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METHODOLOGY ARTICLE Open Access

Statistical inference of the time-varying structure
of gene-regulation networks
Sophie Lèbre1,2, Jennifer Becq3,4,5, Frédéric Devaux6, Michael PH Stumpf1,7*†, Gaëlle Lelandais3,4,5*†

Abstract

Background: Biological networks are highly dynamic in response to environmental and physiological cues. This
variability is in contrast to conventional analyses of biological networks, which have overwhelmingly employed
static graph models which stay constant over time to describe biological systems and their underlying molecular
interactions.

Methods: To overcome these limitations, we propose here a new statistical modelling framework, the ARTIVA
formalism (Auto Regressive TIme VArying models), and an associated inferential procedure that allows us to learn
temporally varying gene-regulation networks from biological time-course expression data. ARTIVA simultaneously
infers the topology of a regulatory network and how it changes over time. It allows us to recover the chronology
of regulatory associations for individual genes involved in a specific biological process (development, stress
response, etc.).

Results: We demonstrate that the ARTIVA approach generates detailed insights into the function and dynamics of
complex biological systems and exploits efficiently time-course data in systems biology. In particular, two biological
scenarios are analyzed: the developmental stages of Drosophila melanogaster and the response of Saccharomyces

cerevisiae to benomyl poisoning.

Conclusions: ARTIVA does recover essential temporal dependencies in biological systems from transcriptional data,
and provide a natural starting point to learn and investigate their dynamics in greater detail.

Background

Molecular interactions and regulatory networks underlie

the development and functioning of biological systems

[1-3]. These networks reliably and robustly coordinate

the molecular and biochemical processes inside a cell,

while remaining flexible in order to respond to physiolo-

gical and environmental changes. The changing nature

of regulatory and signalling interactions is beyond

doubt, and a dynamical point of view is already deeply

enshrined into cell and molecular biology. Illustrations

of such time-varying biological systems can be provided

for instance by the development of the fruitfly Droso-

phila melanogaster - which is segmented into different

life stages: embryogenesis, larva, pupa and adult, or the

adaptation of cellular organisms (the yeast Saccharo-

myces cerevisiae for instance) to growth defects and cel-

lular damages induced by environmental stresses.

Because they are extensively studied, considerable large-

scale functional screening data exist for these examples.

But while a growing number of studies report detailed

and time-resolved analyses of regulatory and signalling

processes [4,5], mapping these temporally changing net-

works systematically remains a major and increasingly

pressing challenge.

From available data, in-silico methods can generate

hypotheses about biochemical and molecular mechan-

isms [6,7] and guide further experimental and theoreti-

cal investigations into regulatory interactions underlying

biological systems. Biological networks are usually

described mathematically in a way where each gene is

represented by a node and the interactions (or regula-

tory associations) between genes as edges. A range of

approaches has been proposed, which learn or infer cor-

relative and causal relationships among the genes from
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high-throughput, in particular gene expression, data.

However most of these approaches assume that the

topology of the network, i.e. the sets of nodes and

edges, stays constant over time. Inferring the temporal

changes in biological networks is an important statistical

challenge [8], but it does open up new perspectives for

biological data analyses and will aid the generation of

hypotheses about the dynamics of biological systems.

Serious attempts to reconstruct dynamic networks

whose topology changes with time started in 2005 [9,10].

Yoshida et al. [9] employed a dynamic linear model with

Markov switching for estimating time-dependent gene

network structures from time-series gene expression

data. Although promising this approach assumes that

there is a fixed (user-specified) number of distinct net-

works or phases, and the switching between phases is

modelled via a stochastic transition matrix that requires

an estimation of many parameters. Talih and Hengarten

[10] developed a Markov Chain Monte Carlo (MCMC)

methodology to recover time-varying Gaussian graphical

models in a financial context. Again the total number of

distinct network topologies is assumed to be known

a priori and the network evolution is restricted to chan-

ging at most a single edge at a time. More recently

(2007-2008) methods in which the number of distinct

regulatory phases is determined a posteriori have been

proposed. Fujita et al. [11] developped a Dynamic Vector

Autoregressive model to estimate time-varying gene reg-

ulatory networks. Notably, only the values of the network

parameters change over time, meaning that the global

topology of the network remains constant. Xuan and

Murphy [12] introduced an iterative procedure based on

a similar modelling ansatz, which switches between a

convex optimization approach for determining a suitable

candidate graph structure and a dynamic programming

algorithm for calculating the segmentation of the time

into distinct phases, i.e. the sets of successive time-points

for which the graph structure remains unchanged. This

time, the number of phases is explicitly determined, but

it requires that the graph structure is decomposable.

Finally, Robinson and Hartemink [13] used a MCMC

sampler for the inference of non-stationary dynamical

Bayesian networks, with the attractive feature that the

network structure within a temporal phase depends on

the structure of the contiguous phases.

The approaches cited so far produce global network

topologies with global changes, meaning that all the

genes of the network change their regulatory inputs

simultaneously. In reality however, we would rather

expect that each gene (or at most a subset of genes) has

its own and characteristic regulatory pattern. To that

end, Rao et al. [14] developed a method called regime-

SSM, which is divided into two steps. The main idea is

to first cluster the genes that share the same temporal

phases before inferring, in a second step, the network

topology describing the regulatory associations between

genes within each cluster using an expectation-maximi-

zation (EM) algorithm. Ahmed and Xing [15] introduced

in 2009 a machine learning algorithm (called TESLA) to

infer time evolving networks (that are gene-specific), by

solving a set of temporally smoothed l1-regularized

logistic regression problems via convex optimization

techniques.

The challenge of inferring time-varying structures of

gene regulation networks is only starting to be adressed

and in this paper we present the ARTIVA algorithm

(Auto Regressive TIme VArying models) that is particu-

larly well-suited for addressing the issues raised above.

Starting from time-course gene expression data,

ARTIVA performs a gene-by-gene analysis and infers

simultaneously (i) the topology of the regulatory net-

work, and (ii) how it changes over time. In order to

strike a balance between model refinement and the

amount of information available to infer the model para-

meters, the ARTIVA model delimits temporal segments

for each gene where the influence factors and their

weights can be assumed homogeneous. For that we use

a combination of efficient and robust methods: dynami-

cal Bayesian networks (DBN) to model directed regula-

tory interactions between genes and Reversible Jump

MCMC for inferring simultaneously the times when the

network changes and the resulting network topologies.

We evaluate the performance of ARTIVA on simulated

data and illustrate our approach in the context of two

different biological systems. We start by analyzing a

commonly used dataset related to the developmental

stages of Drosophila melanogaster and demonstrate the

utility of our approach by a comparative analysis of the

ARTIVA results with the TESLA results [15]. Next, we

analyze the response of the yeast Saccharomyces cerevi-

siae to benomyl poisoning. This dataset represents an

important challenge for the inference of time-varying

networks since (i) the number of time-points is extre-

melly small (only 5 time points) and (ii) the expression

values combine measurements obtained in wild-type

and knock-out yeast strains. The biological relevance of

the results obtained with ARTIVA are finally assessed

using functional annotations and transcription factor

binding information.

