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Abstract

Hard X-ray fluorescence microscopy and magnified phase contrast imaging are combined to obtain quantitative maps
of metal concentration in whole cells. The experiments wereperformed on freeze dried cells at the nano-imaging sta-
tion ID22NI of the European Synchrotron Radiation Facility(ESRF). X-ray fluorescence analysis gives the areal mass
of most major, minor and trace elements; it is validated using a biological standard of known composition. Quantita-
tive phase contrast imaging provides maps of the projected mass. the phase retrieval step is validated using calibration
samples and through comparison with non-X-ray techniques (Atomic Force Microscopy, Scanning Transmission Ion
Microscopy). Up to now, absolute quantification at the sub-cellular level was impossible using X-ray fluorescence
microscopy but can be reached with the use of the proposed unique approach.
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1. Introduction

Metals present as trace elements in biological systems playan important role in the cell metabolism [1], [2]. In
any organism most of the intracellular processes are regulated by metals, such as proteins containing metal cofactors
which catalyze biochemical reactions. Present in enzymes,they are involved in important biosynthetic pathways in-
cluding the conversion of electrochemical to chemical energy, the biosynthesis of DNA, and an array of important
metabolites [3]. The number of studies on trace elements is growing and nowadays their role in human health both in
their natural occurance and via therapeutic drugs is recognized as crucial. Compounds containing metals are used for
the diagnoses and treatment of diseases such as Alzheimer, Parkinson, cancer (treatment with cisplatin-based drugs
in chemotherapy [4]) and to develop nanocomposites for genetherapy. Quantitative study of the distribution of trace
elements at the sub-cellular level provides important information for the study of the functions and pathways of met-
alloproteins and therapeutic approaches, especially in connection with the local chemical state of the element. To
answer fundamental questions on the role of metal ions in these systems requires combination of different approaches
across the multidisciplinary fields of biology, chemistry and physics.
The relevant information about trace elements in biological specimens increases with the sampling resolution. To
probe the sub-cellular complexity of metal ion homeostasismechanisms, one requires sub-micrometer resolution
together with a sub-femtogram absolute detection limits due to the decreasing quantity of sample probed. X-ray flu-
orescence (XRF) analysis with a nanoprobe is the most directand sensitive method to quantify the distribution of
metals and other elements at the sub-cellular level [5], [6]. It provides high sensitivity for transition metals and other
relevant trace elements together with the capability of penetrating and mapping whole cells.
Most of the details of cells are undetectable in hard X-ray microscopy due to the weak absorption contrast between
structures with similar transparency. However the variousorganelles show wide variation in refractive index, that is,
the tendency of the materials to bend light, providing an opportunity to distinguish them. The technique exploiting
the refractive index (its real part) is phase contrast imaging. Methods based on phase contrast provide complementary
information about cells by mapping the electron density. Information about the electron density combined with the
average density of the sample allows to calculate its thickness, value which can be compared with alternative tech-
niques (Scanning Transmission Ion Microscopy, Atomic Force Microscopy). We use such comparison for validating
the method described in this article. In this work we limit our investigations to the 2D regime. Therefore the quanti-
tative values are averaged over the sample thickness. The local concentrations would be accessible by combining the
proposed method with 3D tomography techniques. Without going to the full 3D investigation the proposed method
allows to avoid misinterpretations of X-ray fluorescence maps, which would result from the inability to distinguish if
a change in fluorescence signal is due to a change in concentration or a change in sample thickness.
Our method (combining XRF with phase contrast imaging) yields the projected concentrations at the sub-cellular
level after the sample preparation and thus it is sensitive to it. This represents possible future approach - to study
at the sub-cellular level the influence of different sample preparation techniques on the cell integrity.Although, not
discussed in the present paper, another interesting possibility would be to investigate the radiation damages of the
sample and to correct for any possible mass loss due to irradiation.

