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Abstract

Background: Germline mutations in the folliculin (FLCN) gene are associated with the development of Birt-Hogg-

Dubé syndrome (BHDS), a disease characterized by papular skin lesions, a high occurrence of spontaneous

pneumothorax, and the development of renal neoplasias. The majority of renal tumors that arise in BHDS-affected

individuals are histologically similar to sporadic chromophobe renal cell carcinoma (RCC) and sporadic renal

oncocytoma. However, most sporadic tumors lack FLCN mutations and the extent to which the BHDS-derived renal

tumors share genetic defects associated with the sporadic tumors has not been well studied.

Methods: BHDS individuals were identified symptomatically and FLCN mutations were confirmed by DNA

sequencing. Comparative gene expression profiling analyses were carried out on renal tumors isolated from

individuals afflicted with BHDS and a panel of sporadic renal tumors of different subtypes using discriminate and

clustering approaches. qRT-PCR was used to confirm selected results of the gene expression analyses. We further

analyzed differentially expressed genes using gene set enrichment analysis and pathway analysis approaches.

Pathway analysis results were confirmed by generation of independent pathway signatures and application to

additional datasets.

Results: Renal tumors isolated from individuals with BHDS showed distinct gene expression and cytogenetic

characteristics from sporadic renal oncocytoma and chromophobe RCC. The most prominent molecular feature of

BHDS-derived kidney tumors was high expression of mitochondria-and oxidative phosphorylation (OXPHOS)-

associated genes. This mitochondria expression phenotype was associated with deregulation of the PGC-1a-TFAM

signaling axis. Loss of FLCN expression across various tumor types is also associated with increased nuclear

mitochondrial gene expression.

Conclusions: Our results support a genetic distinction between BHDS-associated tumors and other renal

neoplasias. In addition, deregulation of the PGC-1a-TFAM signaling axis is most pronounced in renal tumors that

harbor FLCN mutations and in tumors from other organs that have relatively low expression of FLCN. These results

are consistent with the recently discovered interaction between FLCN and AMPK and support a model in which

FLCN is a regulator of mitochondrial function.
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Background

Renal cell carcinomas (RCC) represent the most com-

mon type of tumors that arise within the adult kidney.

They can be divided into several subtypes - clear cell,

papillary, chromophobe, and collecting duct - based on

differences in cellular morphology, gene expression, and

cytogenetic and genetic abnormalities that are found

within the tumor cells [1-4]. The two most common

types of RCC are clear cell and papillary, which together

account for approximately 85-90% of RCCs. Chromo-

phobe RCC accounts for an additional 5% of renal

tumors, and a histologically similar subtype, renal onco-

cytoma, represents another 5% (see [5,6] for recent

reviews). Although the neoplastic cells of chromophobe

RCC and renal oncocytoma share morphological fea-

tures, renal oncocytomas are generally asymptomatic

and nearly always present as localized lesions with low

metastatic potential [7].

Though most renal tumors occur sporadically (~95%),

several hereditary syndromes are associated with a high

risk of renal tumor development. These syndromes

include von Hippel-Lindau disease, hereditary papillary

RCC, hereditary leiomyomatosis and renal cancer, and

Birt-Hogg-Dubé syndrome (BHDS) [8]. In von Hippel-

Lindau disease, a rare germline mutation in the VHL

gene is associated with development of the disease

(reviewed in [9]). Individuals with von Hippel-Lindau

disease are predisposed to the development of renal

tumors of the clear cell histology. In addition, somatic

mutations in the VHL gene are also found in the major-

ity of the sporadic cases of clear cell RCC [10]. Birt-

Hogg-Dubé syndrome is an extremely rare syndrome-

approximately 200 families have been described as

having BHDS worldwide [11,12]. Germline inheritance

of a mutated allele of the folliculin (FLCN) gene, located

at chromosome location 17p11.2, is strongly associated

with individuals that develop BHDS [13]. In individuals

afflicted with BHDS, the majority (~85%) of renal

tumors that develop are histologically similar to chro-

mophobe RCC or described as oncocytic hybrid tumors,

with portions appearing as both renal oncocytoma and

chromophobe RCC [14,15]. Unlike VHL, somatic muta-

tions in the FLCN gene are not strongly associated with

the development of sporadic renal oncocytoma and

chromophobe RCC [16,17]. As such, the role that FLCN

plays in the development of sporadic renal oncocytoma,

chromophobe RCC, and other sporadic tumors remains

unclear.

