
HAL Id: inserm-00656227
https://inserm.hal.science/inserm-00656227

Submitted on 3 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian Image Restoration Using A Large-scale Total
Patch Variation Prior

Yang Chen, Weimin Yu, Yinsheng Li, Zhou Yang, Limin Luo, Wufan Chen

To cite this version:
Yang Chen, Weimin Yu, Yinsheng Li, Zhou Yang, Limin Luo, et al.. Bayesian Image Restoration
Using A Large-scale Total Patch Variation Prior. Mathematical Problems in Engineering, 2011, 2011,
pp.Article ID 408241. �10.1155/2011/408241�. �inserm-00656227�

https://inserm.hal.science/inserm-00656227
https://hal.archives-ouvertes.fr


Bayesian Image Restoration Using A
Large-scale Total Patch Variation Prior

Yang Chen 123(chenyang20071979@hotmail.com),Weimin
Yu1(w.m.yuser@gmail.com), Yinsheng Li1(lyswt007@126.com), Zhou
Yang 1(yz198804@sina.com), Limin Luo* 123 (luo.list@seu.edu.cn),

Wufan Chen4(chenwf@fimmu.com)
1, the Laboratory of Image Science and Technology, Southeast University, Nanjing, China; 2,

Centre de Recherche en Information Biomedicale Sino-Francais (LIA CRIBs), Rennes,
F-35000, France; 3, Laboratoire Traitement du Signal et de lImage (LTSI) INSERM U642,
Universite de Rennes I, Campus de Beaulieu, 263 Avenue du General Leclerc, CS 74205,
35042 Rennes Cedex, France; 4, the School of Biomedical Engineering, Southern Medical

University, Guangzhou,China;

Abstract: Edge-preserving Bayesian restorations using nonquadratic
priors are often inefficient in restoring continuous variations and tend to
produce block artifacts around edges in ill-posed inverse image restorations.
To overcome this, we have proposed a spatial adaptive (SA) prior with
improved performance in [21]. However, such SA prior restoration suffers
from high computational cost and the unguaranteed convergence. Con-
cerning these issues, this paper proposes a Large-scale Total Patch Variation
(LS-TPV) Prior model for Bayesian image restorations. In this model,
the prior for each pixel is defined as a singleton conditional probability,
which is in a mixture prior form of one patch similarity prior and one
weight entropy prior. A joint MAP estimation is thus built to ensure the
iteration monotonicity. The intensive calculation of patch distances is
greatly alleviated by the parallelization of Compute Unified Device Archi-
tecture(CUDA). Experiments with both simulated and real data validate the
good performance of the proposed restoration.
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1. Introduction

Image restorations have wide applications in remote sensing, radar imaging, tomographic imag-
ing, microscopic imaging, astronomic imaging, digital photography, etc [1-4]. For linear and
shift invariant imaging systems, the transformation from f to g is well described by the follow-
ing additive linear degradation model [3,4]:

g= A∗ f +  (1)

where g, f and  represent the degraded observed image, the original true image and the cor-
rupting white Gaussian noise with variance 2, respectively. A is the PSF (Point Spread func-
tion) of the imaging system and ∗ is the linear convolution operator. Throughout this paper, we
assume that the PSF A is known or could be numerically determined or estimated.

Bayesian or Maximum a posteriori (MAP) approach, within Markov Random Fields (MRFs)
framework, can provide a stable solution of the ill-posed inverse image restorations through



incorporating a priori information about the geometrical properties of an image [3-8]. Via mod-
elling the unknown parameters in the prior probability density functions, prior information can
also be interpreted as the regularization metrics, which measures the extent to which the con-
textual constraint assumption is violated. With the incorporated prior information, Bayesian
approach is able to distinguish solutions from less desirable ones by transforming the origi-
nal ill-posed problem into a well-posed one. Generally, we can build the following posterior
probability P( f |g) for image restorations.

