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Abstract

For statistical analysis of functional magnetic resonance imaging (fMRI) data sets, we
propose a data-driven approach based on independent component analysis (ICA) imple-
mented in a new version of the AnalyzeFMRI R package. For fMRI data sets, spatial
dimension being much greater than temporal dimension, spatial ICA is the computa-
tionally tractable approach generally proposed. However, for some neuroscientific ap-
plications, temporal independence of source signals can be assumed and temporal ICA
becomes then an attractive exploratory technique. In this work, we use a classical linear
algebra result ensuring the tractability of temporal ICA. We report several experiments
on synthetic data and real MRI data sets that demonstrate the potential interest of our
R package.

Keywords: multivariate analysis, temporal ICA, spatial ICA, magnetic resonance imaging,
neuroimaging.

1. Introduction

Magnetic resonance imaging (MRI) is now a prominent non-invasive neuroimaging technique
largely used in clinical routine and advanced brain research. Its success is largely due to
a combination of at least three factors: (1) sensitivity of MR signal to various physiological
parameters that characterize normal or pathological living tissues (such as diffusion properties
of water molecules, relaxation time of proton magnetization or blood oxygenation) leading to
a vast set of MRI modalities (respectively restricted in our example to diffusion MRI, weighted
structural and functional MRI); (2) constant hardware improvements (e.g., mastering high
field homogeneous magnets and high linear magnetic field gradients respectively allow an
increase of spatial resolution or a reduction of acquisition time); and (3) sustained efforts in
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various laboratories to develop methods: for image processing (to de-noise, segment, realign,
fusion or visualize MR brain images), for computational anatomy leading to the exploration
of brain structure modifications during learning, brain development or pathology evolution
and for time course analysis of functional MRI data. Statisticians play a key role in this last
factor since data produced are complex: noisy, highly variable between subjects, massive and,
for functional data, highly correlated both spatially and temporally, see Lange (2003).

Functional MRI (fMRI) allows to detect the variations of cerebral blood oxygen level induced
by the brain activity of a subject, lying inside a MRI scanner, in response to various sensory-
motor or cognitive tasks, see Chen and Ogawa (1999). The fMRI signal is based on changes
in magnetic susceptibility of the blood during brain activation. It is a non-invasive and indi-
rect detection of brain activity: the signal detected is filtered by the hemodynamic response
function (HRF) and the neuro-vascular coupling is only partially explained, see Logothetis
and Pfeuffer (2004). The main goal of fMRI experiments is to explore, in a reproducible way,
the cortical networks implicated in pre-defined stimulation tasks in a cohort of normal or
pathological subjects. The low signal to noise ratio obtained in functional images requires to
repeat the sequence of stimuli several times (Henson 2004) and to enroll a sufficient number of
subjects (Thirion et al. 2007). In general, the data resulting from an fMRI experiment consist
in a set indexed with time (typically many hundred) of 3D dimensional functional images
with a 3 × 3 × 3 mm3 spatial resolution, and in a structural (or anatomical) image with a
1 × 1 × 1 mm3 resolution used to accurately localize functional activations. Note that a 3D
image is in fact an array of many voxel intensities. Various pre-processing steps are required
to correct functional images from possible head subject movement, to realign functional and
anatomical individual images and, for group studies, all individual data sets in a common ref-
erential. Spatial smoothing (e.g., using a Gaussian kernel) is generally applied to functional
images to compensate for potential mis-realignment and enhance the signal-to-noise ratio.

Several frameworks have been proposed to date for the statistical analysis of these pre-
processed sets of functional data; see Lazard (2008) for a recent review. The commonly
used statistical approach, massively univariate, considers each voxel independently from
each other using regression techniques; see Friston et al. (1995) and Bullmore et al. (1996).
It is available in freeware packages such as FSL (see http://www.fmrib.ox.ac.uk/fsl/

and Smith et al. 2004), SPM (see http://www.fil.ion.ucl.ac.uk/spm/ and Friston et al.
2007), BrainVISA (see http://brainvisa.info/ and Rivière et al. 2009) or NIPY (see
http://nipy.sourceforge.net/ and Millman and Brett 2007). The time series response at
each voxel is modeled as a stationary linear filter where the finite impulse response corre-
sponds to a model of the HRF. This leads to the specification of a general linear model (noted
GLM thereafter; not to be confounded with the generalized linear model) where the columns
of the design matrix yield the regressors, i.e., a sampling of the convolution of the stimulus
time courses with an HRF model on a grid consisting of the acquisition time points. Other
regressors can be seamlessly introduced to model possible confounds. Many refinements to
this approach have been proposed; see Nichols and Holmes (2002), Friston et al. (2005) and
Roche et al. (2007). Spatial smoothness of the activated areas, normal distribution, seri-
ally correlated errors modeled in general as an AR(1) process and a predefined form of the
HRF used as a convolution kernel are the main a priori incorporated into the GLM. This
model-driven approach allows to test, using standard Student or Fisher tests, the activated
regions against a desired hypothesis by specifying linear combinations of regressors. It is
largely used essentially because of its flexibility in model specification allowing to test various
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hypothesis represented in corresponding statistical parametric maps. Clearly, the validity of
the interpretation of these maps depends on the accuracy of the specified model.