The folliculin gene encodes a highly conserved, 64kD

protein with no known functional domains. Recent

reports support its role as a tumor suppressor [18,19]

and in energy-related signaling, involving the mTOR

and AMPK pathways [20-22]. FLCN has been shown to

interact with AMPK through the binding of two inter-

mediary proteins, folliculin interacting protein 1 and fol-

liculin interacting protein 2 (FNIP1/2) and the activity

of FLCN may be altered by its subsequent phosphoryla-

tion by AMPK or localization to the cytoplasm with its

binding partners, or a combination of these two

mechanism [20,23,24]. As indicated previously, while

germline mutations in FLCN cause BHDS, these muta-

tions are not strongly associated with either sporadic

chromophobe RCC or renal oncocytoma [17]. The most

well characterized somatic mutations found in these two

sporadic tumor subtypes are mutations within the mito-

chondrial genome [25-29]. Renal oncocytoma, in parti-

cular, is characterized by the accumulation of somatic

mutations in mtDNA that inactivate subunits of mito-

chondrial complex I and other members of the electron

transport chain, severely limiting ATP production

[26,27]. In addition, both sporadic renal oncocytoma

and chromophobe RCC possess mitochondria-dense

cytoplasm and aberrant expression of genes associated

with oxidative phosphorylation (OXPHOS) [25,27,30].

However, the mechanism by which these mitochondrial

defects contribute to tumor development remains

unclear and the gene expression and cellular phenotypes

observed are thought to represent feedback mechanisms

to compensate for mitochondrial impairment.

While expression of some key markers of renal tumors

have been examined in a single BHDS-derived tumor

[31], we conducted gene expression profiling of multiple

renal tumors that arose in individuals with BHDS along

with sporadic renal oncocytoma and chromophobe RCC

to develop a better understanding of the underlying

molecular genetics of these tumors. We found that

tumors that arose in individuals with BHDS were geneti-

cally distinct from sporadic tumors, showing distinct

gene expression and cytogenetic characteristics. How-

ever, similar to sporadic renal oncocytoma and chromo-

phobe RCC, BHDS-derived renal tumors displayed high

expression of mitochondria and OXPHOS-associated

genes. Indeed, the expression of mitochondria and

OXPHOS-associated genes was even more pronounced

in the BHDS-derived tumors than the other sporadic

tumors and was correlated to increased expression of

key mitochondria transcriptional regulators. We have

also noted an inverse correlation between FLCN expres-

sion and mitochondria- and OXPHOS-associated genes

across a variety of tumor types, most evident in tumors

that possessed relatively low levels of FLCN and enrich-

ment in mitochondria- and OXPHOS-associated gene

expression. Taken together, our data suggest that FLCN

has an important role in the regulation of genes asso-

ciated with mitochondria and OXPHOS in BHDS-

derived tumors and possibly others.
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Methods

Tissue sample collection and DNA sequencing

Internal review board approval was obtained from each

participating institution for the renal neoplasms under

study. Samples isolated from individuals afflicted with

BHDS were flash-frozen in liquid nitrogen and stored at

-80°C following excision from patients as previously

described [32]. FLCN mutation status was confirmed

through DNA extraction from tumor samples and

sequencing, as described previously [33], using primer

sequences from Nickerson et al. [13]. The histological

classification and FLCN mutation information for the

BHDS-derived renal tumor samples are given in Addi-

tional file 1 Table S1.

Gene expression profiling datasets

RNA was isolated and expression profiles generated from

BHDS-derived tumor samples using the Affymetrix HG-

U133 Plus 2.0™chipset as previously described [32]. These

data are available at the Gene Expression Omnibus

(GEO, GSE21816). Expression profiles for the remaining

RCC subtypes and non-RCC tumors used in the analysis

are publicly available from the GEO database (GSE8271,

GSE11024, GSE11016, GSE7023, and GSE2109). All data

analysis was performed using software available from the

BioConductor Project (version 2.5) and the R statistical

environment v. 2.10.1 [34,35]. Prior to analysis, the

robust multi-chip average (RMA), as implemented in the

Affy package (1.24.2), was used for background correc-

tion and normalization of raw expression image intensi-

ties using updated probeset mapping [36] and data were

normalized to corresponding normal tissue type. The

technical replicate expression datasets from the DT017

sample of patient BHD1 were averaged prior to discrimi-

nate gene and gene set analyses.

Validation of gene expression microarray data by

qRT-PCR

Single-step, quantitative reverse transcription-PCR

(qRT-PCR) was performed to validate expression levels

for the following genes: PVALB, CDH19, RGS20, and

LRRTM4, with the GAPDH gene as a control. To per-

form the single-step qRT-PCR, we used the Power

SYBR® Green PCR Master Mix with Taqman® Gold RT-

PCR enzymes (Applied Biosystems, Foster City, CA).

We also conducted qRT-PCR using Taqman® assays

(Applied Biosystems) using the manufacturer’s protocol

for the following genes: FLCN, FNIP2, PPARGC1A,

PVALB, RGS20, TFAM, and TSC1. The reactions were

run on an ABI 7500 Fast Real-Time PCR system using a

dissociation curve analysis for the SYBR Green assays to

confirm primer specificity. We used the PerlPrimer soft-

ware [37] to design PCR primers within the exons that

were interrogated by the Affymetrix expression chips.

Primer sequences and assay ids have been made avail-

able in Additional file 1 Table S4.