P( f |g)  P(g| f )P( f ) (2)

P(g| f ) = exp( L(g, f )) = exp

(
−1
2
‖g−A∗ f‖2

)
(3)

P( f ) = Z−1× exp(−U ( f )) = Z−1× exp
(
− j

Uj ( f )
)

(4)

Here, P(g| f ) and P( f ) denote the likelihood distribution and the prior distribution, respectively.
L(g, f ) and U( f ) denote the corresponding likelihood energy and the prior energy function.
Uj ( f ) is the notation of the energy functionU evaluated at pixel index j. The partition function
Z is a normalizing constant.  is the global parameter controlling the balance between the like-
lihood energy and the prior energy.We can build the posterior energy function in the logarithm
form:

 ( f ) = logP( f |g) = L(g, f )−U( f ) =−1
2
‖g−A∗ f‖2− j

Uj ( f ) (5)

The restored or deconvolved image f can be obtained throughmaximization of function ( f ).
The widely used quadratic membrane (QM) prior or the Tikhonov L2 regularization tend to

smooth both noise and edge details, and often lead to unfavorable oversmoothing in restorations
[5]. On the other side, some edge-preservingBayesian restoration methods have been proposed,
which can be classified into three main categories: wavelet relevant regularization restorations,
Bayesian restorations with nonquadratic prior energies and Bayesian restorations with total
variation(TV) prior. Wavelet relevant regularization restorations, with multi-scale stochastic
prior models, have been proposed in the research of edge-preserving restorations [8-11]. In [10],
priors based on wavelet decompositions and heavy-tailed pdfs were incorporated into the EM
restoration algorithm. In [11], R. Neelamani et al. proposed a Fourier-Wavelet hybrid restora-
tion, which exploits the potentials of the sparse representation of noise for Fourier transform
and the sparse representation of the coefficients in wavelet transform. All these wavelet regu-
larization methods are based on the distribution modeling and thresholding of the decomposed
wavelet coefficients [11]. Edge-preserving priors with nonquadratic energies were also pro-
posed to preserve the edge details by using nonlinear inverse-proportional functions between
edge existences and intensity differences [5,12,13]. The weighting matrices in nonquadratic
prior Bayesian restorations preserve the edges by turning off or suppressing smoothing at ap-
propriate locations. Another impressive research direction in this area is the total variation (TV)
based image restorations [7,14,15]. This kind of approach can also be viewed as TV priors with
the half-quadratic regularization prior energies. With no enforced global image continuity, TV
prior restorations often demonstrate good property of edge-preserving.

The nonquadratic priors preserve the edges by determining the pixel-wise regularizations
based on the intensity-difference information within local fixed neighborhoods. The regular-
izations on TV priors also come from the information of the local intensity gradients. For all
these nonquadratic and TV priors, the local information of intensity difference can by no means
provide effective regularizations to discriminate noise from image textures in different scales.



So these edge-preserving approaches often fail to cope well with some complicated restorations
with high noise contaminations, and tend to produce block artifacts around the continuous edges
in those situations [16-21].

Objects in the images are reasonably assumed to be a composition of edges and backgrounds
with intensities changing coherently over different scales. Thus, for the traditional prior model,
the intensity differences between individual pixels within local neighborhoods are often insuf-
ficient to characterize objects [19-20]. This limit elicited our previous work in [21] which in-
troduced a spatial adaptive (SA) prior restoration approach. This SA prior works by adaptively
including the relevant neighboring pixels and excluding the negative irrelevant ones within a
large neighborhood. Though showing expressive results, the iterative restoration in [21] updates
the prior weight using the latest image estimate in a One Step Late (OSL) way, which leads to
inconsistent posterior energy function and non-convergent iterations. In addition, the approach
in [21] is greatly limited by the high computational cost in calculating all the patch distances
for all the pixel pairs in each prior neighborhood. In this article, to overcome the first problem,
we applied a Large-scale Total Patch Variation (LS-TPV) Prior model, which is built through
the specification of the conditional probability for each pixel [22-25]. The joint maximization
estimation of this constrained entropy function will lead to convergent image/weight restora-
tions. To overcome the second problem, we introduce the parallel computation structure of
CUDA to calculate the patch distances [26-28]. Furthermore, another benefit from the CUDA-
accelerated parallelization is that it allows further performance enhancement for the LS-TPV
prior restoration by using larger search neighborhoods.