Methods

Graphical models

Bayesian Networks (BNs) have become a popular frame-

work for representing regulatory networks [6,16] as they

offer both a probabilistic interpretation of dependencies

among expression of genes and a graphical representa-

tion that is more readily accessible than mathematical

expressions (see Figure 1). For example if the expression
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Figure 1 Illustration of the time-varying DBN formalism. (A) Regulatory motif among three genes that we wish to model. Crucially,

regulatory interactions do not persist over the whole time course considered here, but are turned “on” and “off” at different times. The labels on

the edges indicate at what times an edge points to or influences the expression of the target gene.(B) Because Bayesian networks (BNs) are

constrained to have a directed acyclic graph (DAG) structure, they cannot contain loops or cycles. Therefore the motif in (A) can only be
imperfectly represented using a conventional BN formalism which does not take temporal ordering into account; if X3 is statistically independent

of X1 provided X2 is known, we can construct two alternative representations, P(X1, X2, X3) = P(X3|X2).P(X2|X1).P(X1) and P(X1, X2, X3) = P(X3|X2).P(X1|

X2).P(X2).(C) If time-course expression measurements are available we can unravel the feedback cycles and loops over time. Such dynamical

Bayesian networks (DBN) represent the interactions by assuming that at each given time, all the parental nodes come from the previous time
point. At the top of this panel we show the DBN constructed assuming a time-homogenous DBN; at the bottom of (C) we show the time-

varying DBN constructed by the new algorithm. (D) Changepoint vectors for each of the three genes obtained for the time-varying DBN

representation of the motif in (A). (E) The sets of regression models corresponding to the three nodes X1, X2 and X3 in the inferred phases.
Vertical dotted lines correspond to changepoints separating distinct phases for each node. Compulsory changepoints at the start and the end of

the process (i.e. at t = 2 and t = n + 1) are indicated by the black dotted lines; inferred changepoints for each gene are shown in blue, green

and red, corresponding to the colours of the genes (as used in parts (A), (B) and (C) of this figure).
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level of gene i, here denoted by Xi, determines the

expression level of genes j and k, a diagram such as

j i k← →

can be drawn and the joint distribution of gene

expression levels written,

P X X X P X X P X X P Xi j k k i j i i, , | | ,( ) = ( ) ( ) ( )
where P(a|b) denotes the probability of a conditional

on b. Because BNs aim to represent the joint probability

distribution (in our case for the expression levels of p

genes) the corresponding graphical representation is

limited to graphs which contain no cycles (Figure 1B).

This means that closed loops or complex feed-back

structures (as in Figure 1A) cannot faithfully be repre-

sented, whereas they are known to pervade regulatory

networks [17].

With time-course measurements, this limitation can

be overcome by employing a Dynamical Bayesian Net-

work (DBN) formalism [18], where the expression levels

of all the genes in a system are modelled as a generally

discrete-time stochastic process (Figure 1C). For p genes

and n measurements the expression levels are written as

Xi(t), with 1 ≤ i ≤ p and 1 ≤ t ≤ n. The joint probability

distribution over the expression levels of all genes and

at all times is then partitionned, P(X1(1), ..., Xp(1), ..., X1

(n), ..., Xp(n)), into a product of conditional probabilities

of the Markov form:

P X t X t X ti r s( ( ) | ( ), , ( ))− … −1 1 (1)

This means that the expression level of gene i at time t

depends on the expression levels of genes r, ..., s at time t

- 1. Genes r, ..., s are called the ‘parents’ of gene i and

denoted by Pai (reciprocally gene i is called the ‘target’

gene of genes r, ..., s). By making the time dependence of

expression levels explicit, loops and feedback interactions

can be represented simply by requiring only that the

expression of gene i at time t is independent of all other

genes at the same time t. In conventional DBN inference

approaches it is assumed that the conditional dependen-

cies in Eqn. (1), and hence the set Pai, are independent of

time t. Of course it is possible to allow Xi(t) to depend on

expression levels Xr(t - τ ) with τ >1, i.e. allow for higher

order dependencies. For computational reasons, however,

our analysis is restricted to first order Markov processes.

ARTIVA network model

Let p be the number of observed genes and n the num-

ber of time-points at which expression levels are mea-

sured for each gene. In this study, the discrete-time

stochastic process X = {Xi(t); 1 ≤ i ≤ p, 1 ≤ t ≤ n} is

considered, taking real values and describing the expres-

sion level of the p genes at n time-points. We start by

modelling the gene expression levels at time t probabil-

istically by a vector-autoregressive process:

∀ ≥ = − + +t t t t t t t t2 1 0, ( ) ( ) ( ) ( ) ( ) ( ) ~ ( , ( )),X A X B   with  (2)

where X(t) = (Xi(t))1≤i≤p and  (0, Σ (t)) is the multi-

variate normal distribution centered at 0 with diagonal

covariance matrix Σ(t). Note that diagonality of Σ

ensures that the process describing the temporal evolu-

tion of gene expression – here a first order autoregres-

sive process – can be represented by a Directed Acyclic

Graph (DAG) as in Figure 1C, i.e. no edges between

nodes at the same time, and where the edges from time

t - 1 to time t are defined by the set of non zero coeffi-

cients in matrix A(t) [19]. Furthermore the error in

expression measurements of gene i does not affect the

expression measurements of the other genes and off-

diagonal elements in Σ can be set to 0.

Crucially, the coefficient matrix A(t) = (aij(t))1≤i, j≤p –

which is the adjacency matrix of the gene regulatory

network [19,20] – and the column vector B(t) = (bi(t))

1≤i≤p – which is the baseline gene expression that does

not depend on the parent gene regulatory controls – are

allowed to vary explicitly with time. This could for

example reflect switching on or off of regulatory interac-

tions, e.g. in response to developmental, physiological or

environmental signals (Figures 1C, D and 1E).

For each gene, i, a set of time-points for which the

regulatory inputs of the gene change is determined.

These time-points are referred to as ‘changepoints’ and

delimit homogeneous phases, i.e. sets of time-points for

which the local network topology (edges between gene i

and its parents Pai ) remains unchanged. Assuming k

changepoints, the changepoints are denoted by

  i i
k
i= … +( , , )0 1 , where 0 2i = (for a 1st order Mar-

kov model) and  k
i n+ = +1 1 (to delimitate the bounds).