2. Methods

2.1. Sample preparation

Certified particles size standard - polystyrene spheres (Duke Scientific Corp, Palo Alto, CA) and PC12 cells were
analysed. Polystyrene spheres were of four different diameters (400 nm, 1µm, 5 µm, 10 µm). The commercial
solution was diluted 5 to 10 times, deposited on a silicon nitride (Si3N4) membrane, spin coated and air dried at room
temperature.
PC12 cells, a clonal catecholaminergic cell line derived from rat pheochromocytoma [7] were cultured in RPMI
1640 medium supplemented with 10% (v/v) heat-inactivated horse serum, 5% (v/v) fetal bovine serum, penicillin (25
µg/mL) and streptomycin (25µg/mL). Cultures were maintained according to standard protocols at 37◦C in a 95%
humidified incubator with 5%CO2 as already described [8]. The cells were cultured directly on gelatin gel coated thin
polycarbonate foil (2µm thick). These targets were subsequently fastly cryofixed in liquid nitrogen, chilled isopentane
(-160◦C) and further lyophilized. PC12 cells synthesize and storedopamine in neurovesicles. In the presence of nerve
growth factor (NGF), these cells develop an extensive network of neuronal-like projections, that is accepted as a model
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of catecholaminergic neurons and often used as an in vitro model for Parkinson’s disease. The cells labelled B,C in
this work, were exposed to 300µM of Mn and cell A was exposed to 300µM of Mn and brefeldin A, a molecule
known to cause the apparent collapse of the Golgi stacks [9].

2.2. X-ray fluorescence

X-ray fluorescence is a phenomenon in which the material exposed to X-rays emits radiation, which has an energy
characteristic of the atoms present. It allows studying thechemical composition of the sample. X-ray fluorescence
analysis was performed at the nano-imaging station ID22NI (Fig.1), using the intrinsic monochromaticity of the
undulators of aboutδλ/λ ≃ 0.01. The experimental station is located at a distance of 63m from the undulator source
and at 37 m from the high power slits used as secondary source in the horizontal direction (25µm slit opening).The
synchrotron radiation is focused by an X-ray optical deviceconsisting of two elliptically shaped mirrors acting in
two orthogonal planes using the so-called Kirkpatrick-Baez geometry [10]. The mirrors are coated with a graded
multi-layer. No other monochromator is used in the setup, resulting in a very high and unique X-ray flux (up to 1012

photons/s) at energies between 15 and 29 keV. In this work, the energy of the pink photon beam was set to 17.5
keV for all experiments. The focused beam was characterizedby translation of a gold stripe of a nano-fabricated
test pattern (Xradia, USA) recording both the transmitted intensity by a diode and theAu− Lα fluorescence emission
line by a silicon drift detector (vortex-EX, SII NanoTechnology Inc., USA). The X-ray spot size was measured to be
76 nm horizontally by 84 nm vertically (FWHM). The samples were positioned in the focal plane of the KB system
and translated by piezo-stages in the directions perpendicular to the beam. The X-ray fluorescence spectra of several
samples were collected by the silicon drift energy dispersive detector positioned in the horizontal plane at 75◦ of the
incoming X-ray beam. Based on the X-ray fluorescence energy spectrum, the areal mass (Amass) of the element can
be calculated through a fitting procedure. The samples beingscanned were deposited on 3 x 3 mm2 membranes made
of 500 nm thick silicon nitride (Si3N4) (Silson, Blisworth, U.K.). A step-size of 150 nm was used and the dwell time
varied from 150 to 250 ms.