An alternative exploratory (data-driven) approach relies on multivariate analysis based on
independent component analysis (ICA). ICA performs a blind separation of independent
sources from a complex mixture of many sources of signal and noise. In this approach,
relying on the intrinsic structure of the data, no assumptions about the form of the HRF or
the possible causes of responses are introduced. Only the number of sources or components
to search for could eventually be specified. To identify a number of unknown sources of
signal, ICA assumes that these sources are mutually and statistically independent in space
(sICA) or time (tICA). This assumption is particularly relevant to biological time-series,
see Friston (1998). For fMRI data set analyses, sICA is preferred because temporal points
(few hundreds, corresponding to each occurrence of a functional image acquisition) are small
compared to spatial ones (more than 105, corresponding to the number of voxels contained in
a functional image) leading for tICA to a potentially computationnaly intractable problem.
However, temporal ICA could be relevant for some neuroscientific applications where temporal
independence of sources can be assumed, see Calhoun et al. (2001). It is thus surprising that
tICA has not been applied to study fMRI data, but occasionally on very reduced portions
of the brain. A possible explanation of this fact might be that a first step usually done
in most, if not all, IC analysis is to begin with a PCA decomposition, which gives rise to
heavy computations (in the temporal case). For example, Calhoun et al. (2001) wrote “Note
that tICA is typically much more computationally demanding than sICA for functional MRI
applications because of a higher spatial than temporal dimension and can grow quickly beyond
practical feasibility. Thus a covariance matrix on the order of N2 (where N is the number of
spatial voxels of interest) must be calculated. A combination of increased hardware capacity as
well as more advanced methods for calculating and storing the covariance matrix may provide
a solution in the future.”. This being said, the two objectives of our paper are: (1) to describe
an R package for temporal and spatial independent component analysis in the context of
neuroimaging and (2) to propose the use of a classical linear algebra result, implemented in
our package, to alleviate the intrinsic computational burden linked to temporal ICA.

The paper is structured as follows. First, in Section 2 we briefly describe the principle of
temporal and spatial ICA in the context of fMRI data set analysis and detail our mathematical
proposition for ensuring temporal ICA tractability. In Section 3, we describe the current
version of the R package AnalyzeFMRI (Marchini and Lafaye de Micheaux 2010), which has
been the first R package designed for the processing and analysis of large anatomical and
functional MRI data sets. In Section 4, we report results using synthetic data and real MRI
data sets coming from human visual experiments, obtained using temporal or spatial ICA
(TS-ICA). Finally, we conclude about the interest of the AnalyzeFMRI package and our
extensions for the exploration of MRI data and outline our plans for future extensions.

2. Spatial and temporal independent component analysis

Independent component analysis (ICA) is a statistical technique, well developped in the signal
processing community, whose aim is to recover hidden underlying source signals from an
observed mixture of these sources (blind source separation problem). In standard ICA, one
considers the mixture as linear and the sources as statistically mutually independent and non
Gaussian.
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Hereafter, we will adopt the standard notation available in the statistical literature for data
matrices, where each row consists in a set of measurements of several statistical variables.
Note that this is non standard in the ICA community where data matrices are transposed,
see e.g., Hyvärinen et al. (2001). Moreover, capital slanted letters denote matrices (A say),
vectors are specified as a one column matrix written in bold face type (x = (x1, . . . , xn)

⊤

say), and upright unslanted characters (X or X say) denote random variables or vectors.

The generative linear instantaneous noise-free mixing ICA parametric model is generally writ-
ten under the form

X = AS (1)

where X = (X1, . . . ,Xm)⊤ is the m× 1 continuous-valued random vector of the m observable
signals, A = (aij) is the unknown constant (i.e., non random) and invertible square mixing
matrix of size m ×m and S = (S1, . . . , Sm)⊤ is the m × 1 continuous-valued random vector
of the m unknown source signals to be recovered, hereinafter referred to as the sources.

Note that, if we denote by B the inverse of matrix A, then we can write S = BX. The
term “recover” here means that we want, based on an observed sample x1, . . . ,xn (possibly
organized in a matrix X of size n × m) of the random vectors X1, . . . ,Xn, to estimate the
densities fSj of the m sources Sj , or to build a “pseudo-observed” sample of size n of each
one of these m sources, which are usually called the (maximally) independent (extracted)
components. For example, this sample could be computed, if one has obtained an estimate B̂
of the unknown separating matrix B, as s1, . . . , sn where si = B̂xi, 1 ≤ i ≤ n.

Using the independence hypothesis about the m sources, note that the density fX of the
random vector X can be expressed as

fX(x) = |A−1|fS(s) = |B|
m∏

j=1

fSj (sj),

where | · | is the determinant operator. It then follows that one can write the log-likelihood
of the observed sample as

log L(B) = log

n∏

i=1

fX(Xi) = n log |B|+
n∑

i=1

m∑

j=1

log fSj (b
⊤
j Xi)

where bj denotes the j-th column of B. This is easy to prove when one notices that Sj = b⊤j X.

Optimization algorithms are then used for B̂ = argmax logL(B) computation. To perform
this operation, prior densities for the sources, or a simple parametrization of the sources may
be considered; see details in Hyvärinen et al. (2001, p. 205–206).

Alternative approaches, not necessarily based on the likelihood function, are available to
estimate B (and thus S). For instance, there is a relation between independence and non
gaussianity; see e.g., Cardoso (2003) or the extensive literature on projection pursuit. In our
package, we used the FastICA algorithm that searches for (maximally) non Gaussian sources,
where non gaussianity is measured using a kurtosis measure, see Hyvärinen et al. (2001).

To apply standard ICA techniques on fMRI data sets, the first step is to obtain 2D data
matrices X from 4D data arrays (concatenation in time of several 3D functional volumes).
This can be performed in two (dual) ways:
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(a) one may consider that the data consist in the realization of tl random variables, each
one measured (sampled) on vl voxels. This results in tl 3D spatial maps of activation.
Each 3D map is then unrolled (in an arbitrary order) to get a matrix X of size vl × tl.
The mixing matrix A is in this case of size tl × tl.