The distinct phases are labelled by the index of their

respective right changepoints. For all times t in the

phase h of gene i (i.e.  h
i

h
it− ≤ <1 ), the i-th row of

matrix A(t) and coefficient bi(t) are assumed constant:

∀ ≤ < = ∀ ≤ ≤ =− h
i

h
i i

h
i ij

h
ijt b t b j p a t a1 1,  ( ) , , ( ) (3)

For phase h of gene i, the parents Pa h
i of gene i

include every gene j such that the coefficient ah
ij differs

from 0: Pa h
i

h
ijj j p a= ∀ ≤ ≤ ≠{ ; , }1 0 . Hence for

 h
i

h
it− ≤ <1 the expression of gene i is modelled in a

regression framework as:
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X t a X t b e t e ti
h
ij j

h
i i

j

i
h
i

h
i

( ) ( ) ( ), ( ) ~ ( , ( ) ),= − + +
∈
∑ 1 0 2

Pa

 with   (4)

where Xj(t - 1) is the expression level of gene j at time t

- 1. This defines a multiple changepoint regulatory net-

work, with changepoint positions   = … + ≤ ≤( , , )0 1 1
i

k
i

i p ,

and the phase-specific regression model parameters,

{ , , }a bh
ij

h
i

h
i for all h, i, j. All non-zero coefficients, ah

ij ,

indicate relationships between expression levels of genes

i and j, and hence are good indicators of putative biologi-

cal interactions between those genes.

Model inference via reversible jump MCMC sampling

General principle

We want to infer the autoregressive time-varying net-

work model, which belongs to the overall parameter

space that is the union of the parameter spaces of all

phases delimited by k changepoints (k = {0, ..., k }).

Furthermore, for each phase the number of incoming

edges on each node (or the network topology) is

unknown. Adding or removing a changepoint results in

a change in the dimension of the system’s state-space:

for each additional changepoint a new network topology

has to be estimated, and for each deleted changepoint

the results previously obtained for the two distinct

phases have to be reconciled. Thus, the dimension of

the model is unknown and can vary substantially. In

order to infer the posterior distribution Pr(k, ξ, s, Pa, θ,

s|x) given the observed data x over all of the system’s

parameters, we used a Reversible Jump Markov Chain

Monte Carlo (RJ-MCMC) procedure. The principle of

RJ-MCMC lies in constructing a reversible Markov

chain sampler that can jump between parameter sub-

spaces of different dimensions; thus allowing the genera-

tion of an ergodic Markov chain whose equilibrium

distribution is the desired posterior distribution [21,22].

Presented in Figure 2, our inference procedure allows

us to simultaneously consider all possible combinations

of changepoints and network topologies within the dif-

ferent phases. In the RJ-MCMC procedure, the likeli-

hood of the expression measurements x(1) observed at

time-point t = 1 is denoted by Pr(x(1)). From the hier-

archical structure of the overall parameter space, the

joint probability distribution over all parameters can

thus be written as the product:

Pr         Pr Pr Pa( , , , , , , ) ( ( )) { ( , , , ,k s x x k s

i

p

i i i i   Pa =
=

∏1

1

 i i ix, , )}. (5)

Figure 2 Illustration of the ARTIVA procedure. (A) Schematic illustration of the two-step RJ-MCMC scheme used for determining the

stationary distribution of time varying dynamic Bayesian networks. With probabilities b, d and v, we propose the birth, death or shift of a
changepoint (CP) respectively; with probability w we propose an update of the regression model describing regulatory interactions for a gene

within a temporal phase. Varying the number of CPs or the number of edges (network topology) corresponds to a change in the dimension of

the state-space and is dealt with by using Green’s RJ-MCMC formalism [21]. Proposed shifts in changepoint positions are accepted according to
a standard Metropolis-Hastings step. Because of conservation of probability we necessarily have b + d + v + w = 1 and c + ζ + r = 1. (B)

Outline of the ARTIVA inference procedure.
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Posterior distribution

For each gene, i, we construct a RJ-MCMC sampler that

directly samples from the joint distribution:

Pr Pa Pr Pr

Pr P

( , , , , , , ) ( ) ( | )

( ,

k s x k k

s

i i i i i i i
k

i i i

h

k

h
i

i

   =

=

+

∏
1

1

aa  Pr Pah
i

h
i

h
i

h
i

h
i

h
i

h
i

h
i

h
i

h
ix s, , ) ( | , , , , , ),     −1

(6)

Where Pr
k

ik( ) Pr(ξi|ki) and are respectively the prior

probabilities of the number of changepoints ki and of

the changepoint position vector ξi for gene i, and where

Pr Pa( , , , )sh
i

h
i

h
i

h
i  is the prior probability of the para-

meters defining the regression model of the phase h of

gene i. Finally:

Pr Pa

Pr

( | , , , , , )

( ( ) | , , ,

x s

x t s

h
i

h
i

h
i

h
i

h
i

h
i

h
i

i
h
i

h
i

h
i

   
 

−

−=

1

1 PPa h
i

h
i

h
i

th h
i i

, , ) 
 ≤ < +

∏
1

(7)

is the likelihood of the expression levels

x x th
i i

th h
i i=
≤ < +

( ( ))  1
of gene i observed during phase h,

and is a realization of the Gaussian distribution defined

in Equation(4).

Priors

In order to reinforce sparsity of the network and follow-

ing multiple changepoint approaches involving RJ-

MCMC [23,24], we assume the number of changepoints

ki to be distributed a priori as a truncated Poisson ran-

dom variable with mean l and maximum k ,

∀ ≤ ∝ −
≤

k k k e
k

i
k

i
k

i k k

i

i, ( )
!

.
{ }

Pr  
1 (8)

Similarly, the prior probability for the number of par-

ents is a truncated Poisson distribution Pr s h
is( ) with

mean Λ and maximum s . Here l and Λ can be inter-

preted as the expected number of changepoints and par-

ent variables, respectively. Following [25], l and Λ are

drawn according to a Gamma distribution:

  , ~ ( , )Λ a where the shape parameter a and the

scale parameter b are chosen so that the prior probabil-

ity decreases when the numbers of changepoints or par-

ents increase (we set a = 1, b = 0.5, see Additional file

1 for an illustration of the corresponding distribution).

Conditional on there being ki changepoints, we assume

that the changepoint positions vector ξi takes only non-

overlapping and uniformly distributed integer values.

The prior for the regression model parameters (si, Pai ,

θ
i, si) are chosen following Andrieu and Doucet’ RJ-

MCMC procedure for regression model selection [25],

based on a work proposed in [26]. The sets of parents

Pah(i) are assumed to be uniformly distributed condi-

tional on | ( ) |Pa h
h
ii s= . The variance,  h

i , is assumed

to be distributed according to a conjugate inverse-

Gamma prior distribution with shape parameter υ0/2

and scale parameter g0/2, ( ) ~ ( / , / ) h
i v2

0 02 2 . By

choosing υ0 = 1 and g0 = 0.1, we set up to Jeffrey’s

vague prior, Pr(( ) ) / ( ) h
i

h
i2 21∝ [25]. Finally, condi-

tional on  h
i , the prior distribution for the regression

model parameters can be written as,

Pr Pa Pr Pr Pa Pr Pa( , , | ) ( ) ( | ) ( | , ,s s s sh
i

h
i

h
i

h
i

s h
i

h
i

h
i

h
i

h
i

h
i   = hh

i ). (9)

