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Abstract

Background: Inflammation may be involved in the pathogenesis of Alzheimer’s disease (AD). There has been little

success with anti-inflammatory drugs in AD, while the promise of anti-inflammatory treatment is more evident in

experimental models. A new anti-inflammatory strategy requires a better understanding of molecular mechanisms.

Among the plethora of signaling pathways activated by b-amyloid (Ab) peptides, the nuclear factor-kappa B

(NF-�B) pathway could be an interesting target. In virus-infected cells, double-stranded RNA-dependent protein

kinase (PKR) controls the NF-�B signaling pathway. It is well-known that PKR is activated in AD. This led us to study

the effect of a specific inhibitor of PKR on the Ab42-induced inflammatory response in primary mixed murine

co-cultures, allowing interactions between neurons, astrocytes and microglia.

Methods: Primary mixed murine co-cultures were prepared in three steps: a primary culture of astrocytes and

microglia for 14 days, then a primary culture of neurons and astrocytes which were cultured with microglia purified

from the first culture. Before exposure to Ab neurotoxicity (72 h), co-cultures were treated with compound C16, a

specific inhibitor of PKR. Levels of tumor necrosis factor-a (TNFa), interleukin (IL)-1b, and IL-6 were assessed by

ELISA. Levels of PT451-PKR and activation of I�B, NF-�B and caspase-3 were assessed by western blotting. Apoptosis

was also followed using annexin V-FITC immunostaining kit. Subcellular distribution of PT451-PKR was assessed by

confocal immunofluorescence and morphological structure of cells by scanning electron microscopy. Data were

analysed using one-way ANOVA followed by a Newman-Keuls’ post hoc test

Results: In these co-cultures, PKR inhibition prevented Ab42-induced activation of I�B and NF-�B, strongly

decreased production and release of tumor necrosis factor (TNFa) and interleukin (IL)-1b, and limited apoptosis.

Conclusion: In spite of the complexity of the innate immune response, PKR inhibition could be an interesting

anti-inflammatory strategy in AD.

Background

One hundred years ago, Fisher [1] proposed that the

deposition of a foreign substance in the human cortex of

patients with Alzheimer’s disease (AD), later identified as

fibrillated amyloid-b peptide (Ab), could induce a local

inflammatory reaction associated with regenerative

changes in the surrounding neurons. The innate immune

response in AD is marked by the production of various

complement components (C1q, C3, C5) and formation of

the terminal membrane attack complex, resulting in

attraction and activation of microglia and astrocytes

[2-6]. Both microglia and astrocytes produce multiple

pro-inflammatory factors, including cytokines (tumor

necrosis factor-a (TNFa), interleukin (IL)-1, and IL-6),

chemokines (CC- and CXC-chemokine ligands such as

CCL2, 3, and 5; and CXCL10), reactive oxygen species,

and cyclooxygenase 2 (COX2); and express various com-

plement receptors [7,8]. This inflammatory response
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aims to enhance the clearance of Ab by the phagocytic

role of both microglia and astrocytes. Although activation

of the complement system or a lipopolysaccharide (LPS)

treatment in amyloid precursor protein (APP) transgenic

mice increases phagocytosis of Ab and might limit

pathology by activating immune responses [8,9], the ben-

eficial role of inflammation in AD does not seem to be

sufficient to halt or reverse the disease. It fails to slow

progression of the major histopathological hallmarks

(amyloid plaques and neurofibrillar tangles) and cognitive

impairment. The innate immunity system might be neu-

roprotective as far as phagocytosis is elicited, but later in

the disease proinflammatory responses could turn the

innate immunity into the driving force in AD

pathogenesis.

Increasing evidence suggests that inflammation signifi-

cantly contributes to the pathogenesis of AD. It is

known that Ab oligomers and fibrils, as danger-asso-

ciated molecular patterns (DAMPs), can interact with

different pattern recognition receptors (PRRs) such as

scavenger receptors, toll-like receptors (TLRs), and the

receptor for advanced glycation end products (RAGE) in

both glial cells and neurons [10,11]. PRRs can trigger

phagocytic uptake of Ab but also can induce proinflam-

matory signaling pathways such as I�B kinase (IKK), Jun

kinase (JNK) p38 and glycogen synthase kinase 3b

(GSK-3b) [10].

Many cytokines such as TNFa and IL-1b, and chemo-

kine signaling (CXCR2 signaling) can promote Ab pro-

duction by modulating g-secretase activity in neurons

[12,13]. Some studies have also demonstrated that IL-1b

induces phosphorylation of tau protein and triggers for-

mation of paired-helical filaments (PHFs) which aggre-

gate into neurofibrillary tangles [14,15]. Inflammation in

AD could also trigger functional impairment since

inflammatory molecules such as TNFa, IL-1 and IL-6

are able to suppress hippocampal long term potentiation

[16,17]. Furthermore, many studies have shown a signifi-

cant increase of various inflammatory mediators in

plasma and in peripheral blood mononuclear cells

(PBMCs) of patients with AD compared to age-matched

controls [18,19].

In addition, many prospective epidemiological studies

have indicated that non-steroidal anti-inflammatory

drugs (NSAIDS) might delay the onset and the progres-

sion of AD [20]. However, clinical trials with COX-2

inhibitors have yielded negative results, and the rele-

vance of specific COX inhibitors and other NSAIDS has

become more and more questionable [21]. There are

many reasons to explain the failure of these trials: tim-

ing of treatment, dosing, and the specificities of admini-

strated NSAIDS are the most frequently cited. A recent

small, open-label pilot study suggested that inhibition of

the inflammatory cytokine TNF-a with perispinal

administration of etanercept, a potent anti-TNF fusion

protein, might lead to sustained cognitive improvement

in patients with mild, moderate, or severe AD [22].

These results need to be confirmed.

The cellular and molecular components of the innate

inflammatory response associated with slowly progres-

sive degenerative disease are not clearly identified. In

this response, Ab could involve different PRRs, activat-

ing protein kinases such as IKKs which trigger proin-

flammatory responses via nuclear factor-kappa B (NF-

�B), known as the major transcriptional factor of a wide

range of cytokines, that could in turn maintain NF-�B

activation and establish a positive autoregulatory loop

that could amplify the inflammatory response and

increase the duration of chronic inflammation [23]. The

modulation of NF-�B activation in AD may be a neuro-

protective strategy. A recent study revealed that an inhi-

bitor of NF-�B ameliorates astrogliosis but has no effect

on amyloid burden in APPswePS1dE9 [24], probably

due to late timing of the treatment after the beginning

of amyloid deposits. The IKK/NF-�B signaling pathway

is under the control of other kinases, in particular the

double-stranded RNA-dependent protein kinase (PKR),

well described in AD and associated with degenerating

neurons and cognitive decline [12,25-30]. Indeed, in stu-

dies using different virus-infected cells, it has been

shown that PKR can phosphorylate IKK, which phos-

phorylates I�B, leading to disruption of the cytosolic I�B-

NF-�B complex. This allows NF-�B to translocate from

the cytoplasm to the nucleus, where it binds to its speci-

fic sequences of DNA called response elements of the

target genes, including those involved in the immune

response (IL-2), inflammatory response (TNFa, IL-1, IL-

6), cell adhesion (I-CAM, V-CAM, E-selectin) cell growth

(p53, Ras, and c-Myc) and apoptosis (TNF receptor-asso-

ciated factor 1 and 2) [31-33]. Furthermore, it has been

shown that TNF-induced NF-�B activation, IKK activa-

tion, I�Ba phosphorylation, I�Ba degradation and NF-

�B reporter gene transcription are all suppressed in PKR

gene-deleted fibroblasts, underlining the fact that NF-�B

is a downstream target of PKR [34].