In section 2, a review of some previous prior models is illustrated, and after that we introduce
the proposed LS-TPV prior model. In section 3, we give a joint estimation algorithm for the
proposed restoration. In section 4, we perform comparative experiments with both simulated
and real data. Relevant visual/quantitative results are also presented. Conclusion and discussion
are given in section 5.

2. Prior Model

Conventionally, the value ofUj ( f ) is commonly computed through a weighted sum of potential
functions v of the differences between the pixels in the neighborhoodNj:

Uj ( f ) = 
b∈Nj

wb jv( fb− f j) (6)

Generally, different choices of the potential function v lead to different priors. For the sim-
ple space-invariant QM prior, the potential function has the form v(t) = t2/2. Some Edge-
preserving nonquadratic priors could be chosen by adopting a nonquadratic potential function
v, such as the Huber potential function:

v(t) =

{
t2
/
2, |t| ≤ 

 |t|− 2
/
2, |t|>  (7)

where  is the threshold parameter [5,13]. Such edge-preserving nonquadratic priors preserve
structure information by choosing nonquadratic potential functions that increase less as the
differences between the adjacent pixels become bigger. Weight wb j is a positive value that de-
notes the interaction degree between pixel b and pixel j. In traditional prior models, it is simply
considered to be inversely proportional to the distance between pixels b and j. So on a square
lattice of image f , in which the 2D positions of pixels b and j (b �= j) are respectively (bx,by)

and ( jx, jy), wb j is usually calculated by the geometric distance 1

/√
(bx− jx)

2+(by− jy)
2.



Restorations using Total Variation (TV) prior take the prior energy as the following expres-
sion:

UTV ( f ) =
j

√(
h
j f
)2

+
(
v
j f
)2

(8)

where h
j and v

j are linear operators corresponding to the first-order horizontal and vertical
intensity differences at pixel j, respectively [7,14-15]. Since both the smooth and sharp edges
tend to have similar prior energies, this TV prior energy given by (8) does not penalize weak
discontinuities, and often favors images with bounded variations.

Traditional quadratic priors, nonquadratic priors and TV prior only provide local intensity
information for Bayesian restorations. And the edge-preserving nonquadratic and TV priors,
though being able to preserve edge information, tend to produce unfavorable block artifacts or
false edges in high noise situations.

To improve restoration quality, in [21] we proposed a Spatial Adaptive (SA) prior model, in
which a spatial adaptive prior neighborhood is implemented by setting the weight wb j to an 1-0
binary function to classify the pixels in neighborhood N into the pixels relevant to the center
pixel j and those not. The building of the SA prior can be formalized as follows:

USA ( f ) =
j

Uj ( f ) =
j

b∈Nj

(
wb j ( fb− f j)

2
/∣∣Nrj∣∣

)
(9)

wb j =

{
1 |nb( f )− n j( f )|2 <= 
0 |nb( f )− n j( f )|2 >  (10)

|nb( f )− n j( f )|2 =
l

(
fl∈nb − fl∈n j

)2
(11)

Here, USA is the energy function for the SA prior. wb j, which represents the classification of
the neighboring pixels in the search neighborhoodNj, and can be computed via equations (10)-
(11).

∣∣Nrj∣∣, the number of the neighboring pixels with nonzero wb j in the neighborhood Nj, is
the normalization factor for the different sizes of non-1 neighboring pixels in each Nj . Param-
eter  in (10) is the threshold parameter. The distance |nb( f )− n j( f )|2 is determined by the
distance measure (11) between the two translated comparing patches nb and n j, whose centers
are respectively located at pixel b and pixel j.

