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Abstract

Genome-wide association studies for complex traits are based on the common disease/common variant (CDCV)
and common disease/rare variant (CDRV) assumptions. Under the CDCV hypothesis, classical genome-wide
association studies using single-marker tests are powerful in detecting common susceptibility variants, but under
the CDRV hypothesis they are not as powerful. Several methods have been recently proposed to detect association
with multiple rare variants collectively in a functional unit such as a gene. In this paper, we compare the relative
performance of several of these methods on the Genetic Analysis Workshop 17 data. We evaluate these methods
using the unrelated individual and family data sets. Association was tested using 200 replicates for the quantitative
trait Q1. Although in these data the power to detect association is often low, our results show that collapsing
methods are promising tools. However, we faced the challenge of assessing the proper type I error to validate our
power comparisons. We observed that the type I error rate was not well controlled; however, we did not find a
general trend specific to each method. Each method can be conservative or nonconservative depending on the
studied gene. Our results also suggest that collapsing and the single-locus association approaches may not be
affected to the same extent by population stratification. This deserves further investigation.

Background
Classical genome-wide association studies have successfully
detected many common genetic variants that are associated
with complex traits. It is likely that low-frequency or
rare variants are also contributing to genetic risk [1]. The
statistical power to detect phenotypic association with such
variants is limited because of the small number of observa-
tions for any given variant and a more stringent multiple
test correction compared to common variants [2]. The
simultaneous analysis of rare variants aims to identify accu-
mulations of minor alleles within the same functional unit
(e.g., gene).
Several new methods have been recently proposed to

tackle the rare variant problem [2-6]. The principal dif-
ference between them lies in the way the information on
the multiple rare variants is used. Some methods use a

subset of variants that satisfy predefined selection criteria,
whereas other methods use all variants. The methods
also differ in the way in which the cumulative informa-
tion on minor alleles within a functional unit is coded.
Finally, multivariate collapsing approaches have also been
proposed. Most of these recent developments have been
applied to association analyses in data from unrelated
individuals. A new method has been recently developed
[4,6] that can be applied to both unrelated individual and
family data.
In this paper, we evaluate and compare the power of dif-

ferent collapsing methods for detecting association of mul-
tiple rare variants with a quantitative trait. We first focus
on the unrelated individuals data and then incorporate
some of these approaches within the general framework of
the mixed model for association analysis in the family data
set of Genetic Analysis Workshop 17 (GAW17). We tried
to answer the following questions: Does the use of a subset
of rare variants perform better than using all variants? Do
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the collapsing approaches perform similarly with unrelated
individual and family data sets? The analyses were per-
formed using the GAW17 data with knowledge of the
answers [7].

Methods
We studied the quantitative trait Q1 influenced by 39
variants in nine independent genes.

Statistical association analysis of rare variants
We carry out the association test at the gene level.
Assume that a gene G contains JG variants denoted SNPj,
j = 1, …, JG, and that MAFj is the minor allele frequency
of SNPj. Let Y = (y1, …, yN) be the observations of the
phenotype Q1 in N unrelated individuals, and let XiG be
the vector of genotypes of the SNPs in gene G for indivi-
dual i. The genotypes are coded 0, 1, or 2, depending on
the number of minor alleles.
Let Tmaf be a selection criterion on minor allele fre-

quency (MAF) values. The association methods we have
investigated vary according to a predefined Tmaf value (i.e.,
less than 1%, less than 5%, or less than 50%) and on the
number of collapsing groups. They are all based on a lin-
ear regression modeling the relationship between the trait
Y and the SNP data within a gene. We briefly review these
methods in this Methods section. More details are given
by Dering et al. [8].