2.3. Phase contrast imaging

When X-rays pass through an object, two scenarios, according to the refractive indexn, are considered

n = 1− δ + iβ (1)

The x-rays can be absorbed, which effect is determined by imaginary part of the refractive index,β. Image contrast is
thus entirely due to absorption differences (emphasis is put on the corpuscular nature of photons) and the amplitude
of the radiation changes.
The X-rays can also be retarded in the object. This phenomenon is used in phase contrast imaging, where the effects
due to the decrement of the real part of the refractive index,δ, are exploited. A difference in theδ value between
an object and the background results in a phase shift betweenthe wave transmitted through and outside the object.
Due to this phase shift an interference pattern appears uponpropagation. Emphasis is thus put on the wave nature of
x-rays. The phase shift induced by the object can be described as

φ(x, y) = −(2π/λ)
∫
δ(x, y, z)dz (2)

wherez is the propagation direction andλ the wavelength.
Far from the absorption edges and considering the fact that the elemental content is dominated by the cellular ar-
chitecture, comprised of light elements (C, N, H, O) in biological systems, the real part of the refractive index is
approximately proportional to the density of the object,ρ.

δ ≈ 1.36× 10−6ρ[g/cm3]λ2[Å] (3)

thus the equation 2 can be simplified
φ = α〈ρ〉T (4)

whereα is a known constant,〈ρ〉 is the mean density andT is the thickness of the object,〈ρ〉T represents also the
areal mass density of the cellular ultrastructure, denotedhereafter the projected mass.
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Combining the information from the X-ray fluorescence map (the areal elemental mass) with the projected mass
measured by the phase contrast one can calculate the projected elemental concentration:

Ci = Ai
mass/〈ρ〉T (5)

whereCi is a projected concentration of the elementi averaged over the sample thickness.
The same experimental setup as described in 2.2 was used for the magnified phase contrast imaging but the sample was
put downstream of the focus in the divergent beam (see Fig.1). Projection microscopy, which uses partial coherence
of the incident beam is a simple way of phase contrast imagingthrough propagation [11], [15]. Samples were put at
different distances (29 mm, 30 mm, 34 mm, 44 mm) downstream of the X-ray focus resulting in magnified Fresnel
patterns collected by a highly sensitive charge-coupled device (CCD) camera. The need of multiple distances is related
to the phase retrieval procedure [16]. The pixel size varieddepending on the distance focus-sample, being set to 53
nm for the first distance (while the pixel size of the detectorwas 0.96µm).

2.4. Atomic Force Microscopy (AFM) measurement

Atomic Force Microscopy allows imaging the surface morphology at nanoscale resolution and measuring the
force at nano-Newton scale. AFM can investigate thin and thick film coatings, synthetic and biological membranes,
metals, polymers, semiconductors and study locally the electric, magnetic or mechanical properties of the sample
[17]. Thanks to its versatility, AFM became a tool of choice in biophysics [18]. Our measurements were performed
in Tapping mode under ambient conditions on an Asylum MFP-3DAFM instrument equipped with acoustic box.
In this MFP-3D AFM the planar scan relies on an (X,Y) scanner in closed loop while an independent piezoelectric
element drives the Z displacement of the probe according to the open feedback loop control. A standard Tapping probe
was used with a measured resonant frequency of 325 kHz and a cantilever stiffness of about 45 N/m (average value
provided by the manufacturer data sheet). The AFM topographic images were recorded with a numerical resolution of
256 x 256 pixels. The tapping mode allows high-resolution topographic imaging of surfaces that are easily damaged
or not hold tightly to their substrate. The Tapping mode is implemented in ambient air by exciting the cantilever
assembly near the cantilevers resonant frequency using a dedicated piezoelectric crystal. Thanks to this mechanical
excitation, the cantilever oscillates with amplitude of typically few tens of nanometers; this amplitude is modulated
when the tip comes into contact with the surface. The AFM measurement was performed on polystyrene spheres of 5
µm diameter at the Surface Science Laboratory of the ESRF.