The aim of the present study was to determine

whether PKR can control activation of the NF-�B path-

way and cytokine production (TNF, IL-1b, and IL-6) in

primary mouse co-cultures that contain the three main

cellular actors in brain: neurons, astrocytes and micro-

glia. While neurons are traditionally passive bystanders

in neuroinflammation, they are able to produce inflam-

matory mediators such as IL-1b, IL-6, TNFa [15,35,36].

Although this integrated in vitro model does not corre-

spond exactly to the brain environment, it includes the

major cell types of brain and maintains the interactions

between these three cellular actors which could modu-

late the inflammatory response of each one.
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For this purpose, before exposure to Ab neurotoxicity,

co-cultures were treated with compound C16, a specific

inhibitor of PKR [37]. Analysis of results shows that

inhibition of PKR prevents activation of NF-�B, asso-

ciated with a strong decrease in production and release

of TNFa and IL-1b, and limited apoptosis. Keeping in

mind the complexity of the innate immune response,

inhibition of PKR could be an interesting strategy to res-

cue the inflammatory process in AD.

Methods

Chemical products

Sodium fluoride (NaF), phenylmethylsulfonyl fluoride

(PMSF), protease and phosphatase inhibitor cocktails,

dithiothreitol (DTT), 0.01% poly-L-lysine solution, Per-

coll®, sterile filtered dimethylsulfoxide Hybri-Max®

(DMSO), Triton X-100, paraformaldehyde (PFA), annex-

inV-fluorescein isothiocyanate (FITC) apoptosis detec-

tion kit and all reagent-grade chemicals for buffers were

purchased from Sigma (St Quentin Fallavier, France);

DMEM (1 g/L), MEM and Neurobasal media, B-27 Sup-

plement, 200 mM L-glutamine, 5,000 units of penicillin

(base) and 5,000 μg of streptomycin (base)/mL (PS) mix-

ture, 0.5 g/L Trypsin/0.2 g/L EDTA 4Na, Fetal Bovine

Serum, Certified (FBS), Horse Serum, NuPAGE®

Novex® Bis-Tris Mini Gels, NuPAGE® LDS 4X LDS

Sample Buffer, NuPAGE® Sample Reducing Agent

(10X), NuPAGE® MES SDS Running Buffer and

NuPAGE® Antioxidant, iBlot® Gel Transfer Device

(EU), the Prolong Gold antifade reagent with 4’,6-diami-

dino-2-phenylindole (DAPI) and the Zenon mouse IgG

labelling kit from Gibco-Invitrogen (Fisher Bioblock

Scientific distributor, Illkirch, France); the imidazolo-

oxindole compound C16 from Merck Chemicals Calbio-

chem® (Nottingham, UK). For western blot, primary

antibodies and secondary anti-rabbit IgG antibody con-

jugated with horseradish peroxydase were purchased

from Cell Signalling (Ozyme, St Quentin Yvelines,

France) excepted anti-PT451-PKR from Eurogentec (Sera-

ing, Belgium), anti-b tubulin and anti-b actin from

Sigma (St Quentin Fallavier, France), anti-amyloid pep-

tide (clone WO2, recognizes amino acids residues 4-10

of Ab) from Millipore (St Quentin-Yvelines, France),

peroxidase-conjugated anti-mouse IgG from Amersham

Biosciences (Orsay, France). For immunofluorescence,

anti-glial fibrillary acidic protein (GFAP) antibodies

were purchased from Cell Signalling (Ozyme, St Quen-

tin Yvelines, France), microtubule associated protein 2

(MAP2) from Abcam (Paris, France), macrosialin or

murine homologue of the human CD68 from AbD Sero-

tec (Düsseldorf, Germany), anti-PT451-PKR from Bio-

source (Nivelles, Belgium), secondary antibodies from

DakoCytomation, (Trappes, France) and IgG- and pro-

tease-free bovine serum albumin (BSA) from Jackson

ImmunoResearch Europe Ltd (Interchim distributor,

Montluçon, France).

Primary murine mixed neuron-astrocyte-microglia

cultures

First, primary glial cultures were prepared from C57BL/

6J mouse embryos of 18 days. Brains were quickly

removed, and cerebral cortico-hippocampal regions

were dissected in ice-cold and sterile 1X PBS (154 mM

NaCl, 1.54 mM KH2PO4, 2.7 mM Na2HPO4 7H2O, pH

7.20 ± 0.05) containing 18 mM glucose and 1% PS as

previously described [38]. Cells were then dissociated

mechanically using a pipette into DMEM/1% PS, trans-

ferred into tubes containing FBS at the bottom (1 mL/

30 mL cell suspension) and centrifuged at 300 × g for

10 min at 4°C. The cell pellet was suspended into

DMEM/1% PS and centrifuged again. This step was

repeated once. After the centrifugation, cells were sus-

pended into DMEM/10% FBS/1% PS, seeded at a density

of 4 × 105 cells/mL in Nunc EasYFlask™ (75 cm2)

coated with 0.001% poly-L-lysine and then incubated at

37°C in a humidified 5% CO2 atmosphere. Medium was

replaced every five days. These cells were cultured until

day 14, the day of microglia purification.

Second, primary cultures with neurons and astrocytes

were prepared from cortex and hippocampus of C57BL/

6J mouse embryos of 18 days as above. Cells were sus-

pended in MEM/Neurobasal (1:1) supplied with 18 mM

glucose, B-27 Supplement, 1% glutamine, 2.5% FBS,

2.5% horse serum and 1% PS, and seeded in 6-well

plates (106 cells per well) coated with 0.001% poly-L-

lysine. Cultures were then maintained at 37°C in a

humidified 5% CO2 atmosphere. At day 5, neurons and

astrocytes were cultured with microglia purified from

the primary culture described above.

Third, microglia were purified from glial cultures on

day 14 as previously described with some modifications

[39]. Briefly, confluent glial cultures were dissociated

with trypsin/EDTA and cell suspensions were suspended

in 1 mL of 70% isotonic Percoll and transferred into a 5

ml glass tube. Two mL of 50% isotonic Percoll were

gently layered on top of the 70% layer and then 1 mL of

1X PBS layered on top of 50% isotonic Percoll layer.