Clustering and differential gene expression

Prior to clustering of all RCC samples, the 1000 most

variable genes were isolated using an interquartile range

filter of greater than 1.54. Clustering was performed

using Euclidean distance with complete linkage. For the

clustering of sporadic chromophobe RCC, sporadic onco-

cytoma, and BHDS-derived renal tumor samples, the

1500 most variable genes were isolated, corresponding to

an interquartile range filter of greater than 0.79. Eucli-

dean distance with average linkage was used, followed by

resampling for node support. Bootstrap resampling for

10,000 replications and a relative sample size of 1 was

used to generate the bootstrap probability values, as

implemented in the pvclust package v.1.2-1 [38].

Discriminatory genes were identified using a moder-

ated t-statistic as implemented in the limma package.

Significance values were adjusted to correct for multiple

testing using the Benjamini and Hochberg method [39].

Genes with false discovery rate (FDR) values less than

0.01 were reported as significant. Given that the sample

size of BHDS-derived tumors was disproportionate to

the number of either sporadic oncocytoma or chromo-

phobe RCC tumors, we conducted a permutation test to

decide whether the distinctiveness of BHDS-derived

tumors was a result of bias from a sample size effect.

The test was conducted using 1000 iterations comparing

the entire data set from the six BHDS-derived tumors to

five randomly selected oncocytoma data sets (without

replacement). The number of significantly differentially

expressed genes from this BHD-oncocytoma comparison

was greater than the number derived from a similar dis-

criminate analysis of five randomly selected oncocytoma

data sets with the remaining six oncocytoma data sets in

all of 1000 permutations. Likewise, a similar permuta-

tion test using the six BHD and six randomly selected

chromophobe RCC datasets was found to contain a

greater number of differentially expressed genes than a

comparison of six randomly chosen chromophobe with

the remaining six chromophobe datasets in all of 1000

permutations.

Gene set enrichment analyses

Parametric gene set enrichment was used to identify

chromosomal expression abnormalities using gene sets

corresponding to chromosomal arms as implemented in

the reb package [40]. For pathway analysis 1892 gene

sets were obtained from the Molecular Signatures Data-

base v2.5 (MsigDB, http://www.broadinstitute.org/gsea/

msigdb/). These gene sets were curated from multiple

sources including online pathway databases, biomedical
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literature, and mammalian microarray studies. Para-

metric gene set enrichment analysis method as imple-

mented in the PGSEA package was used generate

enrichment scores for each pathway within each tumor

sample using corresponding non-diseased kidney tissue

as a reference. A moderated t-statistic as implemented

in the limma package [41] was used to identify gene set

enrichment scores that could discriminate between sub-

types. In order to visualize the fraction of genes that

overlapped between deregulated gene sets, we calculated

pair-wise dissimilarity (D) scores using the formula:

D
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, where NA∩B is the num-

ber of genes in common between gene sets A and B and

NA and NB are the numbers of genes making up gene

sets A and B. The dissimilarity score was used to com-

pute a hierarchical clustering dendrogram using Eucli-

dean distance with average linkage.

PGC-1a signature generation

We produced a gene overexpression signature of PGC-

1a using gene expression data obtained from the com-

parison of PGC-1a transfected HepG2 cells to mock

transfected cells (GSE5968). A moderated t-statistic was

used to identify genes with expression differences that

were both significant (FDR

Results

BHDS tumors have distinct gene expression patterns

Although BHDS is exceedingly rare, it is important to

determine whether molecular analysis of BHDS-derived

renal tumors could give insight into the development of

sporadic chromophobe RCC and renal oncocytoma as

well as the cellular role of FLCN-related signal transduc-

tion. Therefore, we performed gene expression profiling

on a set of renal tumors isolated from individuals

afflicted with BHDS. We confirmed the presence of

FLCN mutations in these tumors (Additional file 1

Table S1). To determine how the BHDS-derived renal

tumors were related to other subtypes of renal cell car-

cinomas, we used unsupervised hierarchical clustering

with the most variable set of expressed genes (Figure

1A). Sporadic renal oncocytoma and chromophobe RCC

have an overall distinct pattern of gene expression rela-

tive to other RCC subtypes and consistent with the pre-

viously described histological similarity, the expression

characteristics of BHDS-derived tumors were more simi-

lar to sporadic chromophobe and renal oncocytoma

than the other RCC subtypes (Figure 1A). Sporadic

renal oncocytoma and chromophobe RCC are thought

to arise from cells that make up the distal convoluted

tubule (DCT) portion of nephrons within the kidney [1].

To examine the tissue of origin of the BHDS-derived

tumors, we assessed the expression of the distal convo-

luted tubule marker, PVALB [42]. This gene is expressed

in sporadic renal oncocytoma and chromophobe RCC,

but is absent or significantly lower in gene expression

array data of clear cell and papillary tumors thought to

derive from the proximal convoluted tubule and the

urothelial/transitional cell carcinomas that arise from

cells of the urinary tract (Figure 1C). Although not
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Figure 1 BHD tumors represent a distinct class of renal cell

carcinoma. A) Hierarchical clustering of renal tumor samples (BHDS,

N = 6; ON, N = 11; CH, N = 12; CC, N = 10; PAP, N = 22; UR, N =

10) and non-diseased renal tissue (N = 12) using the expression

data from the 1000 most variable genes. B) Unsupervised clustering

of BHD, ON, and CH tumor samples using gene expression data

from the 1500 most variable genes within this group. Bootstrap

probability values are given for the major nodes. C) Expression of

the distal convoluted tubule marker parvalbumin, PVALB, in the RCC

tumor sample data used in A. D) qRT-PCR validation of expression

of PVALB, along with two identified genes with high BHDS tumor-

specific expression, cadherin 19 (CDH19) and regulator of G-protein

signaling 20 (RGS20). BHD, N = 2; CC, N = 3; NO, N = 3; ON, N = 3.

