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Abstract

Introduction: The current study has addressed the presence and the cellular origin of microparticles (MP) isolated

from bronchoalveolar lavage (BAL) fluid and from blood samples from patients with acute respiratory distress

syndrome (ARDS). Their prognostic interest was also investigated.

Methods: Fifty-two patients were included within the first 24 hours of ARDS. They were compared to spontaneous

breathing (SB) and ventilated control (VC) groups. Bronchoalveolar lavage (BAL) and blood samples were obtained

on Day 1 and Day 3 in an ARDS group. Leukocyte microparticles (LeuMP), neutrophil microparticles (NeuMP),

endothelial microparticles (EMP), and platelet microparticles (PMP) were measured in arterial blood and in BAL

samples by flow cytometry. Mortality from all causes was recorded at Day 28.

Results: All MP subpopulations were detected in BAL. However, only LeuMP and NeuMP were elevated in ARDS

patients compared to the SB group (P = 0.002 for both). Among ARDS patients, higher levels of LeuMP were

detected in blood (Day 1) and in BAL (Day 3) in survivors as compared with the non survivors. Circulating LeuMP

>60 elements/microliter detectable on Day 1 of ARDS, was associated with a higher survival rate (odds ratio, 5.26;

95% confidence interval, 1.10 to 24.99; P = 0.037).

Conclusions: The identification of the cellular origin of microparticles at the onset of ARDS has identified LeuMP

as a biomarker of prognostic significance. The higher levels of LeuMP in survivors could be associated with a

protective role of this MP subpopulation. This hypothesis needs further investigations.

Introduction
Acute Lung Injury (ALI) and its most severe clinical

presentation, Acute Respiratory Distress Syndrome

(ARDS), occur after a variety of insults, including sepsis,

trauma, or aspiration of gastric contents. Despite recent

therapeutic advances in the field of mechanical ventila-

tion, 30% to 50% of ARDS patients die [1]. A recent sys-

tematic review suggested that mortality from ARDS has

not decreased substantially since the publication of the

American-European consensus conference in 1994 [2,3].

Converging evidence from clinical and experimental

studies shows that leukocytes play a pivotal role in

injury during the acute phase of ALI/ARDS. Early in the

course of ARDS, lung biopsies and bronchoalveolar-

lavage fluid (BAL) show a marked accumulation of neu-

trophils. Neutrophils are the corner stone of host

defenses by releasing proinflammatory cytokines and

chemokines that could explain, at least in part, why

anti-inflammatory therapies have largely been unsuc-

cessful in ARDS [4].

The local and systemic proinflammatory responses

accompanying ARDS are orchestrated by the interac-

tions between circulating cells such as leukocytes, plate-

lets, and endothelial cells. It is now well admitted that

during inflammatory responses, cells release submicron

vesicles that bud off from the cell membrane. These

cell-derived microparticles (MPs) have proven to be sen-

sitive markers for assessing the activation/apoptotic
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status of cells in many inflammatory disorders such as

SIRS, meningococcal sepsis, severe trauma, and neuro-

paludism [5-7]. Microparticles are submicron plasma

membrane vesicles that express cell surface proteins of

the original cells and negatively charged phospholipids

such as phosphatidylserine. Moreover, MPs behave as

vectors of bioactive molecules, which accounts for their

pro-coagulant and pro-adhesive potential. Taken

together, the interest in MPs has substantially increased,

not only for their clinical relevance as disease markers

but also for their role as effectors in the tight tuning of

adaptive responses such as inflammation, immunity, or

hemostasis [8].

The critical role of leukocyte-mediated responses led

us to hypothesize that the strong local and systemic

inflammatory responses associated with ARDS may be

associated with altered levels of leukocyte MPs

(LeuMP). The objective of the present study was there-

fore to measure LeuMP and other MP subpopulations

both in blood and BAL early in the course of ARDS.

Because recent evidence suggests that poor outcome in

critically ill patient is associated with “immune paralysis”

(endogenous immunosuppresion) [9], we also postulated

that high levels of LeuMP may be associated with better

outcome during ARDS.