(b) one may consider that the data consist in the realization of vl random variables, each
one measured at tl time points. This results in vl time courses each one of length tl,
collected into a matrix X of size tl × vl (here again, the order of the vl time courses in
the resulting matrix is arbitrary). The mixing matrix A is in this case of size vl × vl.

Using these data, the empirical counterpart of the noise-free model 1 can then be written as

Ẋ⊤ = AS⊤ (2)

where Ẋ is the centered version of matrix X =




x1
...
xn


, and where S =




s1
...
sn


.

Case (a) corresponds to spatial ICA (sICA) and the rows of matrix S⊤ contain pseudo-
observations of spatially independent source signals of length n = vl (unrolled source spatial
maps). Case (b) corresponds to temporal ICA (tICA) and the rows of matrix S⊤ contain here
pseudo-observations of temporally independent source signals of length n = tl (source time
courses). Recall that the row-dimension of matrices X and S above corresponds to sample
size, which is not standard in the neuroimaging or signal processing community where those
matrices would be transposed.

At this point, because the mixing matrix A is square in standard ICA (Hyvärinen et al. 2001,
p. 267), in writing (2) we have implicitly supposed that the number of sources m is equal to
tl in case (a) and vl in case (b). This is not necessarily the case. Data pre-processing based
on PCA is generally used to overcome this problem. Doing this, model 2 should be re-written
as

Λ
−1/2
red E⊤

redẊ
⊤ = ÃS⊤ (3)

where Λred (resp. Ered) is the (reduced) matrix whose diagonal elements (resp. columns)
consist of the m largest (non null) eigenvalues (resp. eigenvectors) of the empirical covariance
(or eventually correlation) matrix Ẋ⊤Ẋ/n (note that the mixing matrix into Ẋ⊤ is then given

by A = EredΛ
1/2
redÃ). The size of the matrix Ered is respectively tl×m in case (a) and vl×m in

case (b). Note also that the Singular Value Decomposition (SVD) of matrix Ẋ can be used:

Ẋ = UDV ⊤

Then, one can replace in Equation 3, Λred with D2
red/n where Dred is the diagonal matrix

consisting of the m largest singular values of D, and Ered with Vred refering to the associated
singular vectors. Equation 3 then leads to the following decomposition:

Ẋ⊤ =
1√
n
VredDredÃS⊤ =

m∑

j=1

A•j ⊗ S•j , (4)

where S•j denotes the j-th column of a matrix S. Note that the pair (A•j , S•j) is sometimes
(abusively) called the j-th independent (estimated) component, although this term should be
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Figure 1: Illustration of the sICA decomposition after a PCA pre-processing step.

used solely for S•j , whereas A•j refers to the weighting coefficients (degree of expression) of
the j-th spatial component over time (for sICA) or of the j-th temporal source over space,
i.e. over the voxels (for tICA).

Figure 1 below is an illustration of Equation 4 for sICA.

Unfortunately, due to the large number of voxels in fMRI experiments, it is not computa-
tionally tractable to fully diagonalize the correlation matrix in the temporal case (which is in
this case of size vl × vl) to perform the aforementionned PCA pre-processing step. This may
explain why tICA, as far as we know, has never been applied on the entire brain volume but
only on parts of it, see Calhoun et al. (2001), Seifritz et al. (2002) and Hu et al. (2005).

Our extension to the R package AnalyzeFMRI for TS-ICA uses a nice property of the SVD
decomposition that allows to ensure tractability, see Jolliffe (1986) for other applications of
this decomposition. It essentially states that the largest eigenvalues of the (huge) covariance
matrix in the temporal case, as well as their associated eigenvectors, can be obtained from
the same quantities computed from the (small) covariance matrix in the spatial case.

Proposition. We consider the temporal case, where the size of the matrix Ẋ is tl × vl. Let
SX = Ẋ⊤Ẋ/tl be the (empirical) covariance matrix of Ẋ, with (large) size vl × vl. The r
nonzero largest eigenvalues λ1, . . . , λr of SX and their associated eigenvectors fk, k = 1, . . . , r,
are given by

λk =
1

tk
d2k and fk =

1

dk
Ẋ⊤gk

where d2k is the nonzero k-th largest eigenvalue of the (small) matrix ẊẊ⊤ of size tl × tl and
where gk is its associated eigenvector.

Proof. We want to find the r nonzero largest eigenvalues of SX and their associated eigen-
vectors fk, k = 1, . . . , r. SVD theory allows us to write

Ẋ⊤Ẋfk = d2kfk k = 1, 2, . . . , r; (5)

ẊẊ⊤gk = d2kgk k = 1, 2, . . . , r. (6)
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Pre-multiplying Equation 6 by Ẋ⊤, one can see that Ẋ⊤gk is an eigenvector of Ẋ⊤Ẋ associ-
ated with the eigenvalue d2k. Thus, fk is proportional to Ẋ⊤gk.

The idea is thus to compute the tl eigenvalues {d21, . . . , d2tl} and the tl eigenvectors gk of the

(small) matrix ẊẊ⊤ of size tl× tl. From this point, we get the tl first eigenvectors fk (among
the vl ones) of SX using this formula:

fk =
1

dk
Ẋ⊤gk. (7)

The vl eigenvalues of SX are given by 1
tl
d21, . . . ,

1
tl
d2tl , 0, . . . , 0. Note that the last vl − tl

eigenvectors of SX cannot be obtained using this approach, but anyway, as d2i = 0 (i > tl)
they do not contain any useful information.