E) Gene expression heatmap displaying expression values after

median centering for the fifty genes most up-regulated in BHDS-

derived tumors compared to sporadic chromophobe RCC and renal

oncocytoma from A. Abbreviations: NO, normal; ON, renal

oncocytoma; CH, chromophobe RCC; CC, clear cell RCC; PAP,

papillary RCC; UR, urothelial/TCC RCC.
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noted earlier, PVALB is highly expressed in the BHDS-

derived tumors, supporting the notion that these tumors

also arise from the distal convoluted tubule[31]. We

further examined FLCN expression in BHDS-derived

tumors as well as renal oncocytoma and chromophobe

RCC. We did not find a significant difference in the

FLCN transcript levels in these tumors by the gene

expression array data nor by qRT-PCR of a subset of

samples (Additional file 2, Figure S1A and data not

shown).

In the initial gene expression analysis the BHDS-

derived tumors formed a distinct branch in the cluster-

ing diagram (Figures 1A, B). These gene expression

differences were not due to a sample batch effect since

these renal tumors were collected at multiple institu-

tions and the gene expression profiles were generated at

various times between 2004 through 2009 using multiple

chip lots (Additional file 1, Table S1 and data not

shown). A more focused examination of the DCT-

derived tumors confirmed those from patients with

BHDS possess distinct expression characteristics with

strong node support as inferred by gene resampling

(Figure 1B). Several genes were differentially expressed

between BHDS-derived tumors and renal oncocytoma

(n = 401) and BHDS-derived tumors and chromophobe

RCC (n = 2922; FDR 1, Table S2). For comparison, we

found 1050 differentially expressed genes between

sporadic oncocytoma and chromophobe RCC. More-

over, we saw few, if any, gene differences when we per-

formed resampling with the discriminate analysis within

either the sporadic renal oncocytoma or sporadic chro-

mophobe samples, indicating the high numbers of dif-

ferentially expressed genes between tumor subtypes

were not due to differences in sample size between the

tumor subtypes (p < 0.001, see Methods). The molecular

distinction between BHDS-derived tumors, sporadic

renal oncocytoma, and sporadic chromophobe RCC is

in contrast to the similarities of VHL disease-associated

tumors with sporadic clear cell RCC. In those studies,

no significant differences in gene expression were identi-

fied between the two entities [43]. Together, the gene

expression analyses indicate that distinctions exist

between BHDS-derived renal tumors and other RCC

subtypes similar in magnitude to those between the

other recognized subtypes of RCC, such as oncocytoma

and chromophobe RCC. Notable genes that are more

highly expressed in BHDS-derived tumors when com-

pared to sporadic renal oncocytoma and chromophobe

RCC include CDH19, RSG20, DAPL1, LRRTM4, and

HHATL (Figure 1EAdditional file 2, Figure S2, and

Additional file 1, Table S2). We validated the expression

levels of PVALB and three of the most significantly

over-expressed genes, CDH19 (cadherin 19, type 2),

RGS20 (regulator of G-protein signaling 20), and

LRRTM4 (leucine rich repeat transmembrane neuronal

4) using qRT-PCR (Figure 1DAdditional file 2, Figures

S1B-C, and data not shown). We chose to validate these

particular genes for their consistently high expression in

BHD-derived tumor samples, their low expression in the

other RCC subtypes examined.

BHDS-derived tumors lack evidence of cytogenetic

features present in sporadic oncocytoma and

chromophobe RCC tumors

Several studies have shown that is possible to detect

both chromosomal translocations[44] and gains and

losses of large chromosomal regions through examina-

tion of gene expression data [45]. To identify potential

chromosomal abnormalities that exist in BHDS samples,

we examined the gene expression data for chromosome-

based changes in gene expression that reflect cytoge-

netic changes such as chromosomal amplifications or

deletions [41,45]. As with previous cytogenetic studies,

our analysis predicted losses of chromosomes 1, 2, 6, 10,

and 17 in chromophobe RCC and, with the exception of

chromosome 1, a lack of large chromosomal abnormal-

ities in renal oncocytoma samples (Figure 2A) [46]. In

addition, evidence of a recently described abnormality of

chromosome 19 (chromosomal gains and somatically

paired chromosomes) was also apparent in both chro-

mophobe RCC and renal oncocytoma data [47]. Though

we predicted one BHDS-derived tumor sample (BHD4,

Additional file 1, Table S1) contains multiple abnormal-

ities involving chromosomes 2, 3, 4, 5, 6, 13, and 18, a

phenomenon that is sometimes observed in sporadic

cases of renal oncocytoma [48], the tumor possessed

histology typical of hybrid oncocytic-chromophobe

BHDS-derived tumors (Additional file 2, Figures S3A-B).