Though proved to be effective in suppressing both noise and block artifacts, all the weights
w in SA prior need to be heuristically inferred using current image estimate in the way of one
step late (OSL), which often leads to inconsistent posterior energy function with no guaranteed
convergence [8]. To overcome this problem, in this paper we proposed a LS-TPV priormodel, in
which regularization takes effect through penalizing the weighted distances/variations between
the patches surrounding each neighboring pixel pair. The weights w in each N are considered
variables with a nonlinear dependence on image f . For the central pixel j and its neighboring
pixel b in each prior neighborhood Nj, wb j is considered the similarity probability between the
two patches nb and n j surrounding pixels b and j, respectively [24]. A entropy prior of all the
weights wb j for each Nj is introduced into our model in the form of -

j


b∈Nj

wb j lnwb j. Here as

the ”Frame” model in [25], the constraint is 
b∈Nj

wb j = 1. Then, based on joint MAP theorem

[12], we can obtain

P( f ,w, |g)  P(g| f )P( f |w,)P(w,) (12)



Here,  is the introduced pixel-wise Lagrange-multiplier parameter. For each pixel j, with f̂ de-
noting the current image estimate, the prior energyULS−TPV ( f j,w, | f̂ ) of the LS-TPV prior is
in the combined form of a weighted patch similarity energy, a entropy energy -

j


b∈Nj

wb j lnwb j

and a normalization constraint 
b∈Nj

wb j = 1. We thus can thus obtain the following posterior

energy function:

 ( f ,w, |g) = logP(g| f )+ logP( f |w,)+ logP(w,) = L(g, f )− (
j

ULS−TPV ( f j,w, | f̂ ))

=−1
2
||g−A∗ f ||2−

j

(( 
b∈Nj

wb jdb j+ h 
b∈Nj

wb j lnwb j)+ j( 
b∈Nj

wb j− 1)) (13)

Here, as (4),  is the global parameter controlling the balance between the likelihood energy
and the prior energy. The patch distance db j is calculated as ||G ∗nb−G ∗n j||2, in which G
denotes the Gaussian convolution kernel with standard deviation .  j is the value of Lagrange-
multiplier parameter at pixel j. The parameter h controls the maximum entropy constraint onw,
which is routinely modulated with respect to the noise levels (large h is routinely set to suppress
more noise for high noise situations).

3. Restoration Algorithm

To obtain tractable maximization of the posterior probability using the proposed LS-TPV prior
energyULS−TPV in (13), we use the algorithm of Iterative Coordinate Descent (ICD), in which
each element is sequentially updated by maximizing the log-style local conditional probability
function [29]. In this way the objective image f and the weight w are jointly estimated through
alternative maximization of the  ( f ,w, |g) with respect to f and w:

1) argmaxw−ULS−TPV (w, | f̂ ):
f̂ denotes the fixed current image estimation, and each weightwb j for each pixel j is updated

by solving the following singleton optimization problem:

argmax
wb j

(− 
b∈Nj

wb j ||G ∗ nb−G ∗ n j||2− h 
b∈Nj

wb j lnwb j− j( 
b∈Nj

wb j− 1)) (14)

With Lagrange multiplier  j introduced, by joint solving (14) with respect to each wb j and
 j, we can then obtain wb j:

wb j =
exp(−‖G∗nb−G∗n j‖2/h)


b′∈Nj

exp(−‖G∗nb′−G∗n j‖2/h) (15)

where,
∥∥G ∗ nb−G ∗ n j

∥∥2 can be easily calculated using currently available f̂ . Each wb j is
determined not only by the similarity metrics between patches nb and n j, but also by the sum
of all the similarity metrics between patches with the central pixels located in Nj . So wb j is
different from wjb.