Tubes were centrifuged at 1200 × g for 45 min at room

temperature (RT) with a program including minimum

acceleration and brake in a swinging bucket rotor.

Purified microglia occupied the interface between 70

and 50% isotonic Percoll. The top interface between 1X

PBS and 50% isotonic Percoll containing all other cen-

tral nervous system (CNS) elements was carefully

removed and microglia layer was transferred into a new

tube and washed twice by adding 1 mL PBS and centri-

fuged at 500 × g for 5 min at RT. Cells were counted

and seeded at the density of 150,000 cells per well into
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6-well plates containing the primary culture of neurons/

astrocytes to 5 days old in order to obtain a density of

microglia close to that already described. Indeed, the

density of microglia in the CNS of the normal adult

mouse brain is variable depending on the brain region

and represents 5% in the cerebral cortex, according to

Lawson et al. [40]. The mixed murine co-cultures with

neurons, astrocytes and microglia were then used three

days later for experiments and a fourfold confocal stain-

ing with cell and nucleus markers (DAPI, MAP-2, GFAP,

CD68 for nuclei, neurons, astrocytes and microglia,

respectively) was investigated in cells seeded on poly-L-

lysine-coated glass coverslips to quantify neurons, astro-

cytes and microglia. In additional file 1, figure S1, we

show that neurons, astrocytes and microglia represent

about 36, 57 and 6% of total cells, respectively, i.e. close

to what is physiologically observed in the cortex.

Chemical treatments

Co-cultures were treated with either C16 (specific inhibi-

tor of PKR) at different concentrations (210 nM (IC50)

and 1 μM) or DMSO (vehicle of C16) at less than 1%, in

serum-free MEM:Neurobasal (1:1)/1% glutamine/1% PS

medium 1 hour before 20 μM Ab42 (or exactly 11 nmol

in 550 μL of medium in each well receiving Ab42) for 72

h at 37°C. Ab42 was previously incubated 48 h at 37°C

for aggregation as recommended by the Merck Chemical

supplier [41]. The concentration of Ab42 was chosen

based on previous work in primary cultures [38,42]. After

treatment, media were conserved in order to analyse

Ab42 monomers and oligomers by immunoblotting and

fibrillar form of Ab42 by scanning electron microscopy

in our experimental conditions (see the additional file 2,

Figure S2). Results show the presence of a mix composed

with monomers, oligomers (8 and 12 kDa) and a dense

network of fibrils. As the specific toxicity of these differ-

ent states of Ab is not clearly demonstrated, we decided

to incubate cells with this whole mixture.

Cell lysis and nuclear extracts

After treatment, media were stored at -80°C until used

for ELISA of cytokines. Cells were then washed with

PBS and lysed in ice-cold lysis buffer (50 mM Tris-HCl,

50 mM NaCl pH 6.8, 1% (v/v) Triton X-100, 1 mM

PMSF, 50 mM NaF, 1% (v/v) protease inhibitor and 1%

(v/v) phosphatase inhibitor cocktails). Lysates were soni-

cated for 10 sec and centrifuged at 15,000 × g for 15

min at 4°C. The supernatants were collected and ana-

lyzed for protein determination using a protein assay kit

(Biorad, Marnes-la-Coquette, France). Samples were fro-

zen at -80°C until further analysis.

Nuclear extracts were prepared as previously described

[43]. Firstly, the cytoplasmic fraction was isolated and

discarded, and the nuclear pellet was then lysed in

nuclear lysis buffer (20 mM Hepes pH 7.9, 400 mM

NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 0.5 mM

PMSF, 1% of protease and 1% phosphatase inhibitor

cocktails) during 2 h at 4°C. Then, vials were centri-

fuged at 1,600 × g for 5 min at 4°C and the supernatant

was isolated. The quantity of total protein was measured

with a Biorad protein assay kit.

Enzyme-linked immunosorbent assay (ELISA)

Commercially available ELISA kits were used for asses-

sing TNFa (sensitivity: 2 pg/mL), IL-1b (sensitivity: 15

pg/mL) and IL-6 (sensitivity: 2 pg/mL) according to the

manufacturers’ instructions (BioLegend, Ozyme, St

Quentin Yvelines, France). The range of analysis was

between 7.8-6000 pg/mL. Cell lysates were diluted (1:2)

with the assay diluents and all steps were performed at

RT. The enzymatic reaction was stopped after 15 min

incubation with tetramethylbenzidine (TMB) substrate

by adding 2N H2SO4 and the optical density (OD) was

read at 450 nm within 30 min, using the Multiskan®

spectrum spectrophotometer. The cytokine levels were

then calculated by plotting the OD of each sample

against the standard curve. The intra- and inter-assay

reproducibility was > 90%. OD values obtained for

duplicates that differed from the mean by greater than

10% were not considered for further analysis. For conve-

nience all results are expressed in pg/mL and in pg/mg

protein for culture medium and cell lysates, respectively.

Immunoblotting

Samples (30 μg proteins of cell lysates or nuclear

extracts) were prepared for electrophoresis by adding

NuPAGE® LDS 4X LDS sample buffer and NuPAGE®

Sample Reducing Agent (10X). Samples were then

heated up 100°C for 5 min and loaded into NuPAGE®

Novex® Bis-Tris Mini Gels, and run at 200 V for 35

min in NuPAGE® MES SDS running buffer containing

0.5% NuPAGE® antioxidant. Gels were transferred to

nitrocellulose membranes using the iBlot® Dry blotting

system set to program 20V for 7 min. Membranes were

washed for 10 min in Tris-buffered saline/Tween

(TBST: 20 mM Tris-HCl, 150 mM NaCl, pH 7.5, 0.05%

Tween 20) and blocked 2 h in TBST containing 5% non

fat milk or 5% bovine serum albumin (BSA).

Blots were incubated with primary antibody in block-

ing buffer overnight at 4°C. Antibodies used were rabbit

anti-PT451-PKR (1:100), mouse anti-PS32/36-I�B (1:500),

rabbit anti-I�B (1:500), rabbit anti-PS536-NF-�Bp65

(1:500), rabbit anti-NF-�Bp65 (1:500) and rabbit anti-

caspase3 8G10 (1:500) which detects endogenous levels

of full-length and large fragments of caspase-3 resulting

from cleavage at aspartic acid 175. Membranes were

washed 2 times with TBST and then incubated with the

peroxidase-conjugated secondary antibody either anti-
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rabbit or anti-mouse IgG (1:1000) according to the ori-

gin of primary antibody during 1 hour at RT. Mem-

branes were washed again and exposed to the

chemiluminescence ECL luminol plus western blotting

system (Amersham Biosciences, Orsay, France) followed

by signal capture with the Gbox system (GeneSnap soft-

ware, Syngene, Ozyme distributor). After 2 washes in

TBST, membranes were probed with mouse antibody

against tubulin (1:10000) or actin (1:100000) overnight

at 4°C. They were then washed with TBST, incubated

with peroxidase-conjugated secondary antibody anti-

mouse (1:1000) for 1 h, exposed to the chemilumines-

cence ECL luminol western blotting system and signals

were captured. Automatic image analysis software was

supplied with Gene Tools (Syngene, Ozyme distributor).

