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On-line apnea-bradycardia detection using hidden semi-Markov models

Miguel Altuve, Student Member, IEEE, Guy Carrault, Alain Beuchée, Patrick Pladys and Alfredo I. Hernández

Abstract— In this work, we propose a detection method
that exploits not only the instantaneous values, but also the
intrinsic dynamics of the RR series, for the detection of apnea-
bradycardia episodes in preterm infants. A hidden semi-Markov
model is proposed to represent and characterize the temporal
evolution of observed RR series and different pre-processing
methods of these series are investigated. This approach is
quantitatively evaluated through synthetic and real signals, the
latter being acquired in neonatal intensive care units (NICU).
Compared to two conventional detectors used in NICU our best
detector shows an improvement of around 13% in sensitivity
and 7% in specificity. Furthermore, a reduced detection delay
of approximately 3 seconds is obtained with respect to conven-
tional detectors.

I. INTRODUCTION

Apnea-bradycardia (AB) episodes are common on preterm
infants. These episodes are defined as a respiratory pause,
accompanied with a fall in heart rate, and are associated
with short-term morbi-mortality and neurological impairment
during childhood [1], [2]. AB episodes may be aggravated in
the presence of infection, hypoxia or intracranial pathologies.
Preterm infants suffering from frequent AB episodes are
monitored in neonatal intensive care units (NICU), where the
detection of AB triggers a set of nursing therapeutic actions.

In current NICU monitors, AB episodes are detected by pro-
cessing a single variable extracted from the electrocardiogram
(ECG): the cardiac cycle length (RR) [3], [4], [5]. However, a
recent work has shown that other features extracted from the
ECG, such as R-wave amplitude and QRS complex duration,
also show significant changes before and after the episode [6].
Typically, AB episodes are detected when the cardiac cycle
length is higher than a predefined fixed threshold (usually
600 ms) or when it is higher than a relative threshold (usually
33% of the base rhythm), for more than 4 s [3].

The aim of this work is to propose an AB detector that
exploits not only the instantaneous values, but also the
dynamics of the RR series. An approach based on a hidden
semi-Markov model (HSMM) is thus presented, with different
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pre-processing methods. The rest of this paper is organized
as follows: the next section introduces the phases of learning
and evaluation of HSMM to perform the event detection, as
well as the pre-processing methods applied (quantification
and integration of delayed version of the observation) and
the evaluation methodology. The evaluation of the proposed
detector on simulated and real signals is described in Section
III. Discussion of the results obtained are exposed in Section
IV. Finally, the conclusions and future works are outlined in
the last section.

II. METHODS
A. Hidden Semi-Markov Models

An HSMM is similar to a classic hidden Markov model
(HMM), but the main difference is that the unobserved
process is semi-Markov in the sense that a change to a future
hidden state depends on both the current state and the time
spent on this state. These models have already been applied
successfully in the bioengineering field [7], [8].

An HSMM is characterized by a number of M states
and the set of parameters λ , {aij , bi, πi, pi}, where aij is
the transition probability between states i and j (aii = 0),
bi is the probability of emission of observations, πi is the
probability of the initial state and pi is the probability of
duration for state i. In this work, the Bayesian information
criterion (BIC) [9] is used to calculate M . Additionally, bi
and pi are represented by a Gaussian distribution: bi(~µ,Σ)
and pi(µd, σd), where ~µ and Σ correspond to the center and
covariance matrix of observations and µd and σd are the
mean and the standard deviation of the duration of each state.
In order to avoid negative durations, Gaussian distributions
for pi(µd, σd) are always positive (truncated in zero).

The main interest in the application of an HSMM to
biomedical series processing is that it can better represent
the temporal evolution of a variable through parameters pi.
Indeed, the Gaussian law used in the proposed HSMM for pi
provides a better representation of the time spent in a given
physiological state than the implicit geometric law of HMM,
in particular when the duration on a given state is relatively
long. In a previous work, we have shown the advantages of
the HSMM approach, with respect to classic HMM, for the
detection of cardiac ischemia episodes [8].