Given the parent gene set Pa h
i of size sh

i , the sh
i + 1

regression coefficients, 
Pa Pah h

i ib ah
i

h
ij

j
=

∈
( , ( ) ) , are

assumed to be drawn from zero-mean Gaussian distri-

butions with covariance ( ) h
i

h
i

2Σ
Pa

,

Pr Pa
Pa

Pa
Pa

Pa
( | , , ) | ( ) | exp/   

 
h
i

h
i

h
i

h
i

h
is h

h
h

i
i

h
i= −−2 2 1 2Σ

ii

h
i

−∑⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

2 2( )
, (10)

where the symbol † denotes matrix transposition,

=∑ −
Pa Pa Pah h h

i i iD x D x 2 † ( ) ( ) and D x
h
iPa
( ) is a matrix of

size m si
h
i

h
i

h
i( ) ( ) − × +−1 1 , whose first column is a

vector of 1 when the regression model includes a con-

stant, and each j + 1th column contains the observed

(eventually repeated) value ( )
( ) ( );

x tl
j

t l mh h
i i − − ≤ < − ≤ ≤1 1 1 1

for

all parent gene j in Pa h
i . We did not use shrinkage

priors here because the truncated Poisson prior for the

number sh
i of parents already favours dimension reduc-

tion. The term δ
2 represents the expected signal-to-

noise ratio and is sampled according to an Inverse

Gamma distribution    2
2 2~ ( , ) with  2 2=

and  2 0 2= . .

A noticeable advantage of the model is that the mar-

ginalization over the regression parameters (θi , si ) in

the posterior distribution is analytically tractable,

Pr Pa Pr Pa( , , , , ) ( , , , , , | )k s x k s x d di i i i i i i i i i i i i i     =   (11)
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(see Additional file 1, Section 2 for more details).

Then the proposals are sampled from the analytical

expression of the network topology posterior distribu-

tion (11) – which is proportional to Pr(ki , ξi , si , Pai|x)

– and the acceptance probability depends on the net-

work topology (ξi , Pai) only.

Moves

In order to traverse the parameter space of unknown

dimension we propose here four different update moves

(see Figure 2 and Additional file 1): birth of a new chan-

gepoint (B); death (removal) of an existing changepoint

(D); shift of a changepoint to a different time-point (S);

and update of the regression model defining the net-

work topology within the phases (R). These moves

occur with probabilities bk for B, dk for D, vk for S and

wk for R, depending only on the current number of

changepoints ki and satisfying bk + dk + vk + wk = 1.

The changepoint birth and death moves represent

changes from, respectively, ki to ki + 1 phases and ki to

ki - 1 phases. We impose d0 = v0 = 0 and b
k

= 0 to

preserve the restriction on the number of changepoints.

Otherwise, these probabilities are chosen as follows:

b c k ki

k ki
d c k ki

k k=
+⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=+min ,

( )

( )
, min ,

( )
1

1
11 

Pr

Pr
 

Pr

Prkk ki( )+

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪1
(12)

where Pr
k is the prior distribution for the number of

changepoints and the constant c is chosen to be smaller

than 14 so that the regression model updates and chan-

gepoint position shifts are proposed more frequently

than births and deaths of changepoints. This improves

our ability to infer changepoint positions and the net-

work structures (using the vector-autoregressive frame-

work) within the different phases. Proposed shifts in

changepoint positions are accepted using a standard

Metropolis-Hastings step, while regression model

updates within phases invoke a second RJ-MCMC cri-

terion, which was adapted from the model selection

approach of Andrieu and Doucet [25]. As proposals are

sampled from the analytical network topology posterior

distribution (11), the generation of the regression model

parameters ( , ) h
i

h
i is optional. Together the four

moves B, D, S and R allow the generation of samples

from probability distributions defined on unions of

spaces of different dimensions for both the number, ki,

of changepoints and the number sh
i of parents within

each phase for gene i.

Model selection

Given a priori probabilities, the ARTIVA algorithm pro-

duces posterior probability estimations over the algo-

rithm iterations for changepoint vectors and network

topologies. These posterior probabilities give a detailed

picture of all the results and allow in depth analyses of

the entire regulatory network architecture. In this study

we use in complement to posterior probabilities, the

Bayes factor, i.e. the ratio of the posterior odds of an

hypothesis over its prior odds [27]. The Bayes factor has

the advantage to consider the posterior distribution with

respect to the priors and to obtain quantitative measure-

ments of the statistical significance of the ARTIVA

results which are comparable between different datasets.

As an indication, according to Kass and Raftery [27], a

proposition is (i) not supported when it has a Bayes fac-

tor below 3, (ii) positively supported for a Bayes factor

between 3 and 20 and (iii) strongly supported for a

Bayes factor over 20. The performance of ARTIVA is

evaluated on synthetic and real data (see the following

section) by selecting the network structure according to

the following procedure. For each gene i we first choose

the number ki of changepoints having the greatest Bayes

factor. Then the ki changepoint positions having the

highest Bayes factors are selected, and for each resulting

phase we finally compute the Bayes factor for the possi-

ble parent genes and choose the ones with a Bayes fac-

tor greater than 3 (see Additional file 1 for a description

of the Bayes factor computation).

Simulation study

In order to evaluate the accuracy of the ARTIVA algo-

rithm to recover changepoints and network topologies

correctly, expression data for randomly defined dynamic

networks were generated. With respect to the experi-

mental datasets analyzed later (see the following sec-

tion), two types of expression data were produced. The

first type – referred to Wild-Type (WT) simulations –

match the ‘Drosophila life cycle’ data. This dataset con-

tains time-series expression data of several genes and

the algorithm must find the correlations between

unknown parent genes and each target gene. The sec-

ond type – referred to as Knock-Out (KO) simulations

– is equivalent to the ‘benomyl’ dataset. This dataset

only contains time-series expression data of target genes

in different genetic contexts: wild-type and knock-out

mutants for several transcription factors (TFs).

The simulation procedure for a given target gene, also

presented in detail in Additional file 2, involves three

main steps. First, the structure of the dynamic regula-

tory network is defined. This consists of randomly set-

ting the number and the localization of changepoints,

thereby defining regulatory phases. Then the parent

genes and the corresponding coefficients are chosen for

each phase. Once the regulatory network is defined,

expression data can be generated from this network

model. The expression values of the parent genes are

first generated randomly (uniformly drawn from [-2,
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-0.1] ⋃ [0.1, 2]) and subsequently used to calculate the

target gene expression according to the autoregressive

model presented in Eqn. (4). The whole procedure is

repeated (to represent experimental replicates) and

noise is added (to represent experimental variability).

Because the simulations use the ARTIVA hypothesis

concerning the expression associations between parent

and target gene expression profiles (autoregressive

model), we expect all the results to be correct under

ideal conditions (like absence of noise). Therefore, this

simulation protocol evaluates the ARTIVA performance

and studies the influence of the following parameters:

• the quantity of noise in the data. For all phases h

of gene i, the noise ei(t) is drawn from a Gaussian

distribution  ( , ( ) )0 2 h
i with standard deviation

 h
i

h
i( . , . , , . )= …0 2 0 4 1 8 ,

• the size of the temporal phases (phasesize = 1, 2,

..., 5, 12), and

• for WT simulations only, the number of potential

parent genes (Pa# = 5, 10, 20, 40). This is not neces-

sary for KO simulations because the potential parent

genes are obviously restricted to the transcription

factors for which KO data is being generated.