2) argmax f  ( f , ŵ, ̂ |g):
Here ŵ denotes the fixed current weight estimate. Omitting the terms with no f , the

 ( f , ŵ|g) becomes



 ( f , ŵ|g) = L(g, f )−
j
( 
b∈Nj

ŵb j||G ∗ nb−G ∗ n j||2)) (16)

To make a tractable maximization of (13), based on the theories of pseudo-likelihood and
Iterated Conditional Mode (ICM) in [29] and [32], we can restore each f j by solving the fol-
lowing factorized problem:

argmax
f j

 ( f j , ŵb j|g, f̂ )⇒ argmax
f j

L( f ,g)− (
b∈Nj

ŵb j||G ∗ nb−G ∗ n j||2)) (17)

Considering the convexity for ||g−A∗ f ||2 and ||G ∗nb−G ∗n j||2, we conclude that, given
the fixed weight ŵ, the Hessian matrix of each  ( f j , ŵb j|g, f̂ ) in (17) is a negative definite. In
this step of image updating, we applied the restoration algorithm in [4] to solve (17) to obtain
the image estimate of each pixel f j. The  ( f ,w, |g) in (13) is separately convex with respect
to each f and w. Denoting f̂ n, ŵn and f̂ n+1, ŵn+1 as the nth and n+ 1th iterated estimates, we
can obtain following relation:  ( f̂

n+1, ŵn+1|g)>=  ( f̂
n, ŵn+1|g)>=  ( f̂

n, ŵn|g), which
implies convergence to one local maximum can be obtained for this joint updating strategy [30].

In each iteration in the proposed restoration, it is very expensive to perform the pixel-wise
calculations of all the db j and wb j for each pair of translated patches n in each N over the
whole image region. In the experiments, to save computation cost, we do not extend the sizes
of N over the whole image region, and set them to some appropriate sizes. We achieve sig-
nificant acceleration by using parallel Compute Unified Device Architecture(CUDA) [26-28].
For each iteration in the restoration using the proposed LS-TPV prior model, all threads in this
block-grid structure execute simultaneously to perform all the involved pixel-wise operations.
Furthermore, considering the symmetry property that distance db j equals to distance d jb, we
can further save one half computation cost by only calculating one of the two distances db j and
d jb.

4. EXPERIMENTS

Both simulated and real data are used in the experiments. To provide comparative results, we
also performed Wiener deconvolution, ForWaRD restoration, Bayesian restoration using TV
prior, Huber prior and the SA prior in [21]. The Wiener deconvolution was performed by using
the degraded image to estimate the power spectrum in Fourier domain. The TWIST algorithm
in [7] and Newton-Raphson algorithm in [12] are used in the restorations using TV prior and
Huber prior, respectively. Restored images from above Wiener filter method are taken as the
initial images for all the Bayesian restorations. In experiment, the parameters needed to be
preset include the  for all Bayesian restorations, the threshold  for Huber prior, the wavelet
threshold and decomposition level in the ForWaRDmethod, the  for the SA prior, the h and the
n andN settings for the proposed LS-TPV prior. In the simulation experiment, all the parameters
are set based on SNR maximization criteria with SNR calculated as:

SNR= 10log10

⎛
⎜⎜⎜⎝

M

j
(Fj− F̄)2

M

j

(
Fj− f̂ j

)2

⎞
⎟⎟⎟⎠ (18)

Here M, f̂ , F , and F̄ denote the total pixel number in image, the restored image, the original
true image and the mean of the original true image, respectively. As to the real data experiment,



which has no available true image for SNR calculations, all the parameters are set based on
the tradeoff between edge preservation and noise suppression. N and n of sizes (11×11 N and
7×7 n) is used in our work. A full study of the effects of the sizes of N and n on the resulting
restorations is performed in the below Section 4.5.