The BHDS-derived tumors appeared mostly devoid of

chromosomal abnormalities that are typical of the

sporadic tumors. Although the BHDS-derived tumors

did not show loss of chromosome 17p as described in a

cell line recently established from a renal cell carcinoma

of a patient with BHDS [49], the resolution of this

approach does not allow us to exclude the presence of

small focal deletions. In addition, sporadic renal oncocy-

tomas can be partitioned into two mutually exclusive

groups based on cytogenetic features. One group of

tumors possesses a loss of chromosome 1 and the other

group of tumors has a translocation of chromosome

11q13 that has a breakpoint proximal to the cyclin D1

(CCND1) gene [50]. Consistent with this finding, we

identified a subgroup of renal oncocytomas with high

CCND1 expression (N = 6, Figures 2B, C) that were

independent of renal oncocytomas with a predicted loss

of chromosome 1 (Figure 2A). None of the BHDS-

derived tumors show evidence of the CCND1 associated

translocation of 11q13 or loss of chromosome 1. Taken
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together, differences in the overall gene expression pro-

files and differences in predicted chromosomal abnorm-

alities suggest that BHDS-derived renal tumors

represent a genetically distinct type of renal tumor.

A mitochondrial gene expression phenotype is a

prominent feature of BHDS-derived tumors

The deregulation of signal transduction pathways have

been identified through examining gene expression data

of renal tumors in several cases, including the deregula-

tion of VHL, MYC, PI3K, E2F, and OXPHOS in clear

cell, papillary, transitional cell carcinoma of the renal

pelvis, Wilms’ tumor, and renal oncocytoma, respec-

tively [51-54]. For example, inactivation of the VHL

gene by somatic mutation is a common feature of clear

cell subtype of RCC. Cells that lack a functional VHL

protein are unable to degrade the hypoxia inducible

transcription factor (HIF). As a consequence these cells

have uncontrolled expression of genes controlled by the

HIF transcription factor. When parametric gene set

enrichment analysis (PGSEA) is used in conjunction

with gene sets (n = 1892) obtained from the Molecular

Signatures Database (MSigDB, see Methods), four of the

top five most significantly deregulated pathways unique

to the clear cell RCC subtype were associated with a cel-

lular hypoxia phenotype (Figure 3A, B). In a similar

comparison of BHDS-derived tumors with the other

RCC subtypes, the top five most significantly deregu-

lated pathways were associated with OXPHOS or mito-

chondria (Figure 3A, C). This result is consistent with

the high mitochondria and OXPHOS-associated gene

expression observed in both sporadic oncocytoma and

chromophobe RCC, tumors known to contain an abun-

dance of mitochondria. In this regard, BHDS-derived

tumors are similar to the other sporadic DCT-derived

tumors. Since our analyses of individual gene expression

supported distinctions between BHDS-derived tumors

and sporadic renal oncocytoma and chromophobe RCC,

we used PGSEA to assess whether any gene sets were

uniquely enriched in BHDS-tumors. For clarity in pre-

sentation, we have organized these differentially

expressed gene sets by hierarchical clustering based on

the percentage of overlapping genes within gene sets

(see Materials and Methods). In this way, gene sets that

were highly redundant (i.e. contained a large percentage

of overlapping genes) were located within the same

branch of the clustering dendrogram. Somewhat surpris-

ingly, several gene sets that were associated with mito-

chondrial function were also identified as being

significantly up-regulated in BHDS-derived tumors

when compared to sporadic renal oncocytoma and chro-

mophobe RCC (Figure 3D, E). These enriched gene sets

of the BHDS-derived tumors included two hand-curated

gene sets reflective of peroxisome proliferator-activated

receptor g coactivator 1a (PGC-1a, encoded by the

PPARGC1A gene) activation, MOOTHA_VOXPHOS

and PGC[55]. A full list of the pathways most deregu-

lated in BHDS-derived tumors is included as Additional

file 1, Table S3.

An expression phenotype involving the PGC-1a-TFAM

signaling axis is unique to BHDS-derived tumors

The presence of FLCN mutations in BHDS-derived

tumors suggested we might be able to identify signal

transduction events associated with FLCN function

(Figure 4A). Previous studies of the FLCN gene product

CCND1

0
2
4
6
8

10
12

ON20

BHDCHON

BHDCHON

R
e

la
ti
v
e

 
e

x
p

re
s
s
io

n Cyclin D1 

40-4

Log
2
 (fold change)

A

B

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
X
Y

67,374,323

74,917,444

Chromosome 11q13.2-11q13.4

base pair

100-10

Enrichment score 
(z-score)

p
q

MYEOV
SAPS3

NDUFS8
ALDH3B1
NDUFV1

CTTN
IL18BP
FOLR3

SLCO2B1
PCF11

BHDCHON

Chromosome

Arm

Figure 2 BHD tumors do not share the cytogenetic features of

sporadic chromophobe RCC and renal oncocytoma. A) CGMA

plot of BHD, CH, and ON tumor samples (columns) and

chromosomal arms (rows) (p < 0.001). Blue indicates regions with a

predicted copy number loss while red indicates regions with a

predicted copy number gain or somatic chromosome pairing. The

vertical dashed line separates oncocytoma samples with high cyclin

D1 (CCND1) expression on the left from those with low expression

on the right. B) Heatmap showing expression values for CCND1 and

neighboring genes on chromosome 11q, with sample columns

aligned as in part A. C) Relative gene expression for CCND1, with

samples arranged as given in the columns of the previous parts A

and B.