Regardless of the number of potential parent genes,

a maximum of 5 edges from parent genes to a target

gene is allowed.

For each parameter value, 200 gene time-series of

length = 12 timepoints were randomly generated with 8

and 4 replicates for WT and KO data respectively. Note

that KO simulations present less replicates because each

replicate already comprises the measurements of the

gene expression levels for each knock-out mutant. All

other parameters were set to their default values and are

Table 1 Performance of ARTIVA on simulated data

WT simulations KO Simulations

Parameter Changepoint
sensitivity

Changepoint
PPV

Edges
sensitivity

Edges
PPV

Changepoint
sensitivity

Changepoint
PPV

Edges
sensitivity

Edges
PPV

0.2 94.2 95.1 73.9 99.2 100 100 100 98.5

0.4 90.8 94.1 79.3 97.9 100 99 100 98.2

0.6 87.8 92.5 73.9 96.9 96 97.1 99.2 95.4

0.8 75.4 96.3 78.8 96.4 81.4 97.8 97.6 91.4

Noise 1 80.5 96.6 74.7 97.5 69.1 95 95.1 88.8

1.2 71.7 96.2 78.4 97.6 28.1 82.4 97.2 87.6

1.4 58.7 94.6 79 95.9 23.6 89.7 92.7 87.5

1.6 52.9 91.8 74.4 97.2 10.8 75.9 79.1 86.8

1.8 60.8 94.5 76 95.6 4.8 81.8 76.8 85.6

1 78.5 97.5 1.3 100 79 98.8 18.1 82.4

2 92 92 24.7 98.5 97 96.5 98.7 92.5

Phase
size

3 90 94.2 50.8 98.6 99.5 99 100 93.6

4 94.5 94 74.5 98.6 99.5 99.5 100 96.4

5 96 99 76.9 96.8 99.5 97.5 100 94.7

12 100 99 92.6 98 99 97.1 100 97.8

5 93.7 95.5 82.4 99.1 _ _ _ _

# of
parent

10 81.1 88.3 69.7 96.4 _ _ _ _

genes 20 62.4 83.4 51.2 97.3 _ _ _ _

40 54 77.2 33.1 96.4 _ _ _ _

To evaluate ARTIVA performances, two types of data were used: WT simulations corresponding to time-series expression data with no knowledge of potential

transcription factors and KO simulations corresponding to several time-series expression data of a simulated wild-type strain and knock-out strains for each known

transcription factor (see Methods and Additional file 2 for more details). The default values of the parameters used for the simulation study are: # of timepoints n

= 12; # of changepoints k n~ ({ , .., / }) 1 4 ; maximal # of edges = 5; parent to target coefficient ~ ([ , . ] [ . , ]) − − ∪2 0 1 0 1 2 ; phase sizes

~ ({ , .., });# 3 n # of replicates r = 8 for WT simulations, r = 4 for KO simulations; noise standard deviation ~ ( , . ) 0 0 5 ; total # of simulations = 200

for each condition. In this table, the value of noise intensity, phase size and number of parent genes change according to the parameter under study (all other

parameters were set to default). In each condition, the ability of ARTIVA to detect all true phase changepoints and model edges (Sensitivity) and to detect only

true positives (Positive Predictive Value, PPV) was calculated. Overall, this simulation study allows us to gain confidence in ARTIVA results (≃ 80% of PPV and

sensitivity) for a given set of parameters (noise standard error is on the order of the mean value of the regression coefficients, number of measurements in a

regulatory phase > 8 and less than 20 parent genes).
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specified in Table 1. The ARTIVA algorithm was run on

each expression data set and we compared the

proposed network model (selected as described in

the previous subsection ‘Model selection’) with the origi-

nal one. The ability of the algorithm to recover change-

points was evaluated via the Positive Predictive Value

(PPV) and the Sensitivity,

PPV
TP

TP FP
Sensitivity

TP

TP FN
=

+
=

+( ) ( )
 (13)

with TP = True Positives, FP = False Positives and FN

= False Negatives. The edges PPV and Sensitivity was

computed for the phases whose changepoints were cor-

rectly inferred.

Microarray data

The first microarray dataset – referred to as ‘Drosophila

life cycle’ data – was produced by Arbeitman et al. [28].

It includes the mRNA expression levels of 4028 genes at

67 successive time-points spanning the four stages of the

D. melanogaster life cycle: the embryonic (31 time-

points), larval (10 time-points) and pupal stage (18 time-

points) and the first 30 days of adulthood (8 time-points).

Expression data were collected from the Gene Expression

Omnibus database: http://www.ncbi.nlm.nih.gov/geo/.

4005 genes with consistent annotation are used for the

analysis. Potential parent genes were restricted to genes

with known transcriptional activity based on Gene

Ontology information [29]. Hence, 136 genes were

selected as potential parents. They belong to one of the

four following Gene Ontology molecular functions:

‘Transcription activator activity’ (GO:0016563), ‘Tran-

scription repressor activity’ (GO:0016564), ‘Transcription

factor activity’ (GO:0003700) and ‘Transcription cofactor

activity’ (GO:0003712). For each target gene, we gave

priority to the 10 potential parent genes with the most

highly correlated gene expression profiles over any suc-

cessive 10 time-points.

The second microarray dataset – referred to as ‘beno-

myl’ data – was published by Lucau-Danila et al. [30].

In this study, the authors measured the changes in

mRNA concentrations for each gene at successive times

after addition of benomyl (an antimitotic drug) in the

growth media of Saccharomyces cerevisiae cells. Parallel

experiments were conducted in different genetic con-

texts: the wild type strain and knock-out (KO) strains in

which the genes coding for different transcription fac-

tors connected to drug response, YAP1, PDR1, PDR3,

and YRR1, were deleted. For each yeast strain, the mea-

sured expression values for 5 time-points (at 30 s, 2

min, 4 min, 10 min, 20 min) were obtained from the

website: http://www.biologie.ens.fr/lgmgml/publication/

benomyl. We only considered genes that (i) showed

significant changes in mRNA levels during the time-

course analysis in the WT strain (119 genes presented

by Lucau-Danila et al. [30]), and (ii) had less than 20%

of missing expression measurement data in the four KO

strains. The resulting expression table comprised data

for 78 genes (see Additional file 3 for complete list of

genes). Hierarchical clustering was performed applying

the ‘hclust’ function available in the R programming lan-

gage http://cran.r-project.org/, using Euclidean distance

between gene expression profiles and the ‘ward’ method

for gene agglomeration (see also Additional file 4).

Technical information

The ARTIVA algorithm is implemented in R program-

ming language. The source code is freely distributed to

academic users upon request to the authors. A 50,000

iterations procedure lasts around 5 min times the num-

ber of genes for the analysis of 100 time-course mea-

surements (for example 5 replicates over 20 time-points)

with a 2.66 GHz Intel(R) Xeon(R) CPU and 4 G RAM.