Materials and methods
Inclusion criteria

Patients admitted to the medical ICU of Sainte Mar-

guerite University Hospital were screened daily during a

two-year period for enrolment if they met the Ameri-

can-European Consensus Conference (AECC) criteria

for ARDS [2]. Patients were included after written

informed consent was obtained from each patient’s next

of kin and after approval by the local ethics committee

(comité consultatif pour la protection et la recherche

biomédicale de Marseille 1). All subjects were included

within the first 24 hours of ARDS. Exclusion criteria

included age <18 years, pregnancy, and left ventricular

failure. Additionally, we excluded patients with condi-

tions known to be associated with increased circulating

levels of MPs such as acute coronary syndromes, severe

chronic renal failure (defined as creatinine clearance

<30 mL/minute), heparin-induced thrombocytopenia,

antiphospholipid syndrome, sickle-cell disease, organ or

bone marrow transplantation, neutropenia, and hemato-

logical malignancies. Controls consisted of two groups

of patients, one with ICU patients mechanically-venti-

lated for non-pulmonary disorders and the other group

included spontaneously breathing subjects who under-

went a bronchoscopic procedure as part of a planned

work-up for a suspicion of a non-infectious pulmonary

disease (chronic cough, n = 5, esophageal cancer, n = 3,

suspicion of sarcoidosis, n = 2 and hemoptysis, n = 2).

Data collection

The following demographic data were collected at

admission in the ICU: age, gender, cause of ARDS, Sim-

plified Acute Physiology Score II (SAPS II) [10]. The fol-

lowing clinical severity scores were assessed at inclusion

in the study: lung injury severity score (LISS) [11] and

Sequential Organ Failure Assessment (SOFA) [12]. The

presence of an associated septic shock [13] was recorded

at inclusion. Ventilator free days were evaluated at 28

days (VFD28) for MPs levels comparisons. The following

respiratory and hemodynamic variables were assessed

within the first 24 hours of ARDS: PaO2/FiO2 ratio,

PaCO2, arterial pH, total PEEP, plateau pressure, quasi-

static compliance, minute ventilation, tidal volume,

heart rate, mean arterial pressure, vasopressor require-

ments. Standard biological parameters were obtained at

inclusion: total leukocyte count, hematocrit, platelet

count, prothrombin time, fibrinogen, arterial lactate

levels, serum creatinine, and procalcitonin. Neutrophil

counts were also performed in BAL. As an index of pro-

tein permeability, we have measured the BALF to

plasma total protein ratio according to the method of

the dilution of urea described by Rennard et al. [14].

Pulmonary and systemic microparticle collections

Bronchoalveolar lavage (BAL) and blood samples were

obtained at Day 1 of ARDS and were repeated at Day 3.

Arterial blood samples (6 mL) were obtained (from an

indwelling arterial catheter) in citrated tubes just before

BAL was performed. Directed BAL under fiberoptic

bronchoscopy was conducted as previously described

[15]. The cells were counted, and the BAL was immedi-

ately treated using serial centrifugations (1,500 g for 30

minutes; 13,000 g for 2 minutes). Platelet-free plasma

(PFP) samples were prepared, and supernatants were ali-

quoted and stored at -80°C until analysis.

Cytometry analysis

Antibodies anti-CD41-FITC (clone PL2-49) and IgG1-

FITC (clone 2H11/2H12) were from BioCytex (Mar-

seille, France). Antibodies anti-CD31-PE (clone 1F11),

anti-CD45-FITC (clone J.33), anti-CD11b-FITC (clone

Bear1), and anti-CD66b-FITC (clone 80H3), and iso-

types IgG1-FITC and PE (clone 679.1 Mc7) were from

Beckman Coulter (Miami, FL, USA). For MP labeling,

30 μL of freshly thawed PFP was incubated 30 minutes

with 10 μL of specific antibody or concentration-

matched isotype control. Platelet microparticles (PMP)

(CD41+), leukocyte microparticles (LeuMP) (CD45+),

polymorphonuclear neutrophil microparticles (NeuMP)

(CD66b+/CD11b+), and endothelial microparticles

(EMP) (CD31+/CD41-) analyses were performed on

Cytomics FC500 flow cytometer (Beckman Coulter)

using a Megamix beads (BioCytex) calibrated protocol
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as previously described. Flow Count Fluorospheres

(Beckman Coulter) were added to each sample in order

to express MP counts as absolute numbers [16].