Generally, the solution to the restoration is considered optimized when the iteration goes
stable. So for the Bayesian restorations using TV prior, Huber prior and SA prior in which
the energy functions are maximized with respect only to image, we stop the iterations when
the current image estimate satisfy the condition:  ( f̂

n+1|g)- ( f̂
n|g) < 0.995(( f̂

n|g)-
 ( f̂

n−1|g)). For the restorations using the proposed LS-TPV prior in which the energy func-
tions are maximized with respect to both image and weights, we stop the iterations when the
current image and weight estimates satisfy the condition:  ( f̂

n+1, ŵn+1|g)- ( f̂
n, ŵn|g) <

0.995( ( f̂
n, ŵn|g)- ( f̂

n−1, ŵn−1|g)). In practical experiments, to reach above iteration con-
ditions, it is found that 411, 433, 475 and 486 iterations are required for the Bayesian restora-
tions using TV prior, Huber prior, SA prior and the proposed LS-TPV prior, respectively.

4.1. Simulation Experiment

In this section, simulated experiments with 256×256 ”Lena” image (intensity range [-98 117])
are performed. In the simulation, a uniform 9× 9 PSF is assumed, and Gaussian noise with
variance = 0.1663 is added. The PSF used in this experiment is normalized to 1. Fig. 1(b) is the
degraded image simulated by (1) using the PSF with the white Gaussian noise. The parameters
for different restorations are listed in Table 1. All the restored images are illustrated in Fig.
1(c)-(h), respectively.

Table 1. Parameter settings in simulated data experiment

TV prior Huber Prior ForWaRD SA prior LS-TPV prior
 = 0.0038  = 0.026, =

0.35
Threshold =
3.0, Levels= 3

 = 0.015, =
900, 7×7n,
11×11N

 =
0.075, = 0.5,
h= 150,7×7n,
11×11N

The restored images from TV prior restoration and Huber prior restoration are respectively
shown in Fig.1(d) and Fig. 1(e). Fig.1(f) shows the restored image using the ForWaRD method.
The result of Bayesian restoration using the SA prior is illustrated in Fig.1(g). For the Bayesian
restoration using the proposed LS-TPV prior, the algorithm in above Section 3 is used, and the
corresponding restored image is shown in Fig. 1(h).

Through the results, we find the ForWaRD method and all the Bayesian restorations (Fig.
1(d)-(h)) can overcome the ring effects in Wiener deconvolution (Fig. 1(c)). The block arti-
facts (the left arrows), which are observed in the ForWaRD approaches and the restorations
using Huber prior and TV prior, are effectively suppressed using the restorations using the SA
prior and the proposed LS-TPV prior. The LS-TPV prior (Fig. 1(h)) presents a further visual
enhancement over the SA prior (Fig. 1(g)) in block-suppressing (the left arrows) and edge-
preserving (the right arrows). Fig.2 plots the the profiles along one specified track (the red line
in the hair region in ”Lena” image in Fig.2) for different restorations, and we can see that the
profile from the proposed restoration (the blue profile) has the closest match with the profile of
the true ”Lena” image (the red profile) than those from other restorations. Table 2 shows that,
compared to other methods, the proposed LS-TPV prior restoration can lead to restored images
with a higher SNR.



 
(a) Original image                              (b) Degraded image  

            (c) Wiener restoration                            (d) TV prior restoration 

           (e) Huber prior restoration                       (f) ForWaRD restoration [11] 



(g)SA prior restoration [21]                      (h) LS-TPV prior restoration  

Fig. 1. (a), original ”Lena” image. (b), degraded ”Lena” image (SNR=6.65) with 9×9 uni-
form blur and additive white Gaussian noise (variance = 0.1663). (c), Wiener deconvolu-
tion. (d), TV prior Bayesian restoration. (e), nonquadratic Huber prior Bayesian restora-
tion. (f), the ForWaRD restoration in [11].(g), the SA prior Bayesian restoration pro-
posed in [21].(h), the proposed LS-TPV prior Bayesian restoration.(the left arrows: block-
suppressing illustration, the right arrows: edge-preserving illustration)

Table 2. Signal to noise ratio (SNR) of the observed degraded images and the restored
images in the simulated experiment with ”Lena” image

Degraded Wiener TV prior Huber Prior ForWaRD SA prior LS-TPV prior
6.65 15.06 15.54 15.59 15.50 15.84 16.02

4.2. Real Data Experiment

In this section, a real blurred astronomical 256× 256 ”moon” image with intensity range [-77
170] is obtained from ’http://www.iceinspace.com.au/ ’. Here we use a 5× 5 normalized Gaus-
sian PSF, which was tested to be effective. The parameters for different restoration approaches
are listed in Table 3.