3. The AnalyzeFMRI package

R package AnalyzeFMRI is a package for the exploration and analysis of large 3D MR struc-
tural data sets and 3D or 4D MR functional data sets. It was initiated by Marchini (2002) and
transfered in 2007 to the third author of this paper. Sources, as well as precompiled binaries of
our package for Mac or Microsoft Windows system, can be obtained from the Comprehensive
R Archive Network (CRAN) at http://CRAN.R-project.org/package=AnalyzeFMRI. Note
that our package is briefly described in the CRAN task view “Medical Imaging” (Whitcher
2010), as well as several other R packages for fMRI data analysis such as arf3DS4 (Weeda
et al. 2011), cudaBayesreg (Ferreira da Silva 2011), fmri (Tabelow and Polzehl 2011), oro.nifti
(Whitcher et al. 2011), Rniftilib (Granert 2010) and tractor.base (Clayden et al. 2011). To ef-
ficiently explore fMRI data sets using tICA and sICA we added several interesting extensions
to the initial package (e.g., tICA, automatic choice of the number of components to extract or
GUI (graphical user interface) visualization tool). Some of them are briefly described below,
see Whitcher et al. (2010) for more details, and also Marchini (2002) for a description of initial
functions. Table 1 describes seven important functions available in the package.

Importing data: The package now provides read and write capabilities for the new NIfTI (nii
or hdr/img files) format. This format contains a header gathering all the volume information
(image dimension, voxel dimension, data type, orientation, quaternions, ..., up to more than
40 parameters) and a data part that contains values corresponding to the MR signal intensity
measured at each voxel of the image object.

Data pre-processing: Briefly, before doing any statistical analysis, functional MR data should
be corrected from geometric distortions, realigned and smoothed. Only the latter step is
embedded into the current (and initial) version of the package.

Image operators: Several operators can be applied on the images such as rotation, translation,
scaling, shearing or cropping. These operations can be performed by changing quaternion pa-
rameter in the NIfTI header or by direct modification of the matrix values. The matrix indices
(voxel position) can be translated to volume coordinates (in mm) to facilitate comparison be-
tween subjects.

Data analysis using TS-ICA: In the initial version of the package, it was only possible to
analyze fMRI data using spatial ICA. We added temporal ICA and the automatic detection
of the number of components to extract. Automatic detection is based on an heuristic strategy:

http://CRAN.R-project.org/package=AnalyzeFMRI
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R function Description

f.analyzeFMRI.gui() Start an R-Tcl/Tk-based GUI to explore, using
the AnalyzeFMRI package functions, an fMRI
data set stored in ANALYZE format.

f.icast.fmri.gui() The GUI provides a quick and easy to use in-
terface for applying spatial or temporal ICA to
fMRI data sets in NIfTI format.

f.plot.volume.gui() TclTk GUI to display functional or struc-
tural MR images. This GUI is useful for in-
stance to display the results performed with
f.icast.fmri.gui().

f.read.header(file) Read ANALYZE or NIfTI (.hdr or .nii) header
file. The format type is automatically detected
by first reading the magic field.

f.read.volume(file) Read ANALYZE or NIfTI image file and puts it
into an array. Automatic detection of the format
type.

f.write.analyze(mat,file,...,) Store the data in ANALYZE format: creation of
the corresponding .img/.hdr pair of files.

f.write.nifti(mat,file,size,...) Store the data in NIfTI format: creation of the
corresponding .img/.hdr pair of files or single
.nii file.

Table 1: Seven main functions of our package with their description.

the computation of the eigenvalues of the empirical correlation matrix of the data, keeping
only those greater than 1. This rule is known as the Kaiser’s rule, see (Jolliffe 1986, p. 95).
The automatic detection is useful when no a priori knowledge is available. Note also that
the user can now insert a priori knowledge in selecting only a specific region of the brain to
explore (via a mask image) or in searching for components correlated with a specific time
course signal.

Visualization: Anatomical or functional volumes and statistical (parametric or not) maps can
be displayed in two separate windows with linked cursors to localize a specific position (see
Figure 2). Our visualization tool can be used in two ways. First, you can use it to visualize
the results of a temporal or spatial ICA (as displayed in Figure 2 for sICA). The time slider
here indicates the rank of the component currently visualized (among all those extracted)
and the displayed time course represents the values of the spatial component for the selected
voxel (blue circle). Second, you can use it to visualize raw fMRI data. In this case the time
slider represents the time course of the selected voxel, i.e. the MR signal values across time
measured at the voxel position.

4. Results

We evaluated the TS-ICA part of the AnalyzeFMRI package both on simulated data and real
data sets coming from human visual fMRI experiments.
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Figure 2: Image Display. Right top: Anatomical image (clockwise: sagittal, coronal and
axial views). Left top: statistical map of activations obtained after spatial IC analysis of the
functional data sets in the sagittal, coronal and axial orientation. The value of the selected
extracted spatial component (here rank = 3) for the selected voxel (blue cross) is indicated in
the right bottom quadrant (blue circle). The localization of the selected voxel is reported on
the anatomical image (red cross). Bottom: Time course of the weighting coefficients of the
third component (identical for all the voxels of this component).

4.1. Simulated data sets

In fMRI experiments, three standard paradigms are used. “Block design” which alternates,
in a fixed order, stimuli that last few seconds; “event-related design” which alternates, in
a random or pseudo-random order, stimuli that last few milliseconds and “phase-encoded
paradigm” that generates traveling periodic waves of activation with different phases. In
order to detect patterns of activation for the two former cases, we can use respectively a
cross correlation with a square wave, or a binary cross correlation (to be defined later) with
a sequence of 0 and ±1 representing the stimulation conditions. A Fourier analysis is more
suitable for the latter.