Statistical analysis

Continuous variables were presented as mean ± SD and

compared using Student’s two-tailed t-test. Normality of

the distribution for the variables was assessed using the

Kolmogorov-Smirnov test. Non-normally distributed con-

tinuous variables were presented as median and interquar-

tile range and compared using Wilcoxon’s rank-sum test.

The chi-square test or the Fisher exact test was used to

compare categorical variables. To examine linear correla-

tions between two variables, the Pearson or the Spearman

correlation methods were used as appropriate. Multivari-

ate logistic regression was used to identify the independent

factors associated with death at Day 28. Hosmer Leme-

show test with P > 0.05 suggest a good fit between data

and the logistic regression model. All variables that exhib-

ited a P-value < 0.2 on univariate analysis were entered in

the model. Interactions were tested in the model; variables

strongly associated with other(s) were not included in the

multivariate analysis. The following variables evaluated at

Day 1 were finally entered in the model: age, SOFA score

on inclusion, plateau pressure, arterial pH, circulating

LeuMP. The median value of LeuMP was used as the

threshold. A two-tailed P ≤.05 was considered statistically

significant. Statistics and figures were performed with

SPSS 15.0 (SPSS Inc., Chicago, IL, USA).

Results
Patients

All patients were included within the first 48 hours of

the diagnosis of ARDS according the AECC criteria.

Table 1 compared the clinical characteristics of the 52

ARDS patients with the ventilated control group (VC)

(n = 10) and with the spontaneous breathing control

group (SB) (n = 12). As illustrated in table 1, pneumonia

was the most common cause of ARDS. There were 31/

52 (59.6%) ARDS survivors at Day 28. Tables 2 and 3

compared the baseline values of the biological and phy-

siological parameters of the 52 ARDS patients according

to the outcome. As expected, the non-survivors had

higher SAPS II score (51 ± 11 vs. 44 ± 15, P = 0.05) and

higher SOFA score (10 (11 to 14) vs. 7 (9 to 11), P =

0.007) on inclusion. Among the biological variables

detailed in Table 2, only platelet count was significantly

lower in nonsurvivors on inclusion. As shown in

Table 3, these patients presented severe lung function

impairment as reflected by the mean PaO2/FiO2 ratio,

which was <120 mmHg despite a mean PEEP level of 12

cmH2O. Survivors and nonsurvivors did not differ in

baseline respiratory and hemodynamic parameters,

except that non-survivors had lower arterial pH.

Characterization of microparticles in BAL from ARDS

The analysis of the microparticles origin in BAL indi-

cates that microparticles originating from leukocyte

(LeuMP), neutrophil (NeuMP), platelet (PMP) and

endothelial cells (EMP) were detected in BAL. EMP

were detected in the BAL of only 6 of the 52 ARDS

patients, in 1 patient in the VC group and they were not

detected in the SB group. LeuMP were found higher in

the BAL from ARDS patients as compared to both the

VC group and the SB group (Figure 1).

Similarly, NeuMP were also found higher in ARDS

patients as compared with the SB group but not with

the VC group (Figure 2). PMP numbers were not signifi-

cantly different among the three groups (data not

shown).

Subgroup analysis

When the analysis was restricted to the ARDS related to

proven bacterial pneumonia, main differences remained.

We found both higher levels of LeuMP (219 (110 to 580)

vs 52 (7 to 128), P = 0.002) and higher levels of NeuMP

(68 (0 to 304), P = 0.002) between the ARDS related to

pneumonia group and the SB group. LeuMP were also

found to be higher in the ARDS related to pneumonia

group as compared with the VC group (219 (110 to 580))

vs 107 (44 to 208)), P = 0.028 respectively).