Ratios protein/tubulin or actin were calculated and are

shown in the corresponding figures.

Immunofluorescence

After treatment, cells on coverslips were washed once

with PBS and fixed with 4% PFA for 15 min at RT.

After three washes with PBS, the permeabilizing and

blocking PBS buffer (137 mM NaCl, 2.7 mM KCl, 1.7

mM KH2PO4, 10.14 mM Na2HPO4, pH 7.4 containing

0.3% triton X-100 and 5% of IgG- and protease-free

BSA) was added during 1 h at RT.

Staining of neurons, astrocytes and microglia was per-

formed by incubating coverslips overnight at 4°C with a

mix containing rabbit anti-MAP2 (1:50), mouse anti-

GFAP (1:100) and rat anti-CD68 (1:25) in PBS contain-

ing 0.3% triton X-100 and 1% of BSA. Cells were then

rinsed twice with PBS before 1 h incubation at RT with

the mix containing secondary antibodies: swine anti-rab-

bit FITC (1:20), goat anti-mouse AlexaFluor 647 (1:25)

and goat anti-rat R-Phycoerythrin (RPE) (1:25) diluted

in PBS/0.3% triton X-100/1%BSA. Finally, cells were

washed twice in PBS and twice in distilled water before

using the Prolong Gold antifade reagent with DAPI.

Staining of PT451-PKR and cell marker (MAP2, GFAP

or CD68) was performed in PBS/0.3% triton X-100/1%

BSA overnight at 4°C by using rabbit anti-PT451-PKR

(1:25) with chicken anti-MAP2 (1:100) and mouse anti-

GFAP (1:100). After incubation, cells were washed twice

with PBS before incubated with swine anti-rabbit (1:30)

conjugated with tetramethylrhodamine isomer R

(TRITC), goat anti-chicken FITC (1:50) and goat anti-

mouse AlexaFluor 647 (1:25) for 1 h at RT. A sequential

labelling for PT451-PKR and CD68 was performed.

Firstly, cells were incubated with anti-CD68 antibodies

overnight at 4°C, washed and incubated with goat anti-

rat RPE. Secondly, cells were incubated with anti-PT451-

PKR overnight at 4°C, washed and incubated with swine

anti-rabbit FITC (1:20). Finally, coverslips were washed

and mounted as described above.

Annexin V-FITC labels phosphatidylserine sites on the

membrane surface. The kit used also includes propidium

iodide (PI) to label cellular DNA in necrotic cells where

the cell membrane has been totally compromised. For

this labelling, cells were incubated with annexinV-FITC

(1:50) and PI (1:100) in 1X binding buffer for 10 min at

RT. Cells were then fixed with 4% PFA for 15 min at

RT. After three washes with PBS, cells were incubated

in the permeabilizing and blocking PBS buffer for 1 h at

RT and with anti-MAP2 and anti-GFAP or with anti-

CD68 in the same experimental conditions as described

for the previous staining of PT451-PKR.

Multiply labelled samples were examined with a spec-

tral confocal FV-1000 station installed on an inverted

microscope IX-81 (Olympus, Tokyo, Japan) with Olym-

pus UplanSapo x60 water, 1.2 NA, objective lens. Fluor-

escence signal collection, image construction, and

scaling were performed using the control software

(Fluoview FV-AS10, Olympus). Multiple fluorescence

signals were acquired sequentially to avoid cross-talk

between image channels. Fluorophores were excited

with 405 nm line of a diode (for DAPI), 488 nm line of

an argon laser (for Alexa 488 or FITC), 543 nm line of

an HeNe laser (for TRITC and RPE) and the 633 nm

line of an HeNe laser (for AlexaFluor 647). Emitted

fluorescence was detected through spectral detection

channels between 425-475 nm and 500-530 nm, for blue

and green fluorescence, respectively and through a 560

nm and a 650 nm long pass filters for red and far red

fluorescence, respectively. The images then were merged

as an RGB image.

Scanning electron microscopy

Cells were seeded on poly-L-lysine-coated glass cover-

slips at the same density described above. Treated pri-

mary co-cultures were rinsed briefly with PBS and fixed

for 2 h at 4°C with 100 μM phosphate buffer (pH 7,4)

containing 3% glutaraldehyde. After several rinses, they

were post-fixed 1 h in 1% osmium tetroxide. Cells were

washed again and dehydrated in acetone. Thereafter,

samples were critical point-dried with a BAL-TEC CPD

030 using acetone and liquid carbon dioxide as the tran-

sition fluid. The dried specimens were coated with gold

(25-35 nm thickness) using a sputtering device (BAL-

TEC LCD 005). The samples were examined and photo-

graphed with a JEOL JSM-840 electron microscope.

Statistics

Results are expressed as means ± SEM. Data for multi-

ple variable comparisons were analysed by a one-way

ANOVA followed by a Newman-Keuls’ test as a post

hoc test according to the statistical program GraphPad

Instat (GraphPad Software, San Diego, CA, USA). The

level of significance was p < 0.05.

Couturier et al. Journal of Neuroinflammation 2011, 8:72

http://www.jneuroinflammation.com/content/8/1/72

Page 5 of 17



Results

Toxicity of compound C16 in primary murine mixed co-

cultures

Compound C16 is one of the most specific valuable imi-

dazolo-oxindole inhibitors of PKR autophosphorylation

that also rescues a PKR-induced translational block in a

rabbit reticulocyte lysate system at micromolar concen-

trations [37]. Furthermore, previous data have shown

that 1 μM C16 markedly reduces levels of PT451-PKR

and caspase-3 activity in Ab42-treated SH-SY5Y cells

[27,43]. The T451 phosphorylated site in the PKR acti-

vation loop is required in vitro and in vivo for high-level

kinase activity [44].

We first evaluated toxicity of compound C16 at 210

nM (IC50) and 1 μM compared to its DMSO vehicle ( <

1%). By using scanning electron microscopy, we showed

that the majority of cultured cells were neurons and

astrocytic glial cells (Figure 1). Amongst these were

some round cellular elements ranging from 10 to 15 μm

in diameter which were identified as microglia cells. In

experimental conditions with DMSO or 210 nM C16,

microglia looked like spherical smooth cells in contact

with neurons and the astroglial layer. No reactive micro-

glia were observed in these control conditions. However,

1 μM C16 greatly affected the integrity of cells in co-

cultures, with neuronal death, disruption of axonal net-

work and activated astrocytes. The microglia looked like

macrophages (Figure 1). Based on these observations,

further experiments were performed with the effective

concentration 210 nM, corresponding to IC50 of com-

pound C16 [37].