Before testing our method on real data sets, we used three simulated cases: (1) a simple case
to check that our method behaves correctly (this part is only provided and detailed as supple-
mentary material; see supplementary file simul1.zip for details), and two cases simulating
real conditions: (2) an event-related design simulation (supplementary file simul2.zip) and
(3) a phase-encoded simulation (supplementary file simul3.zip). The former simulates the
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Figure 3: Simulated data set. Left: A transverse slice of the volume. Each color indicates the
localization of each signal. Right: Time course of each temporal sequence of Bernoulli trials
displayed in their corresponding color: source 1, orange, 9 events; source 2, blue, 17 events;
source 3, red, 11 events; and source 4, green, 7 events.

“color center experiment” and the latter “retinotopic mapping experiment” reported respec-
tively in Section 4.2.

R source code (including comments) for each one of the three aforementioned simulations is
provided as supplementary material. Because our final results may change due to the use of
random numbers (simulated data and initial conditions for ICA algorithm), we provided, in
our R code, the seeds we used for the random generators. This allows the reader to obtain
exactly the same results as those presented.

Event-related simulation

With event-related paradigm, neuroscientists search for voxels activated specifically by each
type of stimulus. To perform a simulation in this context, we used 100 3D-images (128 ×
128× 3 voxels) composed of four non-overlapping and concentric tubes. Each tube contained
a temporal sequence of Bernoulli random variables with various probabilities of success (see
Figure 3). The background, which surrounds the tube at the periphery, contained a Gaussian
noise (sd = 0.05). To be realistic, we also added everywhere a Gaussian noise (sd = 0.1).

These simulated data were obtained using the following R code:

R> source("simul2.R")

R> set.seed(16)

R> simul2()

At this point, three files are created: originalSignal.txt, mask.nii and simulEvent.nii.
We then applied temporal and spatial ICA to these simulated data, using the following R

code. For tICA with automatic choice of the number of components:

R> set.seed(1)

R> f.icast.fmri.gui()

Select simulEvent.nii with maskfile mask.nii then select Temporal ICA and click on the
Start button. For sICA with automatic choice of the number of components:

R> set.seed(16)

R> f.icast.fmri.gui()
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Figure 4: Time course and (thresholded) localization of the components detected using tem-
poral ICA (left) and spatial ICA (right). Each ring indicates the thresholded localization of
the component coded with the same color. For each component, the binary correlation coeffi-
cient of its time course with the corresponding initial signal is indicated. See Figure 3 for the
correspondence with the exact position of the simulated signals. See text for the computation
of the components localization. Each time course was normalized.

Select simulEvent.nii with maskfile mask.nii then select Spatial ICA and click on the
Start button.

At this point, two pairs of files were created, namely:

• simulEvent_ICAt.nii and simulEvent-ICAt-time-series.dat,

• simulEvent_ICAs.nii and simulEvent-ICAs-time-series.dat.

Note that one can inspect temporal courses and spatial localizations using the GUI function
f.plot.volume.gui(), on these two pairs of files respectively. The R instructions needed to
perform the remaining part of the analysis are provided in the file simul2-analysis.R whose
contents can be copied and pasted line by line in the R console, or which can possibly be
sourced.

Figure 4 shows the time course and (thresholded) spatial localization of the 4 extracted
components. For the latter, we used the following procedure. For each extracted time course
Ci (1 ≤ i ≤ 4), we considered either its positive part or its negative part, selecting the one
having the highest peak of amplitude (in absolute value). Let’s note C̃i the selection. Then,
we computed the binary correlation (see (8) below) between each one of the original temporal
signals of sources Sj (1 ≤ j ≤ 4) and a thresholded version C̃i[j] of C̃i. The thresholds used

to obtain C̃i[j], 1 ≤ j ≤ 4 were respectively 0.91, 0.83, 0.89 and 0.93 for the sources from
the center to the periphery (see Figure 3). Intuitively, these thresholds correspond to the
number of peaks of each original temporal signal among 100, i.e. 9 for source 1 (orange),
17 for source 2 (blue), 11 for source 3 (red) and 7 for source 4 (green). We define the
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binary correlation (number in [−1, 1]) between two (non necessarily positive) binary random
sequences u = (ut, 1 ≤ t ≤ T ) and v = (vt, 1 ≤ t ≤ T ) by:

bcor(u, v) =

∑T
t=1 sign(ut × vt)∑T

t=1 (sign|ut|+ sign|vt| − sign|ut × vt|)
. (8)

Note that sign(0) = 0.

We then assigned each extracted component to the original signal corresponding to the com-
putation of the highest absolute value of the binary correlation (see Figure 4). For tICA, we
found the following results:

❼ Components 1 and 2 were assigned with the temporal signal of source 1, with a binary
correlation equal respectively to +1 and -1. As there was a conflict between the spatial
localization given by these two components, we computed an “energy” index as follows.
Let C̃1 and C̃2 be the two parts selected from the components 1 and 2 respectively. We
then divide C̃1 and C̃2 respectively by max

1≤t≤T
C̃1 and max

1≤t≤T
C̃2 to obtain C∗

1 and C∗
2 . Then

we threshold C∗
1 and C∗

2 using the threshold t12[1] which is equal to half the empirical
quantile of order 0.91 of the temporal signal |C∗

1 |+ |C∗
2 |. The “energy” of component 1

versus component 2 to explain the source 1 is then given by the sum of the values in
|C∗

1 | above t12[1]. Similarly, the “energy” associated with component 2 is given by the
sum of the values in |C∗

2 | above t12[1]. The “energy” index was higher for component 2
(ratio of 0.58) which was consequently assigned to the temporal signal of source 1.

❼ Components 3 and 4 were assigned with the temporal signal of source 4, with a binary
correlation equal respectively to -1 and +1. Here again, we computed the“energy” index
which was higher for component 3 (ratio of 2.5) thus assigned to the temporal signal of
source 4.

❼ Components 1 and 4 were consequently not associated with any source.

For sICA, we found the following results:

❼ Component 1 was assigned with the temporal signal of source 4, with a binary correlation
equal to -1.