Table 3. Parameter settings in real data experiment

TV prior Huber Prior ForWaRD SA prior LS-TPV prior
 = 0.059  = 0.045, =

0.45
Threshold =
3.5, Levels= 3

 = 0.032, =
700, 7×7n,
11×11N

 = 0.095,
 = 0.5,
h= 325,7×7n,
11×11N

Fig. 3(b) is the restored result from Wiener deconvolution. The restored images from TV
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Fig. 2. Profile illustrations of different Restorations

prior restoration and Huber prior restoration are respectively illustrated in Fig. 3(c) and Fig.
3(d). Fig. 3(e) and Fig. 3(f) show the restored images from the ForWaRD method and the
Bayesian restoration using SA prior. As to the Bayesian restoration using the LS-TPV prior,
the restored image is shown in Fig. 3(g). Also, we can note that the ForWaRD method and
all the Bayesian restorations (Fig. 3(c)-(g))are free of the ring effects in Wiener deconvolution
(Fig. 3(b)). Also, the block artifacts observed in the restorations using Huber prior and TV prior
are effectively suppressed in the restorations using SA prior and the LS-TPV prior(the lower red
arrows in Fig. 3(f) and (g)). The oversmoothing in the ForWaRD restoration can not be observed
in the restorations using the SA prior and the proposed LS-TPV prior (the upper arrows in Fig.
3(e), Fig. 3(f) and (g)). Compared to the restoration using the SA prior, the restoration using
the LS-TPV prior also shows a better visual performance in preserving edges (the upper arrows
in Fig. 3(f) and (g)).

4.3. Computation Cost Comparisons

Table 4 lists the recorded CPU times (in seconds) of different restorations for the experiments
with simulated data and real data, respectively. Please note that the notations simu and real in
Table 4 correspond to experiments with simulated data and real data, respectively. We can see
that the restorations using SA prior and the LS-TPV prior are much computationally intensive
than other methods. We define LS-TPV prior res1, LS-TPV prior res2 and LS-TPV prior res3



    
(a) Degraded image                           

           (b) Wiener restoration                              (c) TV prior restoration 

          (d) Huber prior restoration                         (e) ForWaRD restoration [11] 



(f)SA prior restoration [21]                       (g) LS-TPV prior restoration  

Fig. 3. (a), original degraded ”moon” image. (b), Wiener deconvolution. (c), TV prior
Bayesian restoration. (d), nonquadratic Huber prior Bayesian restoration. (e), the ForWaRD
restoration in [11].(f), the SA prior Bayesian restoration proposed in [21].(g), the proposed
LS-TPV prior Bayesian restoration.(the lower arrows: block-suppressing illustration, the
upper arrows: edge-preserving illustration)

as the original serial restorations, the restorations after optimization, and the restorations after
both optimization and parallelization. Table 4 show that, with respect to the the original serial
version, the proposed restorations after optimization are about 3 times faster, and the restora-
tions after both optimization and parallelization are about 50 times faster. But we can not claim
that the LS-TPV prior restoration needs less computation costs than other methods since that
we did not design the parallelized versions for them.

Table 4. CPU times (seconds) needed for different restorations for real data experiment.