Prevention of Ab-induced PKR activation and NF-�B/I�B

signaling pathway by compound C16

At its IC50, C16 significantly reduced by 33% the pro-

minent activation of PKR induced by 20 μM Ab42 over

72 h in the co-cultures as shown by immunoblotting

from nuclear extracts (Figure 2). Confocal staining of

PT451-PKR confirmed the activation of PKR under Ab42

exposure compared to DMSO-treated cells (Figure 3C,

G and 3K, Oversus 3A, E and 3I, M, respectively). More-

over, co-staining with the neuronal marker MAP2 indi-

cated that PT451-PKR was present in neurons, with

intense perinuclear, nuclear and axonal staining, com-

pared to DMSO-treated cells (Figure 3: C, G compared

to A, E). Treatment with C16 decreased perinuclear and

nuclear staining induced by Ab42, but some axons

remained stained (Figure 3D, H). The co-cultures incu-

bated with compound C16 alone resembled those incu-

bated with DMSO alone (Figure 3B, F, J, Nversus 3A, E,

I, M, respectively). In astrocytes labeled by antibodies

against GFAP, a diffuse cytoplasmic staining of PT451-

PKR and a robust staining in spine-like structures of

astrocytic processes with Ab42 (Figure 3C and 3G) were

observed and were well prevented by C16 treatment

(Figure 3D, H). Microglia stained with anti-CD68 anti-

bodies displayed a high level of activated PKR after 72 h

of Ab42 exposure (Figure 3K, O) compared to DMSO-

treated cells (Figure 3I, M). There was also a change in

cellular morphology; microglia were activated with

appearance of thick processes and irregular shape with

Ab42 treatment (Figure 3K, O). C16 partially rescued

this activation of PKR in microglia. Furthermore, we

found only microglia with no thick processes around

cell bodies as with C16 alone (Figure 3. merge images J

and L).

The same experimental conditions were followed to

study activation of the NF-�B/I�B signaling pathway.

Results obtained by immunoblotting from cell lysates

are presented as the ratio of phospho-protein/total pro-

tein in order to evaluate the activation of both proteins.

The results show a significant increase in phosphoryla-

tion of I�B at serine 32-36 (79%) and NF-�B at serine

536 (629.8%) with Ab42 exposure (Figure 4). p65-

mediated transcription is regulated by S536 phosphory-

lation in the transactivation domain (TAD) by a variety

of kinases (TRAF family member-associated NF-�B acti-

vator (TANK)-binding kinase (TBK), IKKa, and p38)

through various signalling pathways. This phosphoryla-

tion enhances p65 transactivation potential [45-47].

Pre-incubation with 210 nM C16 significantly pre-

vented activation of I�B and NF-�B compared to Ab42-

treated cells. The calculated ratios remained comparable

to those obtained without Ab42.

Effects of compound C16 on Ab-induced cytokine

production and release in primary murine mixed co-

cultures

To determine the effect of PKR inhibition on cytokine

levels in our cell lysates and released into the medium,

samples were assayed by ELISA to quantify TNFa, IL-

1b and IL-6 levels. Intracellular levels of these three

cytokines were significantly higher in cells treated with

20 μM Ab42 for 72 h (increase of 86.2% TNFa, 84% IL-

1b and 50.6% IL-6) compared to DMSO-treated cells

(Figure 5A). Treatment with 210 nM C16 significantly

decreased levels of TNFa- and IL-1b-induced Ab42

(83.2% and 60.7% inhibition, respectively) but failed to

prevent IL-6 production (Figure 5A). Cytokine levels

(TNFa and IL-1b) in Ab42-exposed cells pretreated

with 210 nM C16 were comparable to those measured

in the absence of Ab42 (Figure 5A).

Levels of released TNFa and IL-1b were also sig-

nificantly increased after Ab42 exposure (58.3% and

60.7% respectively) compared to DMSO-treated cells

(Figure 5B). As for produced cytokines, the Ab42-induced

release of TNFa and IL-1b was significantly prevented by

210 nM C16 (50.1% and 52.7% inhibition, respectively).
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No significant change was observed for released IL-6, but

levels of produced and released IL-6 remained very low in

our experimental conditions (Figure 5B).

Effects of compound C16 on altered cellular morphology

induced by Ab42 treatment

As we have shown before, Ab42 induced the NF-�B sig-

naling pathway and cytokine production, which were

prevented by the inhibitor of PKR, compound C16. The

beneficial effect of C16 has also been analyzed by using

scanning electron microscopy. In micrographs, 20 μM

Ab42 largely affected co-cultures, producing massive

neuronal loss (Figure 6). Axonal and dendritic networks

were also altered with many disruptions of axons and

dendrites, which clearly appeared thinner than with

DMSO or 210 nM C16 treatments. Microglia were acti-

vated and different morphological changes were

observed: microglia cells displayed numerous spiny pro-

cesses along their cell bodies and cytoplasmic projec-

tions, and some cells underwent transformations into

multipolar cells or cells with at least one thin process

extending a distance greater than three times the cell’s

body diameter, known as “process-bearing microglia”.

Some occasional short secondary branches were also

observed (see inset in micrograph of Ab42-treated co-

culture in Figure 6). On the contrary, in C16/Ab42

experimental conditions, microglia looked like smooth

cells with few spines as with DMSO or C16 treatment

without Ab42 treatment. While some neurons were

dead, compared to treatment with DMSO alone, the

network of axons and dendrites was preserved and com-

parable to the network observed with DMSO or C16

treatments (Figure 6).

Effects of compound C16 on Ab42-induced apoptosis

Caspase-3 is known to be a crucial mediator of apop-

tosis through its protease activity. Activation of cas-

pase-3 requires proteolytic processing of its inactive

zymogen into activated fragments after cleavage at

aspartic acid 175. In order to evaluate apoptosis in cell

co-cultures, we studied the activation of caspase-3 in

cell lysates represented by the ratio of cleaved-caspase-

3/total caspase-3 (Figure 7). Results show a great

increase in activation of caspase-3 after Ab42 exposure

for 72 h (97%) compared to DMSO-treated cells. This

activation was totally prevented by 210 nM C16, and
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Figure 1 Cytotoxicity of compound C16 in neuron/astrocyte/microglia co-cultures. Scanning electron micrographs of neuron/astrocyte/

microglia co-cultures prepared from brains of E18 C57Bl/6 mice. These co-cultures were incubated with the specific PKR inhibitor, C16 at 210 nM

or 1 μM, or its DMSO vehicle in serum-free medium. The samples were examined in a JEOL JSM-840 electron microscope. Black or white arrows

point out some microglia cells. Microglia appear as spherical smooth cells in contact with neurons and the astroglial layer in DMSO or 210 nM

C16 conditions. However, in the presence of 1 μM C16, the integrity of cells is greatly altered with disruption of the axonal network, activated

astrocytes with stellar form and microglia that look like macrophages. Scale bars: 10 μm, 15 μm and 20 μm for DMSO, 210 nM C16 and 1 μM

C16, respectively.
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the ratios were comparable to those obtained in

DMSO-treated cells.