Association testing in the unrelated individuals data set:
univariate collapsing approaches
The univariate collapsing approaches use only a subset of
variants that satisfy the constraint MAF ≤ Tmaf, where
Tmaf is a predefined selection value.
The first univariate collapsing approach is the collapsing

and summation test (CAST). Let XiG(maf) be the vector of
genotype scores of the SNPs with MAF <Tmaf, and let JG
(maf) be the length of the vector XiG(maf). The variable
C = CiG(maf) (i = 1, …, N) denotes the two collapsing stra-
tegies that we used: collapsing absence/presence (CA) and
collapsing proportion (CP). For the CA strategy:
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Equation (1) is based on the presence or absence of
the minor allele at any rare variant in gene G within an
individual [3]. Equation (2) is based on the proportion

of rare variants with MAF ≤ Tmaf at which an individual
i carries at least one copy of the minor allele [5]. The
model is Y = Cb + ε, where e s e~ ,N I0 2( ) and s2 is
the residual variance.
The effect of b can be tested with a likelihood ratio

test that follows a chi-square distribution with 1 degree
of freedom (df).
The second univariate collapsing method is the vari-

able-threshold (VT) approach [2], which uses the CP
approach to collapse rare SNPs with MAF <Tmaf but
maximizes the statistic according to Tmaf. All Tmaf

values observed in the gene G are considered. For each
Tmaf, a regression z-score is computed. Let zmax be the
maximum z-score across all Tmaf values. The test of
association is based on zmax, and its statistical signifi-
cance is evaluated empirically by permutation.
The last univariate collapsing method is the weighted-

sum (WS) approach [2], which is a generalization of the
binary trait weighted-sum approach proposed by Madsen
and Browning [4] for quantitative traits. Under this
approach, Tmaf = 0.5 (i.e., all variants in a gene G are
used). The collapsing variable C for subject i in the WS
approach is given by:
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For each gene G, a genetic score is calculated as:
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The significance of ZG is assessed empirically by
permutation.

Association testing in the unrelated individuals data set:
combined multivariate and collapsing approach
The combined multivariate and collapsing (CMC)
method originally proposed by Li and Leal [3] uses a
multiple regression model that contains the CA meth-
od’s collapsing variable of SNPs with MAF <Tmaf = 1%
and includes all k remaining SNPs, Xj1,…,k, individually.
The multivariate model (denoted here as CMC3) is:

Y Xj j

j

k

= − +
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Evidence of association (∃j, bj ≠ 0, j = 0, …, k) is
assessed with the likelihood ratio test, which follows a
chi-square distribution with (k + 1) df.
Using only the SNPs with MAF ≤ 5%, we extended this

model in two ways. In both extensions the multivariate
model contains the CA collapsing variable of SNPs with
MAF < 1%. In the first variation of this model (denoted
CMC1), the multivariate model also contains the CA col-
lapsing variable of the other SNPs (i.e., 1% ≤MAF ≤ 5%). In
contrast, in the second extension (denoted CMC2), the
other SNPs are included individually in the multivariate
model.
The CMC1 model is then written as:

Y = − + −b b0 10 1 1 5CA CA( %) ( %), (7)

and the test of association is a likelihood ratio test
with 2 df.
The CMC2 model is the same as Eq. (6), where k is

the number of SNPs and 1% ≤ MAF ≤ 5%. Evidence of
association is assessed with the likelihood ratio test with
(k + 1) df.

Association testing in the unrelated individuals data set:
single-marker test
For comparison purposes, we also carried out a single-locus
association test. For a gene G, association with each SNP
was tested using the likelihood ratio test. For each gene G,
we obtained JG likelihood ratio test statistics, each with 1 df.
The evidence of association at the gene level was based on
the maximum of the JG likelihood ratio test statistics.
Single-marker (SM) tests were conducted with PLINK,

version 1.07 [9]. The R.2.10.1 software was used for all col-
lapsing approaches except the VT and WS approaches.
For these two approaches we used the R script (http://
genetics.bwh.harvard.edu/vt/dokuwiki/) [2], and we set the
number of permutations to 1,000.

Association testing in the family data set
We used the measured genotype (MG) test [10], which is
a linear mixed model:

Y X ei i i= +b , (8)

where:

e N Ii i c~ , ,0 2 2 2Φ s s e+( ) (9)

s c
2 and s e

2 are the polygenic and the residual var-
iances, respectively, and Φ i is the kinship matrix in
family i. The SNP data in relatives were collapsed as
described under the CA, CP, and WS collapsing
approaches. In these three approaches, the test of asso-
ciation is a likelihood ratio test with 1 df. In addition,
we also carried out the bivariate CMC1 approach using

the likelihood ratio test with 2 df. We could not evaluate
the VT approach because it maximizes Tmaf. We carried
out the MG test using the QTDT software (http://www.
sph.umich.edu/csg/abecasis/QTDT/).