Wiener filtering: simu : 58.16, real : 64.48 TV prior res: simu : 214.96, real : 228.92

Huber prior res: simu : 270.52, real : 292.36 ForWaRD res: simu : 2128.27, real : 2411.15

SA prior res: simu : 2128.27, real : 2382.43 LS-TPV prior res1:simu : 2885.61, real : 3058.07

LS-TPV prior res2: simu : 910.48, real : 954.48 LS-TPV prior res3: simu : 58.61, real : 64.45

4.4. Algorithm Monotonicity

Here, to analyze the monotonicity of the joint image/weight algorithm proposed in Section 3,
we calculated the posterior function energy ( f ,w, |g) and SNR with respect to the iteration
numbers for the proposed restorations. The total iteration number is set to 500. As illustrated
in Fig. 4, we can see that both the calculated posterior function energy and the SNR increase
monotonically during the whole iteration.
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Fig. 4. For the proposed restoration approach, the calculated SNR (left) and the posterior
function energy (right) with respect to iteration number (1-500 iterations)

4.5. Study on Neighborhood N and n of Different Sizes

To study the roles of the sizes of N and n in restorations, we perform restorations using the
proposed prior with N and n of different sizes in above simulation experiment with ”Lena”
image. To characterize local image structures , we do not set n larger than 7×7. Considering
the fact that the total pixel numbers are different for different comparing patches n (49 for 7×7
n, 9 for 3×3 n and 1 for 1×1 n), parameter h should also change with the restorations using
different patches n. The hyperparameter  and parameter h for the proposed prior are chosen
by hand to produce the best stable images in terms of SNR maximization. Combinations of N
and n with different sizes, and the corresponding computed SNR and the recorded CPU time
cost (with CUDA parallelization) are all listed in Table 5.

We can see that higher SNR can be obtained when enlarging N and n from 1×1 to 11×11
and 7×7. We also note in Table 5 that more CPU time is needed for the restorations using the
proposed prior with larger N and n. We should set the sizes of N and n based on the trade-off
between performance and computation cost. We find in Table 5 that no significantly quantita-
tive SNR differences are made between 11×11 N and larger 13×13 N. In fact,as the iteration
proceeds, more global information beyond the 11×11 N will be incorporated into the regular-
ization of the pixels.

Table 5. SNR and CPU time cost(seconds) for the simulation restorations using the pro-
posed method.

N and n SNR CPU times N and n SNR CPU times N and n SNR CPU times
(a),N3×3n1×1 15.48 17.98 sec (b),N3×3n3×3 15.65 28.59 sec (c),N3×3n7×7 15.79 53.69 sec
(d),N7×7n1×1 15.54 21.16 sec (e),N7×7n3×3 15.70 31.37 sec ( f ),N7×7n7×7 15.88 50.91 sec
(g),N11×11n1×1 15.55 24.59 sec (h),N11×11n3×3 15.72 38.42 sec (i),N11×11n7×7 16.02 58.61 sec
( j),N13×13n1×1 15.55 29.54 sec (k),N13×13n3×3 15.75 77.67 sec (l),N13×13n7×7 16.07 95.31 sec

5. Conclusions And Future Work Plan

In this article on image restoration, we proposed a LS-TPV prior which penalizes the total
distances between neighboring patches through a constrained mixture prior mode. A conver-



gent joint image/weight updating algorithm, which estimates image and weights sequentially, is
proposed to overcome the heuristical OSL weight determination for the SA prior restoration in
[21]. We can see that, in addition to providing effective regularization, the proposed approach
can lead to stable iteration with convergence guaranteed.

The application of the proposed prior model needs a pixel-wise computation of the dis-
tances between neighboring patches over a large region, which implies high computation cost
of restorations. In this paper, remarkable advance in shortening computation time is achieved
by optimizing patch distance computation and replacing the original pixel-wise calculation of
patch distances by CUDA framework.

Further work includes applying the proposed approach in blind image deconvolutions, fur-
ther justifying the proposed approach by using more image-quality measures based on human
visual system, and further accelerating the computation by parallelize the PSF convolution in
restorations.
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