During apoptosis, phosphatidylserine is translocated

from the inner to the outer plasma membrane leaflet.

This externalization was analyzed with annexin V-FITC

staining to examine apoptotic states of the different cell

populations after treatment with 210 nM C16 and Ab42

exposure for 72 h (Figure 8). Furthermore, the apoptosis

detection kit includes propidium iodide (PI) to label the

cellular DNA in necrotic cells. This combination allows

the differentiation among early apoptotic cells (annexin

V-FITC-positive, PI-negative), necrotic cells (annexin V-

FITC-positive, PI-positive), and viable cells (annexin V-

FITC-negative, PI-negative). In all conditions examined,

no PI staining associated with annexin V-FITC staining

was observed. The state of necrotic cells was probably at

a maximum, with complete nucleus destruction, explain-

ing the lack of PI staining. Thus, co-staining annexin V-

FITC and cell markers excluded PI incubation in our

protocol. The results show that prominent annexin V-

FITC staining colocalizes with MAP2 staining after

Ab42 exposure, whereas GFAP-positive cells appeared

unaffected (Figure 8A and 8C). We found also a diffuse

and very weak staining of annexin V-FITC in CD68-

positive cells (Figure 8E and 8G). Exposure to 210 nM

C16 yielded no evidence of apoptosis either in neurons

(Figure 8B and 8D) or in microglia (Figure 8F and 8H).

Discussion

Our previous findings indicated that PKR is associated

with apoptotis in brains of APPSLPS1 knock-in trans-

genic mice, and in vitro in Ab42-treated SH-SY5Y neu-

roblastoma cells [27,29,38,43]. Moreover, other studies

have clearly reported that PKR is involved in the activa-

tion of NF-�B pathway through phosphorylation of IKK

[32,48,49] and I-�B [33] in models of viral infection.

NF-�B plays a critical role in many cellular events, such

as expression of cytokine genes that affect inflammatory

process. Concerning AD, NF-�B has been shown to be

upregulated and responsible for the induction of TNFa,

IL-1b and IL-6 mRNA [7,50-52], particularly in glial

cells. Furthermore, many studies have shown that Ab

neurotoxicity induces cytokine production and release of

TNFa, IL-1b and IL-6 [8,53,54]. This inflammatory pro-

cess has also largely been described in brain [55,56] and

in the periphery in plasma, serum or mononuclear cells

of patients with AD [19,57]. Although inflammation

might have a neuroprotective role through Ab phagocy-

tosis, it is of interest to better understand the regulation

involved in production of inflammatory factors in AD in

order to limit neuronal death when the inflammatory

process switches to an unregulated phenomenon.

Because of the involvement of PKR in NF-�B-mediated

inflammation, we were interested in studying the effect

of PKR inhibition on production of inflammatory factors

in a murine mixed co-culture.

The cell culture model used in this project is an

embryonic (E18) mouse brain co-culture that includes

neurons (36%), astrocytes (57%) and microglia (6%), in

order to reflect the cell population in normal adult

mouse cortex [40]. In control conditions without amy-

loid stress, no inflammatory reactive glia were observed,

excluding any trauma during cell preparation. The

major aim with this model was to be close to physiolo-

gic conditions and to recreate in vitro the essential neu-

ron/glia environment to explore the effects of the

inflammatory process on neurons. Currently, indepen-

dent cultures of microglia or astrocytes with or without

neurons are widely used as models of inflammation in

brain. However, it seemed essential to maintain these

three cellular actors together in our experimental condi-

tions, considering the multiple interactions between

neurons and glia, in particular in inflammatory condi-

tions [58-61]. This model is produced from embryonic

tissue, and one must therefore remain cautious about its

use because, as we know, the maturity of the regulatory

and compensation processes is not complete. The cells
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Figure 2 Immunoreactivity of PT451-PKR in mixed co-cultures.

Representative blots showed immunoreactivity of PT451-PKR and

actin in nuclear extracts of astrocyte/neuron/microlgia co-cultures

treated with either 210 nM C16 or DMSO and exposed to 20 μM

Ab42 for 72 hours at 37°C. Wells of blots correspond to DMSO, C16,

Ab42 and DMSO, Ab42 and C16, from left to right. Data are

reported relative to actin. Results are expressed as percentage of

DMSO control (set at 100%) and are mean ± SEM for 4 experiments.

#p < 0.05, ***p < 0.001 compared to respective controls without

C16 by one-way ANOVA with a Newman-Keuls multiple comparison

test.
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Figure 3 PT451-PKR staining after C16 treatment and Ab42 exposure in mixed co-cultures. (A to H) Confocal staining of PT451-PKR (red

channel), MAP2 (green channel), GFAP (blue channel) and DAPI in Ab42-treated cells previously incubated with DMSO (C, G) or 210 nM C16 (D,

H) compared DMSO (A, E)- or C16 (B, F)-treated cells. (I to P) Confocal staining of PT451-PKR (green channel), CD68 (red channel) and DAPI (blue

channel) in co-cultures in the same experimental conditions described above. PKR was activated under Ab42 exposure (G) compared to DMSO-

and C16-treated cells (E and F, respectively). PT451-PKR is present in neurons, with an intense perinuclear, nuclear and axonal staining compared

to DMSO-treated cells (Fig. 3: C, G compared to A, E). Neurons with nuclear PT451-PKR are shrunken (Fig. 3: C, G). Treatment with C16 decreased

perinuclear and nuclear staining, but some axons remained stained (Fig.3: D, H). No signal of PT451-PKR was observed with only C16 (Fig.3: B, F).

In astrocytes, a diffuse cytoplasmic staining of PT451-PKR and a robust staining in spine-like structures of astrocytic processes with Ab42 (Fig.3: C,

G) is observed and well prevented by C16 treatment (Fig.3: D, H). Microglia are activated with appearance of thick processes and irregular shape

and display a high level of activated PKR after 72 h Ab42 exposure (Fig.3: K, O) compared to DMSO-treated cells (Fig.3: I, M). C16 partially

rescued this activation of PKR in microglia with no thick processes around cell bodies as in DMSO- or C16 conditions alone (Fig.3: L, P compared

to I, M and J, N). Scale Bars: 42 μm.
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immunoreactivity of PS32/36-I�B (A), PS536-NF-�B (B) and corresponding total proteins in lysates of murine astrocyte/neuron/microglia co-cultures

pretreated with 210 nM C16 and exposed to 20 μM Ab42 for 72 h. Wells of blots correspond to DMSO, C16, Ab42 and DMSO, Ab42 and C16

from left to right. Results of phosphorylated proteins are reported relative to total protein. Results are expressed as a percentage compared to

DMSO-treated cells (set at 100%). Results are mean ± SEM derived from 5 experiments in duplicate. #p < 0.05, ###p < 0.001 and *p < 0.05,