Microparticles at the onset of ARDS and outcome

As presented in Figure 3, we detected higher circulating

LeuMP and PMP at Day 1 in the blood from survivors

than in the non-survivors (P = 0.03 and P = 0.02,

respectively). Moreover, three days after the onset of

ARDS, PMP remained significantly higher in survivors

(P = 0.02). Patients who had more than five VFD (mean

value of the ARDS group) at Day 28 presented higher

levels of circulating LeuMP (127 (53 to 273) vs 55 (28

to 115) P = 0.021) and circulating PMP (588 (224 to

1417) vs 257 (160 to 439), P = 0.014) as compared with

patients who had less than five VFD. Finally, the LeuMP

level in BAL performed at Day 1 was correlated with

quasi-static respiratory compliance (r2 = 0.35, P = 0.01).

Results of the logistic regression analysis for 28-day

survival are presented in Table 4. Circulating

LeuMP >60 elements/μL were associated with survival

at Day 28. In contrast, severe arterial acidosis (pH <7.30)

at Day 1 was associated with a worse prognosis.

Short term variations of microparticles during ARDS

Figure 4 shows the short term variations of leukocyte

and neutrophil microparticles in the BAL from ARDS

patients between Day 1 and Day 3. Survivors exhibit

higher levels of those microparticles than non-survivors

only at Day 3. We didn’t find any difference for PMP

and EMP (data not shown).
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Relation between levels of Microparticles in blood and

BAL compartments

When platelet counts and PMP levels in the blood com-

partment were studied together, we found a significant

correlation between platelet count and PMP at Day 1

(r = 0.41, P = 0.008). In the BAL compartment, at Day

1, LeuMP were correlated with total cellular count in

BAL (r = 0.55, P < 0.0001) and NeuMP with total

neutrophils count (r = 0.51, P < 0.0001). These data sug-

gest a link between MPs levels and their parent cells in

each compartment.

Discussion
To our knowledge, this is the first study which charac-

terized the cellular origin of MPs in the course of

ARDS, both in circulating blood and BAL. The major

Table 1 Clinical characteristics of the studying populations

Variables Spontaneous breathing controls Ventilated controls ARDS patients P-value

Number of subjects 12 10 52

Age (years, mean ± SD) 59 ± 13 58 ± 14 58 ± 17 0.98

Male sex (n, %) 8 (61) 6 (60) 39 (75) 0.78

SAPS II (mean ± SD) - 48 ± 13 47 ± 14 0.91

SOFA score (median (IQR)) - 7 (7 to 11) 10 (7 to 12) 0.11

Admission category (n, %) - 0.28

Medical 10 (100) 42 (80)

Surgical 0 (0) 10 (20)

Direct lung injury (n, %) - - 47 (90) -

Cause of ARDS (n, %) -

Pneumonia - - 38 (73)

Aspiration - - 6 (12)

Lung contusion - - 3 (6)

Extra pulmonary sepsis - - 5 (9)

Reason for ICU hospitalization (n, %) - -

Coma 4 (40) -

Self-poisoning 3 (30)

CNS infections 2 (20)

Epilepsy 1 (10)

LISS at inclusion (median (IQR)) - 0.75 (0.44 to 1) 3 (2.5 to 3.25) <0.001

Septic shock at inclusion (n, %) - 6 (60) 43 (83) 0.44

Days under mechanical ventilation before inclusion
(median (IQR))

- 2 (0 to 7) 1 (0 to 1) 0.14

ARDS, acute respiratory distress syndrome; CNS, central nervous system; IQR, interquartile range; LISS, lung injury severity score; SAPS II, Simplified acute

physiology score II; SD, standard deviation; SOFA score, Sequential Organ Failure Assessment score.

Septic shock was defined as a systolic blood pressure of ≤ 90 mm Hg, despite adequate volume expansion requiring the use of vasopressor agents; P-values

compare ventilated controls and ARDS patients.