2.5. Scanning Transmission Ion Microscopy (STIM)

Scanning Transmission Ion Microscopy is based on measurement of the energy loss of accelerated ions after pass-
ing through the specimen. This slowing down of the charged particles occurs during inelastic collisions with electronic
shells and is proportional to the stopping power of the sample and describes its atomic density. The experiment was
performed at AIFIRA ion beam facility on nanobeam line [19].Charged particles delivered by a 4 MV Cockroft-
Walton electrostatic accelerator are focused onto the sample surface by an electromagnetic lens down to a beam spot
size of 200 nm. The beam is scanned over the surface in order tomeasure local ion energy loss using a passivated
implanted planar silicon (PIPS) detector placed on the beamaxis very close behind the sample. This geometry results
in increased detection efficiency, which enables drastic lowering of the beam current down to a few hundreds of par-
ticles per second. Therefore, the sample does not suffer any mass loss during ion interaction and one can access the
projected mass of the sample [20].

2.6. Data analysis

2.6.1. X-ray fluorescence
For X-ray fluorescence analysis we used PyMCA, a free available software, which was developed at the European

Synchrotron Radiation Facility [21]. The program allows interactive as well as batch processing of large data sets
and is well suited for X-ray fluorescence imaging. Quantification of the elemental areal masses is based on a fitting
procedure of the recorded fluorescence spectra. The algorithms employed are described in detail elsewhere [21].
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Element Standard value (µg/g) Experimental value (µg/g) Difference (%)
Potassium 9940± 20 7200± 9 -27.6

Copper 160± 8 169± 0.2 5.6
Iron 184± 15 166± 0.3 -9.8
Zinc 127± 16 128± 0.2 0.8

Table 1: Certified Values of Constituent Elements of the NISTSRM 1577B bovine liver together with the experimental values and their statistical
uncertainties and the percentage of difference

2.6.2. Calibration of the fluorescence data
The Standard Reference Material (SRM) of bovine liver was used to calibrate the fluorescence spectra. This

material is intended primarily for use as a control materialand in evaluating analytical methods for the determination
of major, minor and trace elements in animal tissue and otherbiological matrices.
The certified values for the constituent elements and the experimental values are given in Tab.1. Certified values are
based on results obtained by definitive methods of known accuracy, or alternatively, from results obtained by two
or more independent analytical methods. The grand mean was computed using the weighting scheme of Paule and
Mandel [22].
The bovine liver sample was scanned through the focal plane and the spectrum of emitted fluorescence was recorded.
The elemental content is calculated assuming the fundamental parameters (flux, detector characteristics) to be known
except for the distance between the focus and the detector. This distance is not precisely known but it’s evaluated by
comparison of the calculated and known elemental content inthe bovine liver sample.
Three elements were chosen as representative (Fe, Cu, Zn) and three distances close to the physical one. Using
PyMCA the content of the chosen elements were obtained and used in the formula:

Y(x) =
∑

i

(cst
i − cexp

i (x))2, i = Fe,Cu,Zn (6)

wherex is the distance between the focus and the detector,cst
i is a content of the elementi from the standard values,

cexp
i (x) is a content of the elementi measured in the experiment. The cost functionY(x) was fitted with a second order

polynomial and the value ofx giving the minimum was taken to be true focus to detector distance.

2.6.3. Phase imaging
To analyze phase contrast data we used free, available ImageJ software and the phase retrieval code developed

at the ESRF and implemented under GNU Octave ([23], [24]). The results obtained by using the phase retrieval
algorithm allow to calculate the thickness of a certain area(as described in 2.3). This value can be compared with the
alternative methods (AFM, STIM).