Results
Evaluation of the algorithm performances

To evaluate the performance of our ARTIVA

approach, simulations are run in order to assess the

impact of three major factors on the algorithm perfor-

mances: noise in the data, minimal length of phases,

and number of proposed parent genes (the latter for

WT simulations only, see Methods). Sensitivity and

Positive Predictive Value (PPV) calculated for the

detection of changepoints and of models, i.e. the topol-

ogy of the network within the phases, are presented in

Table 1. In WT simulations, the changepoint sensitiv-

ity is greater than 80% when the noise standard error

reaches si = 1. As noise increases further, the ability of

the algorithm to recover changepoints decreases in

terms of sensitivity, but still, the changepoint sensitiv-

ity remains greater than 70% when the noise standard

deviation reaches si = 1.2 (a value that is larger than

the mean value of the regression coefficients, uniformly

sampled from [-2; -0.1] ⋃ [0.1; 2]). The WT data was

generated with r = 8 repeated measurements for each

time point, whereas the KO data were simulated with

only 4 repeated measurements for each time point

(because each measurement includes data from differ-

ent genetic contexts, see Methods). That is the reason

why the changepoint sensitivity with KO simulations

starts to decrease with smaller noise standard deviation

compared to WT simulations. Nevertheless, the chan-

gepoint sensitivity is still greater than 80% even when

noise reaches si = 0.8. The number of measurements

for each phase also plays an important role for the

changepoint detection sensitivity. Indeed, during a

phase reduced to a single timepoint, there are only
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r repeated measurements to estimate the autoregres-

sive models. Interestingly, the ARTIVA algorithm here

succeeds in finding the correct dynamic networks with

a sensitivity value of 79% for a phase size of 1, in both

WT and KO simulations (default noise standard error

si = 0.5). With phases of size 2, the changepoint sensi-

tivity is greater than 90%. For all noise levels consid-

ered here the changepoint PPV is greater than 95%;

furthermore changepoint PPV appears to be stable and

not to be affected by the phase size either. Knock-out

data are usually collected for a restricted number of

knock-out genes and the number of possible parents is

limited. However, wild-type experiments give expres-

sion time series data for a large number of genes at

once. The number of proposed parents increases the

dimension of the model and the estimation procedure

accuracy is expected to be affected as the dimension

increases. Here, the changepoint sensitivity obtained

with ARTIVA is still 54% when the parent genes are

chosen from among a set of 40 proposed parents. The

changepoint sensitivity goes up to 81% when the num-

ber of potential parents is reduced to 10. The change-

point PPV is only slightly affected by the number of

proposed parents. The PPV is still greater than 75%

when the number of potential parents is 40.

The edge detection in Table 1 was evaluated when the

correct changepoint segmentation was recovered. Once

the correct changepoints are recovered, neither noise

nor short phases appear to strongly affect the detection

of edges. The edge sensitivity deteriorates for extreme

situations only. Indeed, the edge sensitivity is equal to

18% when phase size is 1 for KO simulations. For WT

simulations, the edge sensitivity is about 50% when

phase size is 3 or when the number of proposed parents

is 20. In all other cases, the edge sensitivity is greater

than 75% and the edge PPV is greater than 95%.

Simulation studies such as the one performed here

do, of course, only provide a partial insights into an

algorithms performance and robustness. They are

nevertheless essential to gain confidence in the perfor-

mance of novel algorithms and to develop understand-

ing of their likely limitations. Together these results

serve to illustrate of the robustness of the ARTIVA

algorithm. In particular, ARTIVA can deal with some

of generic problems encountered in real experimental

data. It still performs well when noise standard error

is on the order of the mean value of the regression

coefficients, when the number of measurement per

phase is reduced to 8 or when the number of possible

parents reaches 20. At some point, the ARTIVA algo-

rithm misses some changepoints, but the PPV is still

very large, meaning that we can have great confidence

in the changepoints having a high posterior

probability.

Temporal variation of the Drosophila development

transcriptional program

In light of the simulation analysis, we then apply our

method to the well-studied expression datasets pro-

duced by Arbeitman et al. [28]. In this study, the

authors report gene expression patterns for nearly one-

third of all D. melanogaster genes during a complete

time-course of development. The ARTIVA algorithm is

run for each gene for 50,000 iterations, looking for par-

ental relationships with the 10 transcription factors for

which gene expression profiles were most highly corre-

lated over any successive 10 time-points (see Methods).

Out of the 4005 analyzed genes, 1704 (42%) were found

to be involved in the time-varying networks spanning

the whole Drosophila life-cycle (134 were identified as

parent genes, 1623 as target genes and 53 were both

parent and target genes). Interestingly, 2583 change-

points were also identified. The distribution over the

time-points and with respect to the developmental

stages is shown Figure 3. We observe that time intervals

{18 to 19}, {31 to 33}, {41 to 43} and {59 to 61} contain

more than 40% of the changepoints. Notably the inter-

vals {31 to 33}, {41 to 43} and {59 to 61} include the

developmental stage transitions from embryo to larva,

from larva to pupa and from pupa to adult, respectively.

The high number of changepoints at mid-embryogenesis

(interval {18 to 19}) corresponds to a major morphologi-

cal change related to a modification of transcriptional

regulations, as described in [28].

To further evaluate ARTIVA, we compared our results

with those obtained using the TESLA algorithm [15].

TESLA has been recently published (2009) and to our

knowledge it is with ARTIVA, the only other procedure

which recovers time varying regulatory networks where

the changepoints are gene specific. As described in [15],

we first discretized the expression measurements into

two levels: 1 for up-regulation and 0 for down-regula-

tion. The TESLA procedure requires specification of

two parameters, l1, which is a sparsity coefficient, and

l2, which is a smoothness penalty coefficient. Several

combinations of (l1, l2) parameters were tested (data

not shown), and we finally retained the average values

presented by the authors in their simulation study [15],

i.e. l1 = 0.01, l2 = 1. The TESLA analysis was run using

the same subset of Drosophila genes used with ARTIVA,

and the 2583 most significant temporal changes identi-

fied with TESLA are compared to the 2583 ARTIVA

changepoints (Figure 3, dashed line). In agreement with

the ARTIVA results, an important number of regulatory

changes (28%) occurred during the developmental stage

transitions (mid-embryogenesis, embryo to larva, larva

to pupa and pupa to adult), but notably this number is

significantly lower than the one obtained with ARTIVA

(40%, see previous paragraph). This is especially
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remarkable considering the last phase transition from

pupa to adult. The observation of a significant number

of changepoints at developmental stage transitions lends

credibility and supports our ARTIVA results. Our

method appears powerful in inferring the timepoints at

which transcriptional control of individual genes

switches.

Time-varying regulatory network involved in the

response of Saccharomyces cerevisiae to benomyl

poisoning

In our second example, we apply ARTIVA to a selected

set of 78 gene expression profiles from Saccharomyces

cerevisiae cells grown under benomyl-induced stress

conditions [30] (see Methods). A hierarchical cluster

analysis identifies 18 clusters of genes with concordant

transcription profiles (see Additional file 5). For each

cluster, time varying networks are inferred using the

included gene expressions measured in the wild type

and four deletion strains (Yap1, Pdr1, Pdr3 and Yrr1),

running the RJ-MCMC scheme for 50,000 iterations.