***p < 0.001 compared to respective controls without C16 by one-way ANOVA with Newman-Keuls multiple comparison test.
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Figure 5 Production (A) and release (B) of cytokines in murine astrocyte/neuron/microglia co-cultures. These co-cultures were pretreated

with 210 nM C16 or its DMSO vehicle and exposed or not to 20 μM Ab42 for 72 h in serum-free medium. TNFa, IL-1b and IL-6 were assessed

by ELISA. Data are expressed as mean ± SEM of pg/mg protein for production and pg/mL for release (n = 5 in duplicate). *p < 0.05, **p < 0.01,

***p < 0.001 compared to DMSO; #p < 0.05, ##p < 0.01 and ###p < 0.001 compared to Ab42 DMSO after one-way ANOVA with Newman-Keuls

multiple comparison test.
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may be more or less vulnerable to the toxicity of amy-

loid peptide compared with adult cells. Their tolerance

system has not yet been sufficiently explored. In addi-

tion, the concentration of exogenous amyloid peptide

added in cultures, although identical to that used in

many published studies, is far greater to that found in

brains of patients with Alzheimer’s disease. However, it

is known that levels of both Abx-40 and Abx-42

increase very early in the disease process, and in the

frontal cortex these increases occurr in the absence of

significant neurofibrillary pathology. These levels

increase systematically with severity of cognitive decline

contrary to Ab burden as assessed only in neuritic

plaques [62].

For this mixed co-culture model, we have shown

that the PKR inhibitor at a concentration of 1 μM, as
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Figure 6 Scanning electron micrographs of neuron/astrocyte/microglia co-cultures. These co-cultures were preincubated with compound

C16 at 210 nM or DMSO 1 h before treatment with 20 μM Ab42 or distilled water for 72 h in a serum-free medium. As in figure 1, samples

were examined in a JEOL JSM-840 electron microscope. Ab42 strongly altered the axonal and dendritic network, compared to DMSO or 210 nM

C16 conditions. Microglia are activated and display numerous spinous processes along cell bodies and cytoplasmic projections; some cells have

undergone transformation into multipolar cells or cells with at least one thin process extending a distance greater than three times the cell

body diameter, known as “process-bearing microglia”. Some occasional short secondary branches were also observed. Insets showed different

states of activated microglia in Ab42-treated co-cultures. On the contrary, C16 prevented the activated state of microglia, which appear as

smooth cells with few spines as in DMSO or C16 without Ab42 treatment. While some neurons were dead compared to DMSO alone, the

network of axons and dendrites is preserved and comparable to the network observed in DMSO or C16 conditions. Bars: 17 μm and 5 μm for

DMSO and 15 μm and 6 μm for C16, 35 μm and 10 μm for DMSO + Ab42, 14 μm and 6 μm for C16 + Ab42, at low and high magnification,

respectively. White arrows indicate microglia cells.
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previously used on neuroblastoma cell line [43], induces

a great alteration, leading us to use a lower concentra-

tion of 210 nM corresponding to the IC50 [37]. This

concentration was effective in inducing a decrease of

PKR phosphorylation on threonine 451 by 33% in cells

exposed to 20 μM Ab42 for 72 h.

By immunostaining, we showed that Ab42 induces

activation of PKR in neurons with a perinuclear and

nuclear localization as we have previously described

[38], but also in glia where PKR is highly activated in

spine-like structures of astrocytic processes and in the

cytoplasm of microglia. Expression of PKR is known in

astrocytes to be among an array of receptors involved in

innate immunity [63] but this expression has not yet

been described in microglia. Treatment of these three

cellular types with 210 nM C16 before Ab42 exposure

for 72 h decreased PT451-PKR staining, but a residual

amount of activated PKR remained. These findings were

also associated with a more preserved integrity of the

cells compared to Ab42-treated cultures without C16.

Indeed, two spectacular cellular events were clearly pro-

tected: the dendritic and axonal network of neurons and

the morphology of microglia. In Ab conditions, many of

the neurons showed signs of neuritic damage with bead-

ing and fragmentation, according to other studies

[64-66], and formation of pleiomorphic microglia was

observed with ramified microglia and features of chroni-

cally activated microglial cells represented by a markedly

elongated cells named rod microglia. In brains of

patients with AD, activated rod and ramified microglia

are observed: ramified microglia are in contact with

amyloid fibrils and rod microglia are found predomi-

nantly at the edge of senile plaques [67,68]. For astro-

cytes, morphological modifications were very limited

with thinner extensions. This mixed co-culture model of

AD displayed the morphological degeneration and glial

activation seen in AD, which was rescued by pretreat-

ment with C16.

Besides the role of C16 in the rescue of the integrity

of co-cultures, we found that this PKR inhibitor induced

also a significant decrease in Ab42-induced I-�B and

NF-�B activation, bringing their activation rates back

close to those observed without exposure. A previous

study using the overexpression of sirtuin 1 (SIRT1) dea-

cetylase and the addition of the SIRT1 agonist resvera-

trol showed markedly reduced NF-�B signaling

stimulated by Ab with strong neuroprotective effects in

primary mixed neuronal/glial cultures from rat cortices

[69]. Moreover, it is interesting to note that inhibition

of the many kinases involved in the NF-�B pathway by

META060 showed an ability to suppress in vitro and ex

vivo LPS-mediated inflammation [70].

Taken together, these results led us to investigate

cytokine production and release after C16 treatment.

Our results obtained by ELISA show a robust inhibition

of Ab42-induced production and release of both TNFa

and IL-1b but, surprisingly, we did not find any modifi-

cation for IL-6 by pretreatment with C16. While levels

of IL-6 were significantly higher than in vehicle condi-

tions, the amounts remained very low whatever the con-

ditions. It is known that astrocytes are the major source

of IL-6 in CNS injury and inflammation [71]. Many sti-

muli can upregulate IL-6 production, in particular

TNFa and IL-1b [72], but concentrations required to

induce IL-6 production in human astrocytes are higher

than 1 ng/mL [73] whereas, in our model, concentra-

tions of TNFa and IL-1b were lower than 600 pg/mL.