Table 2 Baseline biological variables of the 52 ARDS patients according to the outcome at Day 28

Variables Survivors Nonsurvivors P-value

(n = 31) (n = 21)

Blood Neutrophils (×109 cells/L) (mean ± SD) 11.6 ± 6.5 12.8 ± 8.0 0.6

Hematocrit (%) (mean ± SD) 32 ± 6 30 ± 6 0.42

Platelet count (×109 cells/L) (mean ± SD) 230 ± 136 154 ± 102 0.04

Prothrombin time (%) (mean ± SD) 65 ± 17 56 ± 20 0.09

Fibrinogen (g/L) (mean ± SD) 5.6 ± 1.7 4.5 ± 2.2 0.09

Lactate (mmol/L) (median (IQR)) 1.5 (1.1 to 2.6) 1.8 (1.2 to 3.3) 0.46

Creatinine (μmol/L) (median (IQR)) 76 (59 to 112) 108 (66 to 194) 0.08

Procalcitonin (ng/mL) (median (IQR)) 1.2 (0 to 8.6) 4.4 (0 to 10.7) 0.44

BAL Neutrophils (×109 cells/L) (median (IQR)) 372 (94 to 1,995) 367 (111 to 1,425) 0.67

BALF to plasma total protein ratio (median (IQR)) 0.24 (0.14 to 0.44) 0.28 (0.16 to 0.63) 0.59

Data are expressed as mean ± SD or median and 25 to 75% interquartile range (IQR). BAL, broncho alveolar lavage.
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findings are that 1/MPs originating from platelets,

endothelial cells and leukocytes were detectable in the

BAL of patients with ARDS 2/among them, only LeuMP

and NeuMP were elevated in BAL when compared with

the spontaneous breathing group 3/Higher levels of cir-

culating LeuMP detectable early at time of diagnosis of

ARDS were associated with better prognosis.

As a result of the local and systemic pro-inflammatory

responses associated with ARDS, leukocytes become acti-

vated within the general or in the pulmonary circulation.

In the present study, the analysis of MP subpopulation

reflects the origin and the activation status of the cells

present in the BAL. Accordingly the low number of gran-

ulocytes in BAL from spontaneous breathing (SB)

Table 3 Baseline respiratory and hemodynamic parameters of the 52 ARDS patients

Variables Survivors Non-survivors P-value

(n = 31) (n = 21)

PaO2/FiO2 (mmHg) (mean ± SD) 114 ± 34 106 ± 33 0.4

PaCO2 (mmHg) (median (IQR)) 43 (40 to 57) 46 (40 to 52) 0.6

FiO2 (mean ± SD) 0.69 ± 0.14 0.75 ± 0.18 0.2

Total PEEP (cmH2O) (mean ± SD) 11.5 ± 2.7 13.2 ± 3.4 0.7

P plat (cmH2O) (mean ± SD) 25.9 ± 6.1 27.7 ± 6.8 0.3

qsComp (mL.cmH2O
-1) (mean ± SD) 33.8 ± 13.6 29.8 ± 10.9 0.2

MV (L/min) (mean ± SD) 9.5 ± 2.2 9.3 ± 2.6 0.7

TV (mL/Kg PBW) (median (IQR)) 6.00 (6.00 to 6.20) 6.00 (6.00 to 6.05) 0.2

HR (beats/min) (mean ± SD) 105 ± 27 113 ± 25 0.3

MAP (mmHg) (mean ± SD) 74 ± 17 68 ± 14 0.2

Arterial pH (median (IQR)) 7.34 (7.28 to 7.43) 7.26 (7.18 to 7.35) 0.01

Vasopressor (μg.kg-1.minute-1) (median (IQR)) 0.22 (0.08 to 0.50) 0.36 (0.15 to 0.88) 0.2

FiO2, fraction of the inspired oxygen; HR, heart rate; MAP, mean arterial pressure; vasopressor was norepinephrine or epinephrine; MV, minute ventilation; PaCO2,

partial pressure of carbon dioxide; PaO2/FiO2, ratio of the partial pressure of arterial oxygen and the fraction of the inspired oxygen; PBW, predicted body

weight; PEEP, positive end-expiratory pressure; Pplat, plateau pressure; qsComp, quasi-static respiratory compliance; TV, tidal volume.

Results are expressed as mean ± SD, or median (IQR) as appropriate.

Figure 1 Levels of LeuMP from BAL in ARDS patients and controls groups. LeuMP, leukocyte microparticles; SB group, spontaneous

breathing group; VC group, ventilated control group; Levels of MP are expressed as the number of elements per microliter (μL). Box plots

represent median, interquartile range, 10th to 90th percentiles.
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controls is consistent with the fact that NeuMP represent

a minor sub-population. The major influx of neutrophils

toward the lungs early in the course of ARDS is sug-

gested by the high levels of NeuMP recovered by BAL.