Regulatory associations between parent and target genes

are proposed if the deletion of a parent gene signifi-

cantly alters the expression measurements of its target

genes (compared to the WT situation) (see Methods).

The results are presented in Figure 4 and Dataset S1. As

an illustration, the cluster #1 comprises 10 genes (Figure

4A) for which two changepoints are detected at the 4

and 10 minute time-points (Figure 4B), when these

genes fall under the regulatory control of Yap1 (Figure

4C). Even if Yap1 is the only transcription factor identi-

fied here, its regulatory interactions with the target

genes in the third phase are highly significant (Bayes

factor = 9.103) compared to those in the second phase

(Bayes factor = 14.22). This explains the detection of

two changepoints. The results obtained for all other

clusters are combined to obtain a global view of the

time-varying regulatory network involved in benomyl

stress response (Figure 4D). In agreement with the pio-

neering study of Lucau-Danila et al. [30], the transcrip-

tion factor Yap1 appears to have the predominant role

in the benomyl stress response as ARTIVA identified

edges with 79% of the analyzed genes (62 associations

with clusters # {1, 2, 5, 6, 7, 8, 9, 13, 18, 17}). Also

PDR1, being the parent gene of 24% of the genes, exerts

significant control (19 associations with clusters # {5,

6}). Pdr3 and Yrr1 present only a small number of target

genes (10 associations with cluster #6 and 2 associations

with cluster #13, respectively).

Furthermore, our ARTIVA model provides a dynamic

classification of the benomyl responsive-genes, based on

their time of induction. Such a dynamical point of view

can elucidate the chronology of events, especially

regarding the Yap1 activity. ARTIVA identified three

classes of Yap1 targets, depending on their time of

induction: 4 minutes (clusters # {1, 7, 18}, orange arrows

Figure 4D); 10 minutes (clusters # {2, 8, 9, 13, 17}, yel-

low arrows Figure 4D); and 20 minutes (cluster # {5, 6},

Figure 3 Changepoints of gene regulation networks across the Drosophila melanogaster development. Microarray results for the time

courses of Drosophila life cycle [28] were analysed using ARTIVA. The number of identified changepoints using ARTIVA are shown in blue for
each of the 67 time-points. They are compared with the most significant changes identified with the TESLA algorithm [15], shown in black

dashed line. Time-intervals for each developmental stage are represented with the following color-code: pink = Embryo (31 time-points), red =

Larva (10 time-points), orange = Pupa (17 time-points), yellow = Adult (8 time-points).
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Figure 4 Time-dependent regulatory network involved in yeast chemical stress response. Microarray results for the kinetics of benomyl

action [30] were analyzed using ARTIVA. A hierarchical clustering analysis was carried out for the time-course responses of the wild-type strain

and deletion strains for four transcription factors (TFs): Yap1, Pdr1, Pdr3 and Yrr1. The resulting 18 clusters have low intra-cluster variability and

comprise genes whose expression is identically modified in TFs deletion strains compared to the wild-type strain (see Methods). Results for
cluster #1 are presented here. (A) Gene expression measurements represented using the common color code (black for expression values around

0 and red for positive values). Bayes factors for changepoint (CP) and edge detection are respectively shown in (B) and (C). Two CP were

identified at the 4 min and 10 min time-points, and regulatory associations with the TF Yap1 were identified in the second temporal phase
(from 4 min to 20 min). (D) All the identified regulatory associations are shown here, after analyzing the 18 clusters of co-expressed genes

independently. They are all positive, meaning that each transcription factor activates the expression of their respectives target genes. Regulatory

interactions are color-coded according to their starting time-point: orange = 4 minutes, yellow = 10 minutes and green = 20 minutes. We found

62 regulatory interactions for Yap1; 19 for Pdr1; 10 for Pdr3; and 2 for Yrr1. Pink and white segments on the surrounding circle indicate genes
belonging to the same gene expression cluster, the clusters are ordered as follows (starting at 4 min): 1, 18, 7, 9, 13, 8, 17, 2, 5, 6, 3, 11, 4, 10, 12,

14, 15, 16.
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green arrows Figure 4D). Almost all the genes included

in the earliest group are known to be transcriptionally

controlled by Yap1 (95% based on YEASTRACT infor-

mation [31]). They encode proteins involved in redox

control (GPX2, TRR1, GSH1, GTT2) or vacuolar trans-

porters (YCF1). The middle group contains also an

important rate of Yap1 targets (87%), which act at the

level of the plasma membrane (FLR1 and FRM2) or

encode proteins involved in response to toxins (for

instance AAD6, AAD16, ECM4). Yap1 activity in the last

group is partially overlapping with the actions of Pdr1

and Pdr3. Most of the genes in this group have

unknown functions, but some of them are still labelled

in the YEASTRACT database as being targets for Yap1

(74%), Pdr1 (32%) and Pdr3 (20%). Finally, YRR1

deserves a special mention. Unlike the genes that

encode the transcription factors Yap1, Pdr1 and Pdr3,

the YRR1 gene is transcriptionnally activated during the

benomyl response. As a consequence, ARTIVA identi-

fied YRR1 (i) as a Yap1 target whose expression was

induced 4 minutes after benomyl addition in the cell

growth culture (see *** Figure 4A); and (ii) as a parent

for genes SNG1 and YLL056C at 10 minutes. Interest-

ingly these observations highlight a sequential activity of

Yap1 and Yrr1 transcription factors together with an

overlap of their targets (Figure 4E). This regulatory

model, in which Yrr1 seconds Yap1, is fully supported

by recent experimental data [32].

Discussion
ARTIVA: a new statistical modelling framework to learn

temporally varying gene-regulation networks

The ARTIVA approach allows us to reverse engineer

the temporally varying structure of transcriptional net-

works by inferring simultaneously the times at which

regulatory inputs of genes change and the nature of

these incoming inputs. Our approach is computationally

efficient and can exploit powerful search heuristics to

scan the space of potential incoming edges. Compared

to others methodologies recently proposed in the litera-

ture, ARTIVA has the major advantage of combining

efficient and well-tried techniques (Bayesian networks

and RJ-MCMC sampler) in order to solve several related

problems. First, with ARTIVA there is no need for prior

information regarding either the number of regulatory

phases or the number of regulatory interactions between

parent and target genes. Starting from uninformative

priors (such as truncated Poisson or uniform distribu-

tions, see Methods), the posterior distribution for the

number of changepoints, their positions and the regula-

tory models within each recovered phase is directly

obtained from the ARTIVA runs. Also, ARTIVA allows

the detection of regulatory phases for individual genes.

Finally, whereas many approaches – like Bayesian

Dirichlet Equivalent (BDE) score in a dynamic context

[13] or the TESLA framework [15]– require the expres-

sion measurements to be discretized, the ARTIVA pro-

cedure has the advantage to work directly with

continuous datasets. Thus there is no need to set arbi-

trary thresholds to define up- and down-regulated

groups of genes.