❼ Component 2 was assigned with the temporal signal of source 2, with a binary correlation
equal to +1.

❼ Component 3 was assigned with the temporal signal of source 3, with a binary correlation
equal to -1.

❼ Component 4 was assigned with the temporal signal of source 1, with a binary correlation
equal to -1.

Surprisingly, spatial ICA works better in this case as compared to temporal ICA. We checked,
using the R package IndependenceTests version 0.2 (for more information, see Bilodeau and
Lafaye de Micheaux 2010, Beran et al. 2007 or Bilodeau and Lafaye de Micheaux 2005), the
independence of our original random sequences of Bernoulli trials (note that this package
can also check the independence of variables that are singular with respect to the Lebesgue
measure).
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Figure 5: Test of the mutual independence between our four original signals.

R> library("IndependenceTests")

R> Orig <- read.table("originalSignal.txt", header = TRUE)

R> out <- dependogram(Orig, rep(1, 4), N = 10, B = 200)

There were no reason to significantly reject this independence hypothesis (at the 5% level),
as can be seen on Figure 5. On the other side, using the same R instructions on the extracted
temporal components, they were found significantly dependent.

A possible explanation to the tICA failure (notwithstanding the fact that standard ICA
model is only defined for continuous random variables, since the unmixing and mixing matrix
coefficients are real numbers and thus are not constrained in anyway to give binary values)
may be the use of kurtosis in the FastICA algorithm, a quantity which is not optimal for
sequences of Bernoulli trials, see Himberg and Hyvärinen (2001). More generally, regarding
the power of ICA to extract independent versus sparse components, we refer the reader to
Daubechies and Roussos (2009).

Traveling wave simulation

We generated several sinusoids with the same fundamental frequency f=1/16 Hz and various
phases to simulate traveling activation waves. The resulting data set consisted in a sequence
comprising 240 3D-images. Each image (128× 128× 3 voxels) was composed of four partially
overlapping and concentric tubes (each tube covers partly the tube that it surrounds). Each
tube contained a pure sinusoidal signal (with a frequency f equal to 1/16 Hz) in its non
overlapping part and a sum of two pure sinusoidal signals in its parts that intersect with
another tube. For pure signals, different phases were considered, namely φ1 = 0, φ2 = π/4,
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Figure 6: Simulated data set. Left: A transverse slice of the volume. Each color indicates the
localization of each signal. Pure signals are represented with a color (orange, blue, red and
green), Gaussian noise (sd = 0.2) is in grey and mixed signals are in white. Right: Temporal
course of the pure single signals written in their corresponding color (f=1/16 Hz, phases =
0, π/4, π/2, 3π/4 respectively from the center to the periphery).

φ3 = π/2 and φ4 = 3π/4 from the tube at the center to the one at the periphery respectively.
The background, which overlaps the tube at the periphery, contained, in its non overlapping
part, a Gaussian noise (sd = 0.2), see Figure 6. Thus, four pure signals and four mixed signals
were present. To be realistic, we also added everywhere a Gaussian noise (sd = 0.1).

These simulated data were obtained using the following R code:

R> source("simul3.R")

R> set.seed(1)

R> simulSinusoid()

Here, three files are created: originalSignal.txt, mask.nii and simulSinusoid.nii.

Before going any further, it is convenient to think about a sinusoid waveform, which is de-
terministic in nature, as a sequence of different realizations of the same random variable
X = sin(2πUf + φ), where U is a continuous uniform random variable or, even better in the
present case, a discrete uniform random variable on the sampled points. Note that, with stan-
dard algorithms, blind source separation is not concerned with the sequencing of the input
signals. Indeed, changing the time ordering in which the mixtures are presented at the input
leads to the same source separation (with the corresponding change in time indexing). This
comment also applies to the two previous simulations. Note also that sinusoids with the same
frequency but presenting different phases are in fact not independent. For example, correla-
tion, which is a normalized version of the covariance, is not zero except for sinusoids with phase
difference of π/2. Indeed, let X = sin(2πUf + φ1) and Y = sin(2πUf + φ2) be two random
variables, where U is a discrete uniform random variable with support {a, a+1, . . . , b− 1, b},
i.e. with characteristic function ϕU(t) =

eiat

n

∑n−1
k=0 e

ikt where n = b− a+1. We computed an
explicit expression for the covariance Cov(X,Y) = E(XY) − E(X)E(Y) between X and Y by
showing that

E(X) = Im

[
eiφ1

eia2πf

n

n−1∑

k=0

eik2πf

]
=

1

n

n−1∑

k=0

sin (φ1 + 2πf(a+ k))

and

E(XY) =
1

2

[
cos(φ1 − φ2)−

1

n

n−1∑

k=0

cos (φ1 + φ2 + 4πf(a+ k))

]
.
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We plotted Cov(X,Y) as a function of φ1 − φ2. It is not null but for π/2.

We then applied temporal and spatial ICA to these simulated data, using the following R

code. For tICA with automatic choice of the number of components:

R> set.seed(1)

R> f.icast.fmri.gui()

Select simulSinusoid.nii with maskfile mask.nii, then select Temporal ICA and click on
the Start button. For sICA with automatic choice of the number of components:

set.seed(1)

f.icast.fmri.gui()

Select simulSinusoid.nii with maskfile mask.nii, then select Spatial ICA and click on
the Start button.

At this point, two pairs of files were created, namely:

• simulSinusoid_ICAt.nii and simulSinusoid-ICAt-time-series.dat,

• simulSinusoid_ICAs.nii and simulSinusoid-ICAs-time-series.dat.

Now, the R instructions needed to perform the remaining part of the analysis are provided
in the file simul3-analysis.R whose content can be copied and pasted line by line in the R

console, or which can eventually be sourced.