The general belief is that MPs are conveyers of deleter-

ious information associated with exaggerated inflamma-

tory response [8]. Indeed, elevated levels of MPs from

platelets, granulocytes, and endothelium are found in

patients with septic shock, meningococcemia, traumatic

brain injury, and severe trauma [5-7,17,18]. In contrast,

Soriano et al. have suggested that MPs presented protec-

tive effects in patients with septic shock [19].

Bastarache et al. [20] reported the presence of procoa-

gulant microparticles in the lung from ARDS patients.

By focusing on the epithelial alveolar origin of micropar-

ticles, they reported higher concentrations of these MPs

in ARDS patient’s edema fluid compared to patients

with hydrostatic pulmonary edema. However, this latter

study reported a trend for higher concentrations of total

MPs in the edema fluid from non-survivors. Although

this latter result did not reach statistical significance, dif-

ferences with our study might be due to the cellular ori-

gin of the MPs (alveolar epithelial vs. leukocyte or

platelet lineages) or to the different compartments

where MPs were isolated (edema fluid vs. blood).

The main finding of the present study is that lower

levels of leuMP are detectable in blood (day 1) and BAL

(day 3) in non survivors.

ARDS is clinically characterized by a strong alteration

of ventilator mechanics with decreased lung compliance.

During ARDS, plateau pressure must be monitored and

maintained as low as possible to reduce ventilator-

induced lung injury or right heart failure. This can be

achieved by reducing tidal volume on the ventilator and

by setting an appropriate level of positive end expiratory

pressure (PEEP). In previous studies, clinical parameters

such as plateau pressure and quasi-static pulmonary

compliance were found being strongly associated with

mortality occurring during ARDS [21,22]. To assess if

levels of microparticles may reflect some part of ventila-

tory induced lung injury, it would be interesting to

search some correlation between levels of MP and the

ventilatory mechanics parameters in different ventilatory

conditions.

ARDS from pulmonary origin is characterized by a

local pro-inflammatory process that first occurs in

damaged lung and then contributes to multi-organ dys-

function. A balance between pro-inflammatory and anti-

inflammatory effects is observed in the course of acute

lung injury. Sustained high levels of pro-inflammatory

Figure 2 Levels of NeuMP from BAL in ARDS patients and controls groups. NeuMP, neutrophil microparticles; SB group, spontaneous

breathing group; VC group, ventilated control group; Levels of MP are expressed as the number of elements per microliter (μL). Box plots

represent median, interquartile range, 10th to 90th percentiles.
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biomarkers are associated with poor outcome of ARDS

[23,24]. In the present study, the observation that low

levels of MPs are associated with mortality is in agree-

ment with data already reported for severe sepsis [19].

The initial theory for death-associated sepsis was that

multiple organ failure resulted from an excessive or

uncontrolled inflammatory response. A more recent

concept to explain the different outcomes during sepsis

is that normal responses to injury can be immunosup-

pressive, inducing “an immune paralysis” and leading to

health care associated infections, multiple organ failure

and, finally, death [9,25]. Consistent with this theory

one could speculate that the lows levels of MPs in

patients with worse outcome, reflect “suppression of

vesiculation”, given the fact that vesiculation is a response

Figure 3 Levels of circulating microparticles between survivors and non survivors. LeuMP, leukocyte microparticles; NeuMP, neutrophil

microparticles; PMP, platelet microparticles; EMP, endothelial microparticles. P-values were calculated by Wilcoxon rank-sum test. Box plots

represent median, interquartile range, 10th to 90th percentiles.