Klomp et al. BMC Medical Genomics 2010, 3:59

http://www.biomedcentral.com/1755-8794/3/59

Page 6 of 12



have indicated a role for this protein in regulation of 5’

AMP-activated protein kinase (AMPK) and activation of

the mTOR signalling pathway. Specifically, FLCN forms

a complex with folliculin interacting protein 1 or 2

(FNIP1 or FNIP2) and the FLCN-FNIP complex binds

to AMPK [20,23,24]. When we examined twelve genes

encoding the proteins described in Figure 4A (AKT1,

FLCN, FNIP1, FNIP2, PIK3C3, PPARGC1A, PRKAA2,

RICTOR, RPTOR, TFAM, TSC1, and TSC2) in our gene

expression array data, we noticed a slightly elevated

level of FNIP1 expression in BHDS-derived tumors (data

not shown) and that FNIP2 was highly deregulated in

BHDS-derived tumors, suggesting that these proteins

are relevant to FLCN signaling in renal tumor cells (Fig-

ure 4BAdditional file 2, Figure S1D). While FNIP1 and

FNIP2 share a C-terminal protein domain that binds

FLCN, their respective N-terminal domains are quite

dissimilar and it is speculated that these proteins have

non-redundant functions [23,24]. In addition, consistent

with deregulation of the mTOR pathway, we also noted

the deregulation of TSC1, a major regulator of mTOR,

in the BHDS-derived tumors (Additional file 2, Figure

S1E).

We also examined transcription levels of genes asso-

ciated with AMPK signaling, as this was a likely can-

didate for signaling based on our observation of

mitochondrial gene set enrichment and the recently dis-

covered indirect interaction between FLCN and AMPK.

AMPK is a key molecule for energy sensing and a regula-

tor of the PGC-1a transcription factor, a potent inducer

of mitochondrial biogenesis (Figure 4A). We noted that

two transcription factors, PGC-1a and TFAM (transcrip-

tion factor A, mitochondrial), were also up-regulated in

the BHDS-derived tumors (Figure 4E and Additional file

2, Figure S1G). Both transcription of mitochondrial genes

and replication of the mitochondrial genome depend on

TFAM function and the TFAM gene is uniquely over-

expressed in the BHDS-derived tumors (for a review of

transcriptional regulators of mitochondria, see [56-58]).

PGC-1a (PPARGC1A) was also highly expressed in the

BHDS-derived tumors as measured by gene expression

profiling. However, the levels of PGC-1a as measured by

qRT-PCR in BHDS tumors were sensitive to the probe/

primer sets used, suggesting that BHDS tumors may have

a difference in the abundance of a particular PGC-1a iso-

form (Additional file 2, Figure S1G). The PGC-1a bind-

ing partner, nuclear receptor peroxisome proliferator-

activated receptor gamma (PPARG) was highly expressed

in BHDS-derived tumors as compared to non-diseased

tissue, sporadic oncocytoma, and chromophobe RCC

(Additional file 2, Figure S1F) while the peroxisome pro-

liferator-activated receptor alpha (PPARA) was higher in

BHDS-derived tumors versus sporadic oncocytoma and
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Figure 3 A mitochondrial phenotype is the most prominent

molecular feature of BHDS renal tumors. A) Top differentially

expressed gene sets in CC and BHD tumors. The first and second

groups represent those gene sets from MsigDB that are unique to

CC and BHD, respectively, as compared to the other RCC subtypes

given in Figure 1A. The third group is a comparison of the BHD

tumor gene expression data with only CH and ON gene expression

data. B) The most differentially expressed gene set in CC tumor
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chromophobe (data not shown). Moreover, we found a

set of PGC-1a regulated genes, entitled “PGC,” was

highly up-regulated in BHDS-derived samples (Figure

3D). To confirm this “PGC” gene set from MsigDB was

representative of PGC-1a activation, we generated an

independent gene expression signature from HepG2 cells

that were adenovirally infected with PGC-1a versus con-

trol (Figure 4C, performed by Gaillard et al.) [59].

Although there was only 11.8 percent similarity between

these two independently generated PGC-1a gene sets,

both gene sets were significantly up-regulated in BHDS-

derived patient tumors (Figure 4D). We did not see

expression changes associated with genes encoding the

mitochondria-associated transcription factors NRF-1 and

NRF-2. Taken together, these results indicate that dereg-

ulation of FLCN function by point mutation is associated

with FNIP2 deregulation and perturbation of the PGC-

1a-TFAM signaling axis.