In this paper, K HSMM are used to represent K different
observation dynamics, associated with distinct physiopatho-
logical states or events, to be discriminated. A learning phase
is firstly applied to each model, in order to estimate each
λk, ∀ k ∈ {1, 2, . . . ,K}, from the sequences of observations,
provided in a learning dataset. During this phase, λk is



initialized from the parameters of the equivalent HMM, in
which the Viterbi algorithm is used to to estimate pj(µd, σd).
Additionally, aij and πi are initialized with uniform probabil-
ities and bi(~µ,Σ) is initialized by a Gaussian mixture model
where the center of each Gaussian, which corresponds to the
barycenter of each state in the observation space, have been
initialized by the K-means algorithm. The Viterbi algorithm,
extended to HSMM, is subsequently applied to obtain the
final value of λk, through an expectation-maximization stage.
Learning is achieved when the log-likelihood

Lk = logP (O1:T |λk) (1)

converges to a maximum value, where P (O1:T |λk)
is the probability that the observation sequence
O1:T = O1, O2, . . . , OT is generated by the model
with parameters λk.

Once the learning phase is completed, the K HSMM are
applied in a test phase to a set of observations on a specific
dataset, in order to perform event detection. In this case, the
log-likelihood for instant t and model k,

Lkt = logP (Ot−T+1:t|λk) (2)

is determined using a sliding window of length T . On-line
detection of event α (α ∈ {k}) is finally performed when the
following equation is verified:

Lαt − Lkt > δα,k ∀ k ∈ {1, 2, . . . ,K} − {α} (3)

where δα,k are fixed thresholds that have to be optimized.

B. Quantization of observations

A quantization phase of the observations is proposed in this
work to improve the detection performance of the HSMM
approach. This quantization phase is justified, since i) HSMM
are constituted of a discrete number of states M representing
the dynamic range of the observations and ii) inputs to
the proposed detector are the result of an automatic ECG
segmentation phase that may produce segmentation errors.

Two quantization methods are applied: uniform, character-
ized by a constant quantization step ∆QU and non uniform,
characterized by a quantization step ~∆QNU, which depends
on the distribution of the signal. Vector ~∆QNU is found by
comparing the cumulative sum of values of the normalized
histogram with respect to a threshold δQNU. Different values
of ∆QU and δQNU have been tested to obtain the value
that maximizes detection performance. Variables noted with
UQ and with NUQ indicate its uniform and non uniform
quantization, as for RRUQ and RRNUQ.

C. Integration of delayed versions of the observation

Here, we explore the possibility of increasing the observ-
ability of the system while maintaining the same number of
sources. In this sense, an observation matrix is constructed,
integrating the original and a delayed version of the observed
time-series. This observation matrix may be represented as:

O =

[
Ot−T+1:t

Ot−τ−T+1:t−τ

]
(4)

where τ is the predefined time delay. In the case of the
RR series, the application of such a time-delay presents
also a physiological argument, since it is known that the RR
interval is modulated by the autonomic nervous function, with
different dynamics for the sympathetic and parasympathetic
systems. Different values of τ have been tested to optimize
detection performance. These observation matrices will be
represented in bold in this paper, such as RR.

D. Evaluation methodology

The proposed HSMM detection approach was firstly
evaluated with simulated signals in order to optimize its
structure and evaluate the impact of the different preprocessing
methods in a controlled way. It was then evaluated with real
signals acquired in NICU, in which AB episodes have been
manually annotated.

1) Evaluation on simulated signals: Synthetic time series
were generated with the FitzHugh-Nagumo model, described
by the following differential equations [10]:

dv

dt
= 3(v − 1

3
v3 + r + I)

dr

dt
= −1

3
(v − a+ 0.8r)

(5)

Variables v and r are in a “rest” value until a perturbation
is introduced into variable I . This induces an excursion in
the phase space on variables v and r, before returning to
their resting values. The simulated series have a size of 400
s and a perturbation I = −0.2 is introduced during the
interval [300, 305] s. Parameter a was modified according
to a uniform distribution in the interval a1 ∼ U(0.58, 0.62)
and a2 ∼ U(0.78, 0.82) to generate series presenting two
slightly different different dynamics. Moreover, the simulated
series were divided by its maximum value, in order to
generate signals with similar amplitudes. Gaussian white
noise was added to the series to obtain a signal to noise ratio
SNR = 5 dB. Responses generated with a1 and a2 are thus
difficult to differentiate by only analyzing their instantaneous
values (such as with a threshold-based detector).