3. Results

3.1. Reference samples

Certified polystyrene spheres of well known diameter were used for validation of the phase retrieval algorithm.
Samples were put at four distances as explained in 2.3. The phase retrieval algorithm provides relative phase maps
(Fig.2). We draw profiles across the spheres to get information on the projected phase that can be used to calculate
the thickness of the sample (as described in 2.3). By introducing the density of the certified polystyrene spheres
that is 1.05 g/cm3 we obtained the results shown in Tab.2. It provides the nominal values of the spheres diameter
(certified values), the experimental values and the relative differences. It can be observed that the experimental values
are systematically underestimated and that the relative difference is bigger for the smaller spheres. The sample that
consists of 5µm polystyrene spheres was also imaged by AFM and STIM, as theyrepresent alternative methods for
the thickness measurement. The results are presented in Fig.3 with associated profiles through one sphere. The same
figure shows also a comparison between the different experimental results (phase, AFM, STIM) and the theoretical
profile. STIM quantification of projected mass was performedusing Paparamborde software [20]. Projected mass
calculation is made by considering the slowing down of incoming particles through the bead and associated stopping
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diameters nominal (µm) experimental (µm) difference (%)
0.4µm 0.4± 0.004 0.357± 0.021 -10.75
1 µm 0.994± 0.021 0.95± 0.06 -4.43
5 µm 4.987± 0.04 4.91± 0.42 -1.54
10µm 10.03± 0.05 9.77± 1.07 -2.59

Table 2: The nominal and experimental values obtained on thepolystyrene spheres together with their statistical uncertainties and the percentage
of difference

power variation along the ion path. The ion path is shematically divided into elementary sub-layers with constant
energy loss where stopping power and corresponding mass canbe calculated. Total projected mass is then calculated
giving weight to every sub-layer according to the total transmitted energy spectra. In the case of the polystyrene
sphere calculation, the Si3N4 contribution to the total energy loss was measured directlyon transmitted map and used
as a fixed parameter for sphere projected mass calculation. Accuracy in STIM mass measurement is driven by the
nature of sample and background and remains here under 16% for the less favourable case (5µm sphere on Si3N4

layer).

3.2. Element mapping in PC12 cells

PC12 cells were imaged by synchrotron X-ray fluorescence andX-ray phase contrast imaging. After scanning the
sample (as described in 2.2) and fitting the emitted spectra,the intracellular distribution of the accessible chemical
elements can be determined at a spatial resolution corresponding to the beam size (100 nm). By applying the phase
retrieval algorithm, the relative phase maps were generated. The potassium (K) and zinc (Zn) X-ray fluorescence map
and phase contrast images after phase retrieval reconstruction acquired on typical NGF-differentiated PC12 cells are
presented in Fig.4. Fig. 6 shows images of the same PC12 cell obtained using the STIM method and both X-ray
fluorescence and X-ray phase contrast imaging. For every cell we calculated the minimal and maximal areal mass of
the selected elements; potassium which is known to have a rather uniform distribution within the cell and zinc. The
results are collected in Table 3. Using data from the reconstructed phase maps, similarly to what has been done for

Cells K Zn
min (g/cm2) max (g/cm2) min (g/cm2) max (g/cm2)

cell A 15.0 · 10−9 1.9 · 10−6 0 16.4 · 10−9

cell B 0 7.3 · 10−6 0 67.1 · 10−9

cell C 6.5 · 10−8 2.8 · 10−5 0 85.0 · 10−9

Table 3: Values of areal mass of K and Zn in PC12 cells.

the reference samples, we can calculate the thickness of thePC12 cells analysed. The profiles along selected lines
(shown in Fig. 4, 6) were used for calculation. Applying an average density of the dry cells of 1.218 g/cm3 [25],[26]
we calculate the maximum thickness of the cell A (along the selected profile) to be 2.87µm. For the cell B we selected
2 profiles, one going through the cell (profile 2) and one goingthrough a thin neuritic process between 2 cells (profile
3). The thickness of these areas are respectively: 6.17µm and 1.28µm. For the Zn fluorescence map of the cell B we
selected also region of significant content of Zn, visible onthe Fig. 4 and the corresponding region of high projected
mass. We used this region to calculate the local areal mass ofZn (51.16· 10−9 g/cm2) and the thickness of this part
(7.59µm). These numbers will be used to calculate the absolute projected concentration of Zn in this region of the
cell. Also for the cell C we selected 2 profiles, one going through the cell (profile 4) and one going through the lower
part of the cell (profile 5). The thickness of these areas are respectively: 4.77µm and 0.82µm.
On the STIM map of the cell C we selected 3 areas that were used for areal mass calculation. The area X was selected
in one of the thinnest parts of the cell (similarly like profile 5 on the corresponding phase map) and it gave the result of
88µg/cm2 while the result obtained by using the phase map gives 100µg/cm2. The area Y goes through the nucleus of
the cell (similarly like profile 4 on the corresponding phasemap) and it yields 524µg/cm2. The similar area selected
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on the phase map gives a result of 581µg/cm2. As a curiosity we also calculate the areal mass in area Z, which goes
through the cytoplasm, the result is 114µg/cm2 (with 150µg/cm2 calculated from the phase map).
After combining the information from X-ray fluorescence maps and phase contrast maps it is possible to calculate the
absolute projected concentration for elements Zn and K in the cells (as described in the section 2.3). For these cal-
culations and for easier comparison we used the maximal value of the areal mass and the thickness of the cell (along
the selected profiles), although full quantitative maps canbe derived combining both types of images (see Fig.5). The
results are presented in Table 4. For the region of the cell B (significant content of Zn) mentioned above we calculate