FLCN expression inversely correlates with PGC-1a

activation

Based on the data from the BHDS-derived tumors, we

hypothesized that defects in FLCN may be associated

with increased expression of genes related to mitochon-

dria and OXPHOS. To test this hypothesis, we exam-

ined the relationship between FLCN expression and

gene set enrichment in a variety of other tumor tissue

types, using a data set that includes tumors of the

breast, cervix, colon, kidney, lung, lymph, ovary, pan-

creas, prostate, stomach, thyroid, and vulva, with

matched normal tissue of each tissue type. Using FLCN

expression levels and PGSEA scores of the 1892 gene

sets analyzed previously for this data set, we determined

which gene sets were most related to FLCN gene

expression. Consistent with the loss of FLCN function

in BHDS-derived tumors, the top 20 gene sets identified

were all negatively correlated to FLCN expression and

were primarily related to metabolism and mitochondrial

function (Figure 5A). Specifically, we found that the

PGC gene set and other OXPHOS gene sets were highly

negatively correlated with FLCN expression across these

tumor types (Figure 5B). Though not included in the

initial gene set correlation analysis, our PGC-1a over-

expression signature (Figure 4C) was also negatively cor-

related with FLCN expression (rho, -0.60, p < 0.0001).

Based on our findings, it is likely that a FLCN-PGC-1a-

TFAM signaling axis exists and that lack of FLCN

expression may be an important feature in sporadic

tumors of other organs as it is in BHDS-derived renal

tumors.
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Figure 4 BHDS-derived tumors possess characteristics of an

active PGC-1a-TFAM signaling axis. A) Schematic of FLCN

interacting proteins in signal transduction pathway. B) Relative gene

expression levels for tuberous sclerosis 1 (TSC1) and folliculin

interacting protein 2 (FNIP2) proteins in tumors from patients with

BHDS, ON, CH, and the other RCC subtypes from Figure 1A. C) An

independent PGC-1a signature from over-expression of PGC-1a in

HepG2 cells (GSE5968), showing the top 150 genes (rows) that are

up-regulated in PGC-1a over-expressing cells compared to controls

(columns). Red indicates high expression and blue indicates low

expression. D) Correlation of empirically-derived PGC-1a signature

represented in C compared to the PGC signature from Figures 3A

and 3D, applied to the six RCC subtypes, using Pearson’s correlation.

E) Relative expression of the TFAM transcription factor involved in

mitochondrial biogenesis (all p ≤ 0.01) in gene expression array data

from BHD, CH, ON, and the remaining RCC subtypes, as well as

non-diseased tissue and from qRT-PCR validation of a subset of

those samples.
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Discussion

To establish the molecular characteristics of tumors that

arise in individuals afflicted with BHDS, we compared

gene expression data from renal tumors of BHDS

patients with expression data from sporadic renal

tumors. Although previous gene expression profiling

studies indicated that renal tumors isolated from indivi-

duals afflicted with von Hippel-Lindau disease are indis-

tinguishable from sporadic clear cell RCC[43], we show

that kidney tumors from patients with BHDS also have

unique genetic and cytogenetic characteristics from

sporadic renal oncocytoma and chromophobe RCC. In

particular, cytogenetic defects that are typical of spora-

dic oncocytoma and chromophobe RCC, including

defects of chromosome 19, loss of chromosome 1, and

translocations involving chromosome 11, were largely

absent from BHDS-derived tumors. Interestingly, we did

not find differences in FLCN expression by either our

gene expression arrays nor by qRT-PCR, suggesting that

the FLCN mRNA transcript may not be subject to

nonsense-mediated mRNA decay. However, several indi-

vidual genes are differentially expressed between BHDS-

derived tumors and the sporadic tumors. One gene in

particular, DAPL1 (death-associated protein-like 1), is

expressed at a high level in BHDS-derived tumors.

Although the function of DAPL1 is not known, it was

originally termed early epithelial differentiation asso-

ciated (EEDA) for its expression in stratified squamous

epithelium, specifically in a population of cells of the

hair follicle [60]. High expression of this gene in BHDS-

derived tumors is a potentially interesting finding given

the clinical presentation of fibrofolliculomas that arise in

BHDS-afflicted individuals.