Three synthetic datasets will be used for the learning phase:
• LSFN1: comprising 80 segments at “rest” (before the

perturbation) generated with a1 (40 segments) and a2
(40 segments).

• LSFN2: with 40 segments from the beginning of the
perturbation and generated with a1.

• LSFN3: represented by 40 segments from the beginning
of the perturbation and generated with a2.

All these segments have a duration of T = 10 s.
Once the HSMM have been trained, they are applied to a

test dataset consisting of 400 synthetic signals of 400 s each:
200 of these signals were generated with parameter a1 and
200 with parameter a2. Equations 2 and 3 where applied as
the online detection approach, with a sliding window of size
T = 10 s.

2) Evaluation on real signals: RR series were extracted
from the ECG of 32 preterm infants with frequent AB
episodes as described in [6], [11]. RR series were uniformly



resampled at 10 Hz. 233 bradycardia episodes were manually
annotated from 148 RR series. Two datasets were constructed
for the learning phase:

• LS1: composed of 30 segments taken randomly and
including an AB event, taken at the beginning of the
bradycardia with duration of T = 7 s.

• LS2: consisting of 300 segments at rest, taken randomly
from the series, with duration of T = 7 s.

The length of these segments (7 s) corresponds to the
average time measured from the beginning of the bradycardia
to the peak RR value within the bradycardia episode. In order
to reduce the variability of the first sample of the series, the
mean, determined within 5 s before the start of each segment,
was removed for all segments. This is particularly important
for the estimation of the first state (πi) of the models.

The evaluation of the models trained from real signals
was performed on a test set containing the totality of the
148 RR series (series duration = 26.25 ± 11.37 minutes)
with 233 bradycardia episodes. The online HSMM detector
is applied to these series as described in the previous section,
with a sliding window of size T = 7 s.

3) Performance evaluation: For both simulated and real
signals, true positives (TP ), true negatives (TN ), false
positives (FP ) and false negatives (FN ) were determined
for each sample by comparing the obtained detections with
the available annotations. TP occur when a detection falls
within a 20 s window, centered at a given annotation. Even if
this window seems particularly large, we justify this choice
by the fact that we are also evaluating the detection delay as
an important marker for the selection of the optimal detection
method.

Detection performance was evaluated by estimating the
sensitivity (SEN = TP/(TP + FN)) and specificity
(SPC = TP/(TN + FP )) of each detector, for different
detection thresholds, and represented by means of ROC curves.
The detection delay (dd) is also determined, and defined as the
time elapsed between the annotation instant and the detection.
Detection results were evaluated using the shortest distance
to perfect detection (SDPD) according to Eq. 6. Detection
delay results are presented in mean ± SD.

SDPD = min
√

(1− SEN)2 + (1− SPC)2 (6)

III. RESULTS

A. Simulated signals

This experience is particularly interesting, since, as de-
scribed earlier, a simple threshold-based detection would be
unable to discriminate the series produced with a1 from those
produced with a2. Only the series generated with a1 were
analyzed, as those generated with a2 do not provide additional
information for our purpose of validation.
K = 3 HSMM were employed to model each learning

dataset: HSMM with set λk to model LSFNk, k ∈ {1, 2, 3}.
The BIC criterion was applied in each case to estimate the
number of states per model: Mk. A sliding window of size
T = 10 s was used to obtain the observation sequence and
calculate the log-likelihoods Lk. Two thresholds (δ2,1 and

TABLE I
SENSIBILITY, SPECIFICITY AND DETECTION DELAY BY EVALUATING

SDPD (EQ. 6) FOR SIMULATED SIGNALS

Variable SEN (%) SPC (%) dd (s)
v 89.29 97.98 2.09± 0.07

vUQ 93.26 97.85 1.41± 0.24
vNUQ 92.14 96.19 0.16± 3.12
v 90.25 97.61 1.73± 1.40

δ2,3) were used to detect the perturbation generated with a1
as in Eq. 3. Detection results for simulated signals are shown
in Table I. Optimal parameters were: τ = 5 s, ∆UQ = 25
and δQNU = 0.003.