Table 4 Factors associated with survival at 28 days

Variable Odds ratio (95%
CI)

P-
value

Age (per one point increase) 1.01 (0.96 to 1.07) 0.530

Circulating LeuMP (<60 a) 5.26 (1.10 to 24.99) 0.037

SOFA (>10 b) 0.3 (0.06 to 1.38) 0.123

pH (<7.30 c) 0.18 (0.03 to 0.91) 0.039

P plat (cmH2O) (per one point
increase)

1.00 (0.89 to 1.12) 0.953

Hosmer-Lemeshow statistic: P = 0.41; 95% CI, 95% confidence interval; SOFA,

Sequential Organ Failure Assessment; Circulating LeuMP, Leukocytes

microparticles in plasma. a median value of circulating leukocytes

microparticles at Day 1; b median value of SOFA score at Day 1; c median

value of arterial pH at Day 1.
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of cells to injury. Although the mechanism supporting this

potential protective effect remains to be elucidated, they

can be reliable to the anti-inflammatory effect of polymor-

phonuclear neutrophil derived MPs (NeuMP) reported by

the work of Gasser and Schifferli [26]. They showed that

NeuMP block the response of macrophages to LPS and

increased the secretion of transforming growth factor

beta1, a potent inhibitor of macrophage activation. Thus,

in the earliest stage of inflammation, neutrophils cells

release MP that convey potent anti-inflammatory effects,

by driving the resolution of inflammation. More recently,

it was reported that MPs shed from adherent neutrophils

bear Annexin 1, an endogenous anti-inflammatory protein

able to inhibit neutrophil adhesion to the endothelium

[27]. It could have been interesting to assess some biomar-

kers that evaluate endothelial permeability (VWF or

Ang2), the inflammation (IL-6 or IL-8) or apoptosis like

FasLigand or soluble FAS.

Furthermore, our data suggesting that circulating

LeuMP are protective upon ARDS onset may also be

reliable to the MPs beneficial properties exerted on vas-

cular tone during sepsis. Mostefai et al. [28] showed

that the number of total circulating and platelet micro-

particles in patients with septic shock was increased and

that these microparticles were protective against vascu-

lar hyporeactivity.

The mechanism supporting this protective effect in

ARDS is a challenging question. One can hypothesize

Figure 4 Short terms variations of leukocyte and neutrophil microparticle in broncho-alveolar lavage. LeuMP, leukocyte microparticles;

NeuMP, neutrophil microparticles; BAL, bronchoalveolar lavage. Empty circles represent survivors and full triangles represent the non survivors.

The dotted line connects the median values of MP in survivors and the solid line connects the median values of MP in non survivors. P-values

compare survivors vs non survivors and were calculated by Wilcoxon rank-sum test.
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that blocking inflammatory cytokines such as TNF-a

could suppress the release of MPs that may be beneficial

in ARDS patients, which may help explain why anti-

inflammatory therapies such as anti-interleukin-1R or

anti-TNF have largely been unsuccessful in this context

[4]. Thus, if we consider subpopulation of MP such

leuMP as protector, our results support the negative

impact of decreasing inflammatory response early in the

course of ARDS and enlights the potential of therapeutic

option aimed to promote the release of these MPs

subpopulation.

Mechanical ventilation has been reported for modulate

the platelet microparticles release in an experimental

context [29]. Our data do not support this hypothesis to

explain the differences observed between the VC group

and the ARDS group concerning LeuMP.

Limitations

The first limitation of our study is to extrapolate our

results to a mixed population of ARDS. Indeed, the

patients had direct lung injury in 90% with pneumonia in

73% of cases. One other limitation of our study is that

circulating MPs in ARDS patients were not compared to

those of the control groups. However, in contrast to MPs

in BAL, low levels of circulating MPs in healthy subjects

have been extensively reported in the literature [6,30]

and such comparison is beyond the question raised by

this study focused on the outcome of patients. This study

can only provide relationship between microparticles and

clinical outcome in patients with established ARDS. It

was not designed to assess the association between MPs

and the development of ARDS.

Conclusions
Analysis of the cellular origins of MPs in ARDS patients

identified circulating LeuMPs as a possible biomarker

associated with outcome. In the future, elucidation of

the mechanisms supporting the release of MPs with

potential protective properties is an emerging challenge

to delineate new therapeutics strategies based on physio-

pathology of ARDS.

Key messages
• The leukocyte microparticles are elevated in BAL

from ARDS patients.

• The circulating leukocyte microparticles are asso-

ciated with prognosis during ARDS course.
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