Several recent reports have implicated FLCN in the

energy and nutrient signaling pathway through its inter-

actions with FNIP1 and FNIP2 and its indirect interac-

tion with AMPK (Figure 4A). These studies have also

suggested that FLCN impacts the mammalian target of

rapamycin (mTOR) related components of the PI3K-Akt

signal transduction pathway [22]. Consistent with the

existence of a FLCN-mTOR relationship, treatment with

the specific mTOR inhibitor, rapamycin, delays the

death of mice that possess targeted deletion of FLCN in

the kidney [61,62]. We noted high expression of FNIP2

and TSC1 in BHDS-derived tumors, implicating a novel

link between FLCN and both AMPK- and mTOR-

mediated signaling and transcription. However, we did

not see evidence of PI3K-Akt activation in BHDS-

derived tumors using an expression signature that was a

robust predictor of PI3K-Akt pathway activation in

other renal tumors [53], nor did we see consistent

enrichment of the three mTOR activation signatures

from the MsigDB in the BHDS patient samples. It is

possible that the up-regulation of TSC1 we have

observed represents a feedback effect from the somatic

mutation in FLCN. One potential rational for this obser-

vation is that is has recently been noted that activation

of mTOR controls mitochondrial gene expression

through signaling with PGC-1a [63]. Moreover, mTOR-

mediated control of mitochondrial gene expression is

inhibited by application of rapamycin. Our results sug-

gest that the effects of rapamycin noted in FLCN loss-

of-function mice may be through the mitochondrial

effects of mTOR activation as opposed to activation of

PI3K-Akt.
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Figure 5 FLCN expression negatively correlates with PGC-1a

activation. A) The twenty most highly correlated gene sets with

FLCN expression levels, followed by their respective Spearman rho

correlation coefficients. Bold font indicates gene sets also shown in

Figure 3. The dendrogram is based on gene set dissimilarity scores

(see Materials and Methods). B) Plot of FLCN expression and the

enrichment scores for the PGC gene set in tumors of the breast,

cervix, colon, kidney, lung, lymph, ovary, pancreas, prostate,

stomach, thyroid, and vulva, with tissue type-matched normal tissue.

Data for A) and B) are from the Expression Project for Oncology -

International Genomics Consortium.
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Throughout our analysis, we observed that one spora-

dic renal oncocytoma co-clustered with the BHDS-

derived tumors and showed strong PGC-1a-related gene

expression (Figure 1B, F). This tumor sample also lacked

the cytogenetic features typical of sporadic oncocytomas,

such as loss of chromosome 1, deregulation of CCND1,

and over-expression of chromosome 19 genes (Figure

2). Interestingly, this individual presented with renal

oncocytoma at the age of 34 years old, while the median

age of sporadic renal oncocytoma is between 65-70

[7,64]. Given that early age at diagnosis (under age 50)

is often a feature of hereditary disease, we sequenced

the entire FLCN open reading frame from non-diseased

kidney tissue of this patient and only identified a com-

mon single nucleotide polymorphism within the 5’ UTR

[11]. Though somatic mutations in FLCN occur in

approximately 10 percent of sporadic tumors, we lacked

the tissue required to determine the FLCN status in the

tumor itself. However, these results suggest that a sepa-

rate BHDS-like group of sporadic renal oncocytomas

could exist in the population, genetically distinct from

other sporadic renal tumors.

Finally, although these DCT-derived tumors are

genetically distinct, BHDS-derived tumors, sporadic

renal oncocytoma, and chromophobe RCC share their

histological and mitochondrial/OXHPOS gene expres-

sion characteristics. Development of oncocytomas in

organ sites outside of the kidney are also associated

with prominent mitochondrial DNA mutations, a high

production of mitochondria, and deregulated OXPHOS

gene expression [65,66]. In renal oncocytoma and other

mitochondrial myopathies, up-regulation of mitochon-

drial gene expression is thought to represent a feedback

mechanism to compensate for mitochondrial damage

[67,68]. In this study, we show that the mitochondrial

expression phenotype is even more pronounced in sam-

ples that harbor FLCN mutations. The enhanced mito-

chondrial gene expression in BHDS samples suggests

that wild-type FLCN is important for efficient mitochon-

drial function and that lack of functional FLCN leads to

a yet unknown mitochondrial dysfunction. Deregulation

of mitochondrial proteins has recently been identified in

sporadic oncocytoma and chromophobe RCC [30].

Future studies will therefore help to clarify the role of

FLCN in mitochondrial function.

Conclusions

Our results support a genetic distinction between

BHDS-associated tumors and other sporadic renal neo-

plasias. In addition, we found that deregulation of the

PGC-1a-TFAM signaling axis is most pronounced in

renal tumors that harbor FLCN mutations and in

tumors from other organs that have relatively low

expression of FLCN. These results are consistent with

the recently discovered interaction between FLCN and

AMPK and support a model in which FLCN is a regula-

tor of mitochondrial function.

Additional material

Additional file 1: Supplementary Tables S1-S4. This file contains four

supplementary tables: Table S1- characteristics of BHD-derived tumor

samples, Table S2- top 200 genes differentially expressed between BHD

renal tumors and sporadic renal oncocytomas (ON) and chromophobe

RCC (CH) samples, Table S3- most significantly enriched gene sets in

BHDS-derived tumor samples versus sporadic oncocytoma (ON) and

chromophobe RCC (CH) samples, and Table S4- primer and probe

sequences for qRT-PCR validation of genes in BHDS, CH, ON, and CC

tumors relative to Normal kidney.

Additional file 2: Supplementary Figures S1-S3. This file contains

three supplementary figures: Figure S1- gene expression measurements

for individual genes deregulated in BHDS tumors, Figure S2- heatmap of

differentially expressed genes from Figure 1E in sporadic kidney tumors,

and Figure S3- histological images of sample BHD4.
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