Although we showed a robust increase in TNFa and IL-

1b after 72 h of Ab42 exposure, it seems that this

increase was insufficient to induce IL-6 production in

astrocytes. Microglia can also produce IL-6, but a recent

study revealed that microglia from young mice are less

responsive to stimulation and secrete lower levels of IL-

6 than do microglia from aged mice [74]. In addition,

many studies have reported no modification of IL-6

expression or secretion in spite of IL-1b treatment of

0

100

200

300

C
a
s
p

a
s
e
-3

 a
c
ti

v
a
ti

o
n

(%
 o

f 
D

M
S

O
 c

o
n

tr
o

l)

Aβ42 

C16 

- + + 

-+ +

- 

-

**

## 

Procaspase-3 
(35kDa) 

Cleaved 
Caspase-3 

(17kDa) 

Tubulin (55kDa) 

Figure 7 C16 prevented activation of caspase-3. Representative

blots show the immunoreactivity of procaspase-3, cleaved caspase-3

fragments and tubulin in astrocyte/neuron/microglia co-cultures

pretreated with 210 nM of C16 compared to vehicle treatment and

with or without 20 μM Ab42 exposure for 72 h. Data of cleaved-

caspase-3 are reported relative to data of corresponding

procaspase-3. Results are expressed as percentage of DMSO

condition (set at 100%) and are mean ± SEM for 4 experiments in

duplicate. ##p < 0.01 and ***p < 0.001, compared to respective

controls without C16 by one-way ANOVA with Newman-Keuls

multiple comparison test.
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primary astrocytes or primary microglia cultures, with or

without neurons [75] related to serum-free conditions

[54], b-amyloid protein structure [76], or glutathione

concentration [77]. While there are few experiments

using mixed cultures of neurons and glial cells, one

study showed that 10 μM Ab42, previously aggregated,

induced a decrease of IL-6 levels after two days of incu-

bation [78]. These contradictory results regarding effects

on IL-6 levels of Ab in vitro have also been obtained for

brains, peripheral cells, serum and plasma of patients

with AD [8].

TNFa seems to be a critical mediator of the effects of

neuroinflammation on early (pre-plaque) pathology in

3xTgAD mice, and its inhibition in the CNS may slow

the appearance of amyloid-associated pathology, cogni-

tive deficits, and potentially the progressive loss of neu-

rons in AD [79]. These results support the observations

made a year before concerning the inhibition of TNFa

by thalidomide showing a capacity to prevent amyloid

beta-induced impairment of recognition memory in

mice treated by intracerebral ventricular injection of

Ab25-35 [80]. Finally, neutralizing the TNFa pathway

by etanercept prevents behavioural changes in an

inflammatory rat model obtained by microinjection of

IL-1b into the hypothalamus [81].

It has also been shown that ibuprofen suppresses IL-

1b induction and ameliorates b-amyloid pathology in

APPswe (Tg2576) mice [82]. Thus, preventing both

TNFa and IL-1b production would seem to be an effi-

cient strategy to slow damage observed in AD models.

To check these literature data suggesting a protective

effect of the regulation of inflammation, we studied the

apoptotic state of our co-cultures. We show that beyond

the inhibition of both Ab42-induced TNFa and IL-1b

production and release, cells in co-cultures display sig-

nificant reduction of activated pro-apoptotic caspase-3

after PKR inhibitor treatment. Caspase-3 is able to

cleave PKR to generate active PKR N-terminal and C-

terminal fragments that play a role in the activation of

intact PKR [42,83] and contribute to the apoptotic pro-

cess [84]. Moreover, staining with annexin V-FITC has

specified that apoptosis is induced in neurons with axo-

nal processes drastically altered by Ab42, according to

previous studies [64], and that the PKR inhibitor com-

pletely prevents this initiation of apoptosis in neurons,

displaying a preserved integrity. Although no positive PI

staining associated with annexin V-FITC was observed,

probably due to nuclear lysis, cellular debris are absent

in the presence of compound C16, indicating also that

this PKR inhibitor prevents Ab42-induced necrosis. A

signal of annexin V-FITC was also observed in a few

activated microglia in Ab42-treated co-cultures and we

can underline that pretreatment with C16 rescued the

morphology of microglia from rod microglia to round
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Figure 8 C16 prevented apoptosis in neurons. Confocal staining of annexin V-FITC (green channel) with MAP2 (red channel) and GFAP (blue

channel) (A, B, C and D) or with CD68 (red channel) (E, F, G and H) after 20 μM Ab42 exposure and treated with 210 nM of C16 or DMSO for

72 h. A, B, E and F are merged images and C, D, G and H show only annexin-V-FITC staining. DAPI was used as a nuclear stain. A strong annexin

V-FITC staining colocalizes with MAP2 staining after Ab42 exposure, whereas GFAP-positive cells appear unaffected (A, C). We found also a

diffuse and very weak staining of annexin V-FITC in CD68-positive cells (E, G). C16 prevented translocation of phosphatidylserine from the inner

to the outer plasma membrane leaflet both in neurons (B, D) and microglia (F, H). Photos are representative of 4 experiments. Scale Bars: 40 μm.
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microglia and astrocytes from spider-like to protoplas-

mic structures. It is well known that caspase-3 is a key

factor in TNFa- and IL-1b-induced apoptosis and neu-

ronal loss in AD [85]. Moreover studies described a

major role for TNFa and IL-1b in caspase-3 activation

[86,87]. These findings are consistent with the preven-

tion of apoptosis observed in our model through

decreases of only TNFa and IL-1b.

In astrocytes and microglia, PKR, highly cytoplasmic,

could be involved in the modulation of the production

of inflammatory factors. This suggestion is supported by

a study reporting PKR functions as an essential modula-

tor in inflammatory signaling events. They revealed that

activation of PKR by LPS leads to induction of inter-

feron-b through activation of NF-�B, triggering phos-

phorylation of STAT1 in rat brain glial cells [88].

Furthermore, it was described that b-amyloid peptides

induce degeneration of cultured rat microglia [89].

Thus, microglia might be unable to function normally

and to properly respond to amyloid stimulus. Recent

papers have underlined the senescence of microglia in

AD, with loss of their neuroprotective properties, pre-

ceding the onset of tau pathology [90], suggesting that

breakdown of the brain’s immune system may be an

important factor in the development of neurodegenera-

tion [91]. PKR inhibition, which prevents Ab42-induced

morphologic alterations of microglia, could limit the

degeneration of microglia and restore a normal profile

of inflammatory functions.

Conclusions

Our results highlight the involvement of PKR in the

inflammatory response to Ab42 by using primary mur-

ine mixed co-cultures allowing interactions between

neurons, astrocytes and microglia. Interestingly, the sig-

nificant decrease of Ab42-induced cytokine production

and release by a specific inhibitor of PKR was associated

with preserved integrity of cells and rescue from apopto-

sis. Note that the compound C16 was added once before

a 72 h-time incubation of mixed co-cultures with Ab42,

indicating its efficiency at IC50 in time. These findings

could strengthen therapeutic strategies aimed at pre-

venting deregulated inflammatory process in AD models

through a very specific signaling pathway. In our labora-

tory, in vivo experiments with APPswePS1dE9 trans-

genic mouse model have been performed to determine

if this specific PKR inhibitor could be relevant in the

treatment of AD (data submitted).

Additional material

Additional file 1: Immunostaining of neurons, astrocytes and

microglia in primary mixed murine cultures. A fourfold confocal

staining (DAPI, MAP-2, GFAP, CD68 for nuclei, neurons, astrocytes and

microglia, respectively) was used to count neurons, astrocytes and

microglia in mixed co-cultures.

Additional file 2: State of exogenous Ab42 assembly in primary

mixed murine cultures. State of Ab42 aggregations after 72 h

incubation in neuron/astrocyte/microglia cultures using immunoblotting

and scanning electron microscopy in our experimental conditions.
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