K (%) Zn (µg/g)
cell A 0.54 46.9
cell B 0.97 89.3
cell C 4.82 146.3

Table 4: Projected concentration of K and Zn in PC12 cells obtained by dividing the maximal value of areal mass by the thickness of certain area.

the absolute projected concentration of Zn at the level of 55.3µg/g.
In the Fig.5 we present the quantitative map of the projectedconcentration of Zn in cell B. By using the X-ray fluores-
cence map of Zn and the phase contrast map of the cell B (Fig.4)it is possible to access the projected concentration by
dividing both maps pixel by pixel. Before the division we used cross correlation techniques to align the images and we
applied small distortion corrections. It should be noted that it is not necessary to calculate the thickness of the sample
in order to determine the projected concentrations of a given element as this information is accessible by dividing
X-ray fluorescence and phase contrast images pixel by pixel (see equations 4, 5). By doing the above calculations and
comparing the results obtained by our method in terms of sample thickness and areal mass with an alternative method
such as STIM, we validate our method.

4. Discussion

An important application of X-ray fluorescence microscopy is the determination of the distribution of the chem-
ical elements at the sub-cellular level. Indeed, XRF analysis is a multi-element analytical technique that allows the
simultaneous quantification of almost all elements in an unknown sample. The case of cells or thin sections of tissue
is ideal in the way that corrections for absorption and enhancement effects are not necessary resulting in linearity
between fluorescence intensity and the projected mass of a given element. However, the mapping of true element
concentration at the sub-cellular level is a difficult task. Locally, the composition and the density or the thickness of
different sub-cellular compartments can vary. Indeed, cell organelles are a mixture of structures with different size,
weight and shape. The region of the cell nucleus is a few microns thick while some parts of the cytoplasm can be
only 100 nm thick. It has been reported using combined STIM and AFM method that within a same cell specific
densities vary between 1.06 to 1.86 [20]. This should be taken into account for true elemental quantification at sub-
cellular level. To address this problem, X-ray fluorescencesub-cellular mapping and propagation-based X-ray phase
contrast imaging for mass normalization were combined, forthe first time, to provide high-resolution, truly quanti-
tative, elemental distribution maps in cells. Phase-contrast imaging with a partially coherent beam produces Fresnel
interference fringes, which make it possible to image samples with small variations in mass density. These variations
would be undetectable in absorption contrast.
Alternatively scanning differential phase contrast imaging has been performed by measuring the deviation of the beam
by the sample with a position sensitive detector [11]. The authors have demonstrated a very good sensitivity of this
approach using scanning transmission X-ray microscopy on 5microns polystyrene spheres. Although, they did not
use it yet for mass normalization for X-ray fluorescence quantitative analysis, the results obtained were done at low
energy (2.5 keV) that limits the range of elements accessible. Recently the studies on Zernike Phase Contrast have
shown the possibility of obtaining the projected phase in scanning mode [12]. Compton to Rayleigh scattering anal-
ysis has been used to obtain more accurate quantification in 2D [13] or 3D [14] measurements. There is limitation to
this approach, so far the matrix mean atomic number is estimated from calculated Compton/Rayleigh intensity ratios
as a function of the average atomic number in various sampleswhich not necessarily match the sample matrix studied.
In addition the thickness needs to be determined from thickness calibration curves on the basis of the total Compton
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scatter intensity. On the overall these average values based on Compton signal seem not suited to provide absolute
quantification at the sub-cellular level. The projection X-ray microscopy method used in our paper is optimized for
relatively high energies (17 keV-29 keV) that match well with efficient excitation of the X-ray fluorescence. As a full-