Three components were extracted for tICA as well as for sICA. As expected, temporal ICA
extracted two components corresponding to sinusoids with phase difference of π/2. Spatial
ICA does not impose any (independence) constraints on the extracted time courses. This is
reflected in the results obtained for sICA.

4.2. Real data sets

We conducted two types of evaluation using real data sets coming from retinotopic mapping
and color center mapping experiments. These data were part of a cognitive study investigating
which color sensitive areas are specially involved with colors induced by synesthesia (Hupé
et al. 2011). The real data sets used are provided as supplementary material.

Experiment 1: Retinotopy mapping

Retinotopic mapping of human visual cortex using fMRI is a well established method (Sereno
et al. 1995; Warnking et al. 2002) that allows to properly delineate low visual areas. It
uses four separate experiments with 4 periodic stimuli (an expanding/contracting ring and
a rotating counter or anti-counter clockwise wedge) to measure respectively eccentricity and
polar angle maps. For this study, we only used functional MRI data corresponding to the
expanding ring experiment (240 volumes acquired each 2 seconds). The periodic visual stim-
ulus expanded from 0.2 to 3 degrees in the visual field during 32 seconds and was repeated
fifteen times. This periodic stimulation generated a wave of activation in the retinotopic
visual areas (Engel et al. 1994), located in the occipital lobe, at the frequency of 1/32 Hz
measured at a discrete temporal sampling of 2 seconds (equivalent to 1/16 temporal bins).
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f = 1/16 Hz

f = 1/16 Hz f = 1/16 Hz

f = 1/16 Hz f = 1/16 Hz

Figure 7: Time course of the components detected using temporal ICA (left) and spatial
ICA (right). For tICA, the phase difference between components 3 and 2 is π/2. The first
component (top left) represents a noise signal. For sICA, the phase difference between the
temporal signal of source 1 and, respectively, the time courses of components 1, 2 and 3 are:
1.037, 3.377 and 2.385. ICA cannot recover the sign of the sources, so the phases of extracted
sinusoidal signals are only defined modulo π. Each component was normalized.

With such a periodic stimulation paradigm, there are per se no specific advantages in using
ICA over Fourier analysis. Phase encoded paradigm is used in our paper as a paradigmatic
example to test the capabilities of our framework to detect known spatial and temporal com-
ponents. After IC analysis of these functional data, using our R function f.icast.fmri()

on the files Retino4D.nii and RetinoMask.nii, 18 and 13 components were automatically
extracted respectively with tICA and sICA. In this experiment, we searched for components
corresponding to cortical activation at the frequency of the visual stimulation. tICA and sICA
extracted more (noisy) components than the ones specific to the stimulus. Indeed, the main
problem with fMRI data is that each activated voxel of each volume contains a mixture of
the signal of interest (BOLD effect) with several confound signals with several origins: ocular
movement, heart rate, respiratory cycle, or head movement. Figure 8 shows the temporal
and spatial components at the frequency of the visual stimulation corresponding to the cor-
tical activation of interest. The computed phases are (approximatively) respectively equal to
2.90, -2.99 and 1.42 for tICA (green, red and blue components) and -2.44 and 2.03 for sICA
(green and red components). These results can be obtained with the R code given in the file
retino-analysis.R within the supplementary file realDataProgs.zip. Figure 8 displays on
the corresponding anatomical image, the cortical localization of these extracted components.
This was obtained with the MRIcron software (Rorden 2011). For tICA and for each tem-
poral component, this was obtained by selecting in the associated column of the estimated
mixing matrix (see Equation 4) the most active voxels, defined arbitrarily (see Beckmann and
Smith 2004 for another approach) as those with a value above the 95% quantile (in absolute
value). For sICA, we also thresholded arbitrarily each component at the 95% quantile. Based
on the retinotopy property of the visual system, the expanding ring generates a cortical ac-
tivation wave moving from the posterior part to the anterior part of the occipital lobe. As
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Figure 8: Time course of extracted components and their spatial localization. Left: extracted
components using tICA. The phases of these components are found to be (approximatively)
2.90, -2.99 and 1.42 for green, red and blue components respectively. Right: extracted com-
ponents using sICA. The phases of these components are found to be (approximatively) -2.44
and 2.03 for green and red components respectively. On the anatomical MR scan (sagittal
view) is indicated the localization of the most activated voxels for each component displayed
with the corresponding color. The sequencing of the activated voxels follows the retinotopic
property of the visual system: the periodic visual stimulation, an expanding ring, generates
a periodic cortical activation moving from the posterior to the anterior part of the occipital
lobe.

vs

Figure 9: Color center mapping. Left: Visual stimulation alternated blocks presenting chro-
matic and achromatic version of Mondrian like patterns. Middle: Component at the frequency
of the stimulation of the visual system extracted using temporal ICA. Right: Component at
the frequency of the stimulation of the visual system extracted using spatial ICA.

indicated in Figure 8 the computed phases of the extracted components increase as expected
from the posterior to the anterior part of the occipital lobe.

Experiment 2: Color center mapping

In this experiment, we presented to the subject two stimuli, a set of chromatic rectangles
(Mondrian like patterns) and the same patterns in an achromatic version (Figure 9). Each
chromatic and achromatic sets of rectangles were periodically presented during successive
blocks of 10 seconds. Our analysis was made on 120 functional volumes acquired each 2
seconds. Because we were only interested in visual areas, we used a mask to select only the
occipital part of each volume. Using our R function f.icast.fmri() on the files Mond4D.nii
and MondMask.nii, 21 and 20 components were automatically extracted with tICA and sICA
respectively. As shown in Figure 9, we found both with tICA and sICA one periodic compo-
nent at the frequency of the stimulus. These results can be obtained with the R code given
in the file mondrian-analysis.R within the supplementary file realDataProgs.zip.

