Pay, Pa;")} from (17).
Sample u ~ Uyg 13-
if u< O‘s§L7s§L+1(Paiz’ Paj") then

| the model in phase h becomes (s, + 1,Pa"),

else the model remains unchanged: update parameters (ai, o} ) according to equations (21, 22).

Edge death

Choose one existing parent, j* ~ Uyp,i y, and set Paj~ = Paj\{j*}
Compute o o _1(Pay,, Pay,") = min{l,ry . 1 (Paj, Paj )} from (17).
Sample u ~ Uyg 13-
if w<og o 1(Pay, Pa,) then

L the state ¢ becomes (s — 1,Paj ),

else the model remains unchanged: update parameters (ai, o} ) according to equations (21, 22).

Update regression parameters

i i i vo +m' (&1 — &) 1 i
(0Pl Py ~ 79 (2= ) W0 Sy o) (21)
i i i 8 -1 i §%(a})? -1
g o P 04, v N (557 (Dhy 0D2 @) Dy (@) ahs T (D @Dy @) ) (22)

3.5 Updating hyperparameters

The parameter A is updated at each iteration of this 2-step RJ-MCMC procedure and the parameters
(62, A) are updated whenever the fourth move "Phase update’ for the network models within phases is
performed. The updating of the hyperparameters is carried out as follows,

) 1 )
ALK~ Ga(5 + K +enl+e), (18)
. 1 .
A|sy, ~ ga(§+s}l+51,1+52), (19)
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h



4 Convergence of the algorithm

The 4" move "Phase update’ (for updating the network topology within phases) has been adapted from
the RJ-MCMC procedure for model selection developed by Andrieu and Doucet [1], in which it has been
established that the Markov chain generated by the iterations converges to the posterior distribution of the
model parameters. This convergence occurs at a uniform geometric rate (see proof in [1]).

The three other moves for changepoint detection (‘CP birth’, ‘CP death’ and ‘CP shift’) are based on the
same approach, performing model selection for the changepoint position vector. In practice, the number of
50,000 iterations — used in all our analyses — seems sufficient: the posterior probability p(k|z) is
stabilized as shown in Figure 2.
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Figure 2: Instantaneous estimation of the posterior distribution of the number of changepoint k for gene
anarchist (CG5785) in the *Drosophila life cycle’ data by Arbeitman et al. [3].



5 Bayes factor (BF) computation

The Bayes factor [4] is a summary of the evidence provided by the data in favour of one scientific theory
(H1), represented by a statistical model, over another Hy. Often the null model is the complementary
model to the assumption to be tested Ho = H.

The idea is to begin with data D assumed to have arisen under one of the two hypotheses H; and Hy
drawn from probability densities P(D|H1) or P(D|Hy), respectively. Given a priori model probabilities
P(H;) and P(Ho) =1 — P(H;), the data allow us to construct a posteriori probabilities P(H;|D) and
P(Ho|D) =1— P(H1|D).

These posterior probabilities are obtained through an estimation procedure. The Bayes Factor is defined as

follows,

_ P(D[H:1)
BE = B(Diry)

From Bayes’s Theorem, this Bayes can be written as

o POLID) P(HY)
P(Ho|D) P(H1)
Following Kass and Raftery [4], a model will (i) not be supported with a Bayes factor below 3, (ii) be
positively supported with a Bayes factor comprised between 3 and 20 and (iii) be strongly supported with
a Bayes factor over 20.
We detail below the computation of the Bayes factor used in the main text. For each case, we first define
the Bayes factor for the hypothesis to be tested, then we describe the computation process.

5.1 BF for the number of changepoints

Definition

Let n be the number of time points measurements, k be the maximum number of changepoints for each
gene ( k < n) and kK’ be the number of changepoints for gene i (1 < i < p).