We demonstrate the performance of the ARTIVA

algorithm by (i) applying it to simulated data (Table 1)

and (ii) performing a comparative analysis of the

ARTIVA and TESLA [15] results (Figure 3). Because the

simulations were such that they mirror the biological

data analyzed afterwards as much as possible, we gain

considerable confidence in the output of the ARTIVA

approach when used on the two datasets considered

here. Overall, the algorithm shows very good perfor-

mance in retrieving the simulated dynamic networks,

except in extremely unfavourable conditions, such as

too much noise in the data or time series that are not

sufficiently long and dense. These exploratory studies

allow us to interpret the ARTIVA outputs more reliably.

New biological insights into the Drosophila development

and the yeast stress response

The two biological networks presented in this study

(Figures 3 and 4) are very different, both from a biologi-

cal and a technical point of view. Their respective ana-

lyses represent different challenges for the application of

the ARTIVA algorithm. The ‘Drosophila life cycle’ data

is representative of data used for classical regulatory

network inference; successive gene expression measure-

ments spanning a given biological process - here the

Drosophila development - in order to detect potential

regulatory interactions from gene expression profiles.

This data is particularly suited for the inference of a

temporally varying regulation network, since (i) the

number of time-points is large (more than 80% of all

published time series expression datasets are short with

8 time-points or fewer [33]) and (ii) the transitions

between the distinct stages of Drosophila development

{Embryo (E), Larva (L), Pupa (P), Adult (A)} are well-

described in the literature [28]. We can thus reasonably

expect to identify changepoints precisely at transitions

between life stages (Figure 3). On the other hand, discri-

mination between parent and target genes represents an

important additional step towards a complete descrip-

tion of the genetic networks that control development.

These inferred temporal changes can form hypotheses

as to how we can interfere rationally with developmental

processes; e.g. arresting development in a given state by

selectively knocking down transcription factors or tar-

gets at a given developmental stage.

The ‘benomyl’ dataset represents a particular challenge

for ARTIVA to retrieve a dynamic regulatory network
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for two reasons. First, the number of time-points is

extremely small (only 5 time-points), and no replicate

data points are available. To manage the lack of data,

we cluster genes with concordant transcription profiles

and analyze them jointly with ARTIVA. This cluster

analysis was possible because the maximal intracluster

variability did not exceed 0.2 (see Additional file 4), a

value that ARTIVA is able to manage based on our

simulation results (Table 1). Second, in this S. cerevisiae

dataset, it is known that the genes coding for key regu-

lators of the stress response system, i.e. transcription

factors Yap1, Pdr1 and Pdr3, exhibit flat expression pat-

terns during stress condition (Additional file 4); this pre-

vents the use of correlation measures with their

expression profiles to identify causal relationships with

their potential target genes. In this context, we needed

to adapt the ARTIVA inference procedure in order to

integrate gene expression profiles measured in the wild

type and KO strains. Regulatory associations between

parent and target genes are thus proposed if the deletion

of a parent gene significantly alters the expression mea-

surements of its target genes (compared to the WT

situation). Compared to the previous study of Lucau-

Danila et al. [30], the main benefit of ARTIVA analyses

is that it provides a dynamic classification of the beno-

myl response genes (Figure 4). It also points out contri-

butions of the Yrr1 and Pdr3 transcription factors,

which were ignored in previous analyses. Interestingly,

the versatile and non exclusive joint action of Pdr1 and

Pdr3 in chemical stress response, together with the

overlap with Yap1 activity, is supported by recent

experimental data available on these two factors

[32,34,35].

Conclusions

The comprehensive analysis suggests that the ARTIVA

approach allows us to describe and reverse-engineer the

dynamic aspects of molecular networks. Such time-vary-

ing networks provide a middle ground between net-

works homogeneous in time and explicit dynamical

models. The latter require substantial further informa-

tion in order to model the dynamics of biological sys-

tems [36]. Inferring such systems is a considerable

statistical challenge and it has recently been shown that

some parameters cannot be inferred with any degree of

certainty from time-course data. This so-called sloppy

behaviour [37,38] has been identified even in very sim-

ple dynamical systems. In contrast to classical network

reverse engineering approaches such as dynamic Baye-

sian networks [18] and graphical Gaussian models [39],

ARTIVA also allows us to construct more complex

hypotheses where interactions may depend on time.

As no particular constraint is imposed to the change-

point positions or to the succession in network

topologies within phases, the ARTIVA model appears

to be highly flexible. The results are not a priori direc-

ted toward any particular regulatory associations

between genes. This flexibility can be extremely valu-

able, especially when no information regarding the stu-

died biological process is available. But the rapid

accumulation of data obtained with different experi-

mental approaches gives the opportunity to acquire a

more comprehensive picture of all the interactions

between cellular components. To understand the biol-

ogy of the studied systems better, the trend is clearly

towards the aggregation of multiple sources of infor-

mation. A natural future direction in the development

of ARTIVA will be to incorporate data originating

from different sources in the model. In particular, pro-

tein/DNA interaction data (ChIP-chip or ChIP-seq

experiments) could be effective by replacing the uni-

form prior for the edges with a prior favouring edges

that correspond to the experimentally identified inter-

actions (see [40,41] for an illustration). Also, ARTIVA

assumes independent network topologies within suc-

cessive phases and can identify very different regula-

tory associations between two phases, even if the time

delay between the phases is very short. This assump-

tion was appropriate in case of biological models like

the Drosophila development and the yeast stress

response, mainly because those are processes in which

transcriptional regulations are highly dynamic. How-

ever, when considering systems that evolve more

smoothly or in case of datasets with a small number of

time points, it would be interesting to incorporate a

regularization scheme into ARTIVA in order to favour

slight changes from one phase to the next one. Such

an approach has already been initiated in [13] for dis-

cretized data and in [42] where the regularization

scheme is based on a common network structure.

There are still huge gaps in our knowledge of biologi-

cal networks and of the dynamics they mediate. What

triggers whether or not an interaction is present

depends subtly on the cellular context, the comple-

ment of molecules inside a cell (if we focus attention

of intra-cellular processes and networks) and their

respective molecular interactions. Understanding all of

these factors and their interplay will ultimately be cru-

cial in order to design biological interventions ration-

ally. But statistically inferring them poses a set of

formidable challenges. The use of relatively simple

mathematical models (such as vector-autoregressive

processes) allows us to distil the essential dynamics of

complex temporal processes in biological systems.

Thus ARTIVA provides a platform for the analysis of

transcriptomic data, which could be straightforwardly

expanded to include other data, e.g. transcription factor

activities or other proteomic measurements.
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Additional material

Additional file 1: Supplementary Text S1 - Priors illustration and

complete mathematical description of the RJMCMC procedure and

of the Bayes factor computation.

Additional file 2: Supplementary Figure S1 - Principle of the

simulation study.

Additional file 3: Supplementary Dataset S1 - Full edge list of the

inferred time varying networks of the ‘benomyl’ data.

Additional file 4: Supplementary Text S2 - Supplementary results

related to the ‘benomyl’ analyses.

Additional file 5: Supplementary Figure S2 - Expression

measurements for the 18 clusters used in the ‘benomyl’ analyses.
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