As shown in Figure 10, obtained with the MRIcron software, the most activated voxels con-
taining the components extracted using temporal and spatial ICA were localized in a ventral
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Figure 10: Localization of the most active voxels for the extracted component at the stimulus
frequency using temporal (red) and spatial ICA (blue). Anatomical view: Left: sagittal;
Middle: Coronal; Right: Transverse. There is a strong overlap between clusters corresponding
to temporal and spatial analysis with a more accurate localization for the latter.

cortical part commonly called V4, V4H or V8 in Humans and known to be sensitive to color
perception, see Wade et al. (2002).

5. Discussion

As an alternative to the standard model-driven approach (GLM), where the time course of the
stimulus pattern is convolved with a hemodynamic response function and used as a predictor
to detect brain activation, data-driven approaches such as ICA can reveal brain activation
patterns with a good temporally and spatially accuracy or to extract noise components from
the data, see McKeown et al. (2006). The strength of ICA is its ability to reveal hidden spatio-
temporal structure when the definition of a specified a priori model is problematic. Since its
first application to fMRI data analysis (McKeown et al. 1998), ICA have been used in various
brain function studies. For example, ICA was successfully applied to investigate the cortical
networks related to natural multimodal stimulation (Malinen et al. 2007) or natural viewing
conditions (Bartels and Zeki 2004); situations in which activity is present in various brain sites
and no a priori knowledge about the spatial location or about the activity waveforms were
available. In Bartels and Zeki (2004), sICA allowed to segregate a multitude of functionally
specialized cortical and subcortical regions because they exhibit specific differences in the
activity time course of the voxels belonging to them. In Seifritz et al. (2002), tICA revealed
un-predicted and un-modeled responses in the auditory system. Following Calhoun et al.
(2001) or Malinen et al. (2007), GLM-derived activations are spatially less extensive and
comprised only sub-areas of the ICA detected activations.

A number of ICA approaches have been proposed for fMRI data analysis. A comparison
of some algorithms for fMRI analysis can be found in Correa et al. (2007). There are two
largely used MATLAB toolboxes, GIFT (Rachakonda et al. 2010) implementing the FastICA
algorithm (Hyvärinen 1999), which maximizes the non-gaussianity of estimated sources and
JADE, which relies on a joint approximate diagonalization of eigenmatrices (Cardoso and
Souloumiac 1993). Probabilistic ICA (PICA) is embedded in the FSL package (Beckmann
and Smith 2004), a library of tools for neuroimaging data analysis (http://www.fmrib.

http://www.fmrib.ox.ac.uk/fsl/
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ox.ac.uk/fsl/). In this paper, we propose a new version of the R package AnalyzeFMRI

including temporal and spatial IC analysis. We reused, with some memory improvements,
the implementation of the FastICA algorithm proposed in the R package fastICA. Essentially
for tractability considerations, spatial ICA is generally used in the context of neuroimaging.
However, the temporal independence of sources can be supposed in some applications. In
this case, only a small part of the brain is considered, see Calhoun et al. (2001); Seifritz
et al. (2002). We have shown using a classical linear algebra result that temporal ICA can be
tractable on large fMRI data sets. We have proposed an automatic selection of the extracted
components by thresholding the eignevalues of the correlation matrix above 1 (rule known as
the Kaiser’s rule, see Jolliffe 1986, p. 95). More sophisticated strategies such as probabilistic
ICA could be envisaged. Based on simulated data and real functional data sets, we have
demonstrated the applicability of the package proposed for spatial and temporal ICA. As we
have seen with the traveling wave case, sinusoids with the same frequency but presenting
different phases are not independent and then can not be extracted using ICA. A possible
solution to this problem would be to use a least square approach by imposing a strong a priori
on the sources: the i-th source is Si(t) = sin(2πUtf + φi) where the frequency f is supposed
to be known. We then search estimated sources Y1, ..., Ym under this specific form that can
be written as a linear combination of the observed signals: Yi = ai1X1(t) + ai2X2(t) + . . . +
aimXm(t), t = 1, . . . , n. The least square problem to optimize (numerically) is then

n∑

t=1

(sin(2πUtf + φi)− ai1X1(t)− ai2X2(t)− . . .− aimXm(t))2 , i = 1, . . . ,m.

Note that we could also differentiate with respect to the φi’s and the aij ’s to simplify the
computation.

Several extensions should be inserted in the future. In order to select the more informative
components we used a simple thresholding procedure. More refined strategies could be used
such as this recently proposed in Varoquaux et al. (2010a). The package should be extended
for dealing with group studies. Indeed, ICA generates a large number of components for each
subject and obviously larger for a cohort of subjects. Several methods have been proposed for
dealing specifically with group studies (Svensen et al. 2002; Esposito et al. 2005; Varoquaux
et al. 2010b) and to facilitate the identification of components which are spurious or repro-
ducible, see Himberg et al. (2004), Cordes and Nandy (2007), Ylipaavalniemi and Vigario
(2008) and Wang and Peterson (2008). The sorting of relevant components can be performed
using several indexes such as correlation coefficient with a reference function (Hu et al. 2005)
or power spectrum (Moritz et al. 2003). A possible improvement would be to use a more
general measure of dependence as the one provided in Beran et al. (2007).

6. Conclusion

To resume, ICA is a powerful data-driven technique that allows neuroscientists to explore
the intrinsic structure of data and alleviate the need for explicit a priori about the neural
responses. We propose with the TS-ICA extension to the R package AnalyzeFMRI a robust
tool for the application both of spatial and temporal ICA to fMRI data.

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
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