B. Real signals

K = 2 HSMM models were used to detect AB episodes.
Each parameter set λk, was estimated to reproduce the
dynamics of LSk, k ∈ {1, 2}. Only one threshold is thus
used, δ1,2. Mk was determined using the BIC criterion. A
T = 7 s sliding window was used to construct Ot−T+1:t and
to determine Lkt . The detection of an AB episode is obtained
by applying Eq. 3.

ROC curves are shown in Fig. 1 and its respective mean
detection delays are shown in Fig. 2. Optimal parameters
were: τ = 0, 67 s, ∆UQ = 1300 and δQNU = 0.05.
Conventional detection methods are also shown as a reference.
In these figures, the point where SDPD occurs is shown
with character “x”. Table II lists the obtained SEN , SPEC
and dd at the SDPD point (represented with the “x” symbol
in figures 1 and 2), for the detection of AB episodes.
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Fig. 1. ROC curves for AB event detection.

IV. DISCUSSION

Results on simulated signals show that the detection
performance is improved when the quantization step is
applied (see table I). The best detection performance and
the minimum mean detection delay were obtained when a
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Fig. 2. Mean detection delay of AB episodes.

TABLE II
SENSIBILITY, SPECIFICITY AND DETECTION DELAY BY EVALUATING

SDPD (EQ. 6) FOR REAL SIGNALS

Variable SEN (%) SPC (%) dd (s)
RR 74.20 92.77 6.37± 7.83

RRUQ 86.63 97.30 2.33± 3.15
RRNUQ 89.98 94.67 1.93± 3.34

RR 90.38 92.23 0.92± 3.56
Fixed thresh 77.11 79.31 4.63± 5.04

Adaptative thresh 73.35 87.36 4.16± 8.79

uniform quantization is applied (vUQ), followed by the non
uniform quantization version (vNUQ). These results confirm
the utility of the proposed HSMM approach, and measure
the impact of the quantization step and the integration of a
delayed version of the observables, on detection performance.

The introduction of a time-delayed version of the signal
may improve obsevability by synchronizing different effects
that modify the same variable, which are not necessarily in
phase. The gain in performance depends on i) the existence
of such kind of effects on the available series and ii) the
appropriate optimization of τ (which is considered constant).
The gain obtained from simulated data is rather low, but
results from real signals show the benefit of the approach.

Detection results from real signals (Fig. 1 and 2 and table II)
show that modeling the dynamics of RR series by HSMM
provides an improved detection performance, when compared
to conventional detection methods (fixed or relative threshold
detections). In addition, the application of the proposed
preprocessing methods (RRUQ, RRNUQ and RR), further
improves this performance and reduces the mean detection
delay. These results indicate that our approach detects, on
average, more than 2 s earlier than conventional detectors.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, the difficult problem of exploiting the
dynamics of biomedical time series for the early-detection

of pathological events was addressed. A detection approach,
based on an HSMM and combining different pre-processing
methods, was proposed and evaluated using simulated and real
signals. Results obtained from synthetic signals demonstrate
the interest of the proposed approach, and the fact that the
detection is mainly based on the difference of the temporal
dynamics of the events under consideration.

On real data, the performance of the proposed approach
for the detection of AB episodes has shown to be higher than
classical methods, while minimizing the detection delay. The
usefulness of the quantization phase and of the integration of
delayed versions of the observation into the HSMM was also
evaluated and showed to improve the detection performance.
This is an important result, as the minimization of the delay
from the beginning of the AB episode to the application of
the therapy by the nurse is one of the main goals in this
clinical field.

The main advantage of the approach proposed in this paper
is its simplicity, opening the possibility of an embedded
implementation into a mobile device. Future works are
directed towards the multivariate extension of this method, in
order to integrate other features extracted from the preterm
infant’s ECG, such as the R-wave amplitude, the QRS
complex duration, the PR interval and P-wave morphology.
This approach may also improve detection performance and
reduce the detection delay.
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