field CCD based approach our method is more dose efficient, provides a larger field of view and is much faster than
scanning methods to obtain the phase information. For comparison, the phase images are acquired with a few seconds
of exposure time and contain 4 million pixels (1µs/pixel), whereas the fluorescence scanning data requires about 6
hours of exposure time for 100000 pixels (250 ms/pixel). However the phase data is not recorded simultaneously
with the XRF data as it is in [12]. Therefore to normalize the fluorescence data the alignment of the two different data
sets is required. The higher energy of excitation for X-ray fluorescence allows not only a better sample penetration
but allows also to reach almost all element withZ > 13 with the advantage to work with K emission lines for higher
fluorescence yield and better energy resolution.
Ion beam techniques have shown clear assets to obtain true elemental quantification by combining particle induced
X-ray emission (PIXE) with Rutherford backscattering and/or STIM. The sensitivity and spatial resolution are much
poorer than synchrotron-based XRF microscopy. Recently, efforts have been done towards the quantification of trace
elments on cell cultures [8]. STIM allows to map with sub-micrometer resolution the variation in mass densities
within single cells with calculated thicknesses in good agreement with AFM measurements [20]. In this work, first
a comparison between reference techniques (AFM, STIM) was made on polymer microspheres to mimic, in size and
composition, a typical biological specimen such as a cell. The X-ray phase imaging after the application of a phase
retrieval reconstruction algorithm provides a map of the projection of the mass density of the sample that was con-
verted to thickness knowing the polystyrene density. The calculated thickness profile for 5 microns spheres was found
to be slightly underestimated using X-ray phase imaging. This can be explained by the shape of the background of the
profile extracted from the X-ray phase signal and that is not corrected for. The varying background is the direct con-
sequence of the sensitivity of differential phase contrast methods for low frequency noise. This problem can be solved
by improving the quality and stability of the beamline optics, resulting in a better correction for inhomogeneities of
the incoming X-ray beam. The STIM data matches more closely the theoretical profile of the sphere. Here, micro-
spheres were deposited on 500 nm thick silicon nitride membranes. The 2 layers, i.e the sphere and the silicon nitride
membrane were separated using STIM calculation modified in accordance. There is not much discrepancy between
STIM - phase - and theoretical profile as shown in Fig 3. The AFMtopographic image provides two complementary
measurements through the profile: a 4µm in height and 5.1µm for lateral dimension (measured at the half height of
the microsphere, i.e 2µm where the tip-object convolution effect can be neglected). These differences in height and
lateral dimensions could be due to the absence of non-linearity correction of the piezoelectric element in Z direction
while the planar scanner is corrected thanks to the closed feedback loop. Indeed, the AFM instrument is dedicated
to accurate height measurements at sub-micronic scale where the non-linearity behavior can be neglected. For this
reason, in our measurements, the lateral one is the more reliable. Based on this assumption, the lateral dimension
matches with the diameter specification of the sphere data sheet.
The thickness measurements using X-ray phase images were ingood agreement (within 5% except for the smallest
spheres) when compared to the certified values for the sphere. We attribute the increased relative error for the smallest
spheres to a spatial resolution effect: in the phase retrieval step we didn’t take into account the finite point spread
function of the detector. The quantitative measurements onsingle 400 nm spheres are encouraging for subcellular ap-
plications. Indeed, this typically matches the size of someorganelles (lysosome, mitochondria) or some thin cellular
processes (neurites, filopodia). This is well exemplified when PC12 cells were analyzed. These cells were differenti-
ated into neuronal-like cells which, expands neuritic processes. The X-ray phase reconstructed images provide useful