For each gene 4, for all 0 < k < k, we computed the Bayes factor related to the following assumptions:

Ho: ’there are k changepoints for gene i in the network model’ (i.e. k' = k)

Hli Hi()

P(H1|D) P(H,)

P(Ho|D) P(H1)

1— P(ki=kD) Pki=k)
Pk =klD) 1—-Pki=k)

Using the marginalization over the network structures and parameters,
P =kD)= Y P, s, Pa’, 00" D)y
ki gt st Pai,0i ot
the posterior probability P(k! = k|D) is given by:

Number of iterations where the current model contains 1 changepoint exactly

P(k' = k|D) =
( D) Total number of iterations
where the number of iterations refers to the number of iteration after the burn-in period.
Given that the distribution of k' is a truncated Poisson with mean A (truncated to the maximal number of
changepoints k), 4. e.
_ ) AF
Vk <k,P(k'=k)=C()\) T exp(—A)



- -1
where C(\) = (exp(—)\) Ef:o i‘—:) is a normalization constant and A ~ Ga(c, ), the probability of

observing k changepoints for gene i writes,

= /]R+ c(\) o exp(—\) () A exp(—BA) dA

Computation of P(k" = k)
(a) If the truncation threshold k is large (approximately starting from & > 20), then C()\) ~ 1 and we
have,

! ')

Ba F(Oé+k) (ﬁ“‘ 1)a+k k)1
K (B + 1)tk D(a) /]R+ a1 F) AOFR=L exp (—(B 4+ 1)A) dA

o k
= o F(O;Jrk ) foa(a+k,p+1) =1 -
k(B + 1)tk T'(a) Ry

Poi=k) = [ X exp(=) o e exp(—A) dA

(b) If the truncation threshold k is small (as in our case), then C'(\) # 1. Therefore the computation of
P(k" = k) was performed numerically. Using Mathematica we computed numerically the values of the
probabilities P(k) for k =0 to k = k.

For example, for k = 10, o = 1 and 3 = 0.5, we obtained the distribution below.

k 0 1 2 3 4 5 10
P(k'=Fk) | 0.3335 | 0.2223 | 0.1484 | 0.0992 | 0.0666 | 0.0450 | ... | 0.0079

5.2 BF for the changepoints position

Definition

Let £' C {2,...,n} be the changepoints position vector for gene i and t € {2,...,n} be a possible
changepoint position, we computed the Bayes factor related to the following assumptions:

Ho: ‘There is a changepoint in position ¢ for gene i’ (i.e. t € £°).
Hll Ho

P(te&'|D) P(t¢¢)

Pt ¢&'D) P(ted)
Pteé|D) 1-Pte)

1_P(te&|D) Plicc)
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Computation of P(t € &'|k)
Let t € {2,...,n} be a possible changepoint position. We obtain an estimation of P(t € £!|D) with the
ARTIVA procedure using the marginalization over the network structures and parameters,

P(t € €'|D) = > P(k' ¢ 5", Pal, 0%, 0| D) 1ycei,
ki &l st Pat, 0t ot

and the prior probability P(t € £°) is,

%
P(t € &) ZPterc k)
k=0

where P(k) was computed as in Section 5.1. There are n — 1 possible positions for a changepoint
(changepoint position ¢ and n-2 other positions) then,

P(ted'|k) = (nfl)l T (k=D!(n—k—1)! (k!(n—k—1)!> =71

5.3 BF for the edges (conditional on a chosen phase of the network)

Definition

Let p be the number of genes. For all gene ¢ in {1,...,p}, let £* |, &* be the changepoints delimiting a
selected phase and Pafﬁi*_uii*] be the set of parent genes in the phase delimited by these changepoints. For

all j in {1,...,p}, we want to evaluate the evidence in favour of hypothesis Hy where,

Tk

Ho: ‘Gene j is a parent of gene i in phase delimited by [£* |, &) (i.e. j € Paf&}'*,l,ﬁ}'*])'
Hll HO

P(j € Pajg. | i1ID) P(j ¢ Paggpr | 1))
P(j ¢ Pajge  eiq|D) P(J € Pajge | ciy)

BF =

Computation
Let j € {1,...,p} be a possible parent for gene i. We obtain an estimate of P(j € Pafgi*il’gf*] |D) with the
ARTIVA procedure,

P(j € Pajg. 1| D) = > P(K', €, Pa’, s', 0%, 0" | D) 1condition:
kig1 Pal,st,6007

where Condition] is true when §,ﬂ*_1 and §}L* are two successive changepoints in &° and j is a parent gene in
the phase delimited by these changepoints.

The prior probability P(j € Paf&i*,l,éi*]) is,
P(j € Pajge i) = Y P(j € Pajgie ci| | [Pafge e = 5)P([Pafere ey = 5)

s=1

where P(|Paf£;tl)€;*]| = s) for the number of edges is computed as P(k’ = k) in Section 5.1, .
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