structural details giving evidence for sub-cellular compartments of various densities and a cell nucleus that can be
well delineated. Further work will be needed for better identification of the structural details obtained in the phase
images by coupling to fluorescence microscopy and organellestaining. We observed inside some PC12 cells denser
regions, micrometric in size. The X-ray fluorescence signalof zinc was found much higher in these regions. While
the zinc distribution can be first misinterpreted, the association of X-ray phase images (for mass normalization) to
X-ray fluorescence quantification results in a projected zinc concentration that remains rather similar to the one in
other parts of the cell (see Fig. 5). The potassium signal is found homogeneous as expected [8]. This indicates that
the cell integrity was preserved during the sample preparation. The areal mass obtained on PC12 cells through STIM
and X-ray phase measurements are in good agreement both for athick part of the cells like the nucleus and for thinner
parts like neurites. These direct comparisons on the same cellular regions support the use of X-ray phase imaging
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for mass normalization in X-ray fluorescence quantification. The same cells were imaged by STIM, then by X-ray
phase imaging followed by X-ray fluorescence measurements.Despite short acquisition times (150-250 ms) and low
attenuation at high X-ray energies, the high X-ray photon flux delivered by the nanoprobe results in non-negligible
radiation damage. It is suggested that some mass loss occursand our approach could be used to better characterize
these effects. X-ray fluorescence microscopy is a unique tool for the quantification of trace elements at the sub-cellular
level and it can be applied to a wide variety of biological studies. On the overall this work is encouraging the use of
X-ray phase imaging to improve the elemental quantificationin 2D and 3D X-ray fluorescence imaging.
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Figure 1: Scheme of the experimental setup of the nano-imaging station ID22NI
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Figure 2: Relative phase maps generated after applying phase retrieval procedure to the certified polystyrene spheres of following diameters: 10.03
± 0.05µm, 4.987± 0.040µm, 0.994± 0.021µm, 400± 4 nm, together with selected profiles.
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Figure 3: Comparison between different imaging techniques of the 5µm spheres. a. the AFM image of the 5µm spheres, b. STIM image of the 5
µm sphere, c. comparison between the experimental profiles (phase, AFM and STIM) and the theoretical prediction.
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Figure 4: X-ray fluorescence (color) and phase contrast (black-white) maps of PC12 cells A and B. Dashed, white squares onphase contrast maps
indicate the corresponding region on fluorescence map. The cell nuclei are highlighted in red. White square on Zn fluorescence map of the cell
B was selected due to significant content of Zn (fluorescence map - a) and thickness (phase map -b); c. Profile 2, through the cell B; d. Profile 3,
through the neuritic process. The colors depicting elemental content in each map are scaled to the maximum value for thatmap. The scanning size
of the cell A was 307 x 308 pixels with dwell time 250 ms while for the cell B 194 x 176 pixels with dwell time of 150 ms
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Figure 5: Fully quantitative map showing the projected concentation of Zn in the cell B. The calibration bar is inppm. The map was created by
combining the X-ray fluorescence map of Zn and the phase map ofthe cell B by dividing both images pixel by pixel.
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Figure 6: X-ray fluorescence (a), phase contrast (b) and STIM(c) map of the cell C. The cell nucleus is highlighted in red. On the phase map there
are 2 areas selected for the thickness calculation; d. Profile 4 through the cell C, e. Profile 5 through the lower part of thecell. On the STIM map
there are 3 selected areas X, Y, Z, which were chosen to calculate the areal mass. The colors depicting elemental content in each map are scaled to
the maximum value for that map. The scanning size was 225 x 411pixels and dwell time 200 ms.
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