Type I error rate and power estimates
The empirical distribution of each association approach
was evaluated in unrelated individuals and in family data.
Type I error and power rates were estimated by testing
association of Q1 to each of the seven false causal genes
and each of the nine true causal genes, respectively, using
the 200 replicates. Type I error and power rates were
derived at a nominal level of a = 5%.
In the unrelated individuals data set, we evaluated asso-

ciation with Q1 using 10 approaches: CA1 and CA5 with
Tmaf = 1% and 5%, respectively; CP1 and CP5 with Tmaf =
1% and 5%, respectively; and VT, WS, CMC1, CMC2,
CMC3, and SM. For the WS and VT tests, we used
empirical P-values. For all remaining association tests we
used tabulated nominal P-values. In each replicate, we
tested for association of Q1 with each of the 16 genes
using each of the 10 approaches. For each gene and for
each association procedure we computed the proportion
of replicates having a P-value ≤ a. For the SM approach,
we applied a Bonferroni correction to account for the mul-
tiple tests; we computed the proportion of replicates such
that the lowest P-value out of the JG SNPs was less than or
equal to a/JG.
In the family data set, we evaluated similarly the follow-

ing five approaches: CA1 and CA5 with Tmaf = 1% and
5%, respectively; CP1 and CP5 with Tmaf = 1% and 5%,
respectively; and SM. We also evaluated the WS approach
but used the tabulated P-value derived from a chi-square
distribution with 1 df.

Results and discussion
The characteristics of the nine causal and seven noncausal
genes are shown in Table 1. The total number of SNPs
(causal and noncausal) per gene is given along with their
distributions by MAF category. The MAF for the causal
variants ranges from 0.07% to 16.5% in the 1000 Genomes
Project data (for unrelated individuals), and the number of
causal variants per gene varies from 1 (VEGFC, VEGFA) to
11 (FLT1). One causal gene (VEGFC) has one single SNP,
and thus only one association approach (SM) can be
applied. For the noncausal genes, the number of SNPs per
gene ranges from 6 (CTSS) to 83 (LY75), and, as for the
causal genes, most (>70%) of the SNPs are uncommon
(MAF < 5%).

Estimates of Type I error and power rates in the
unrelated individuals data set
Table 2 shows the type I error rates estimated at the
gene level of each association approach for the unrelated
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individuals data set. As can be seen, the type I error rate
is not well controlled no matter which association
approach is used: The rates can be higher or lower than
expected. For some genes, almost all association
approaches show inflated type I error rates (e.g., MAPT,
IFI44). Conversely, for some other genes (FOXI1, LY75),
the type I error rates of some approaches are inflated,
whereas the other approaches tend to be conservative.

Overall, the SM and CMC3 approaches appear to have
inflated type I errors more frequently. Interestingly, these
two approaches are the only ones that used the common
SNPs individually. Clearly, several SNPs in these
sequence data, including those in our noncausal genes,
have population-specific allele frequencies. Given that
the genotype data were not simulated, we hypothesize
that the inflated rates could be explained by the observed

Table 1 Characteristics of the studied genes

Chromosome Gene K MAF (%) V K (V) > 5% 5% >K (V) > 1% K (V) < 1%

Causal genes

1 ARNT 18 0.07; 43.11 5 1 (0) 2 (1) 15 (4)

1 ELAVL4 10 0.07; 43.11 2 2 (0) 1 (0) 7 (2)

13 FLT1 35 0.07; 29.05 1 3 (1) 7 (2) 25 (8)

5 FLT4 10 0.07; 2.08 2 0 (0) 2 (0) 8 (2)

14 HIF1A 8 0.07; 1.2 4 0 (0) 1 (1) 7 (3)

19 HIF3A 21 0.07; 38.52 3 4 (0) 2 (0) 15 (3)

4 KDR 16 0.07; 16.5 10 1 (1) 1 (1) 14 (8)

6 VEGFA 6 0.07; 2.37 1 0 (0) 1 (0) 5 (1)

4 VEGFC 1 0.07; 0.07 1 0 (0) 0 (0) 1 (1)

Noncausal genes

1 PTGFR 16 0.07; 1.69 0 0 3 13

1 IFI44 22 0.07; 11.33 0 1 1 20

1 FAM73A 10 0.07; 0.5 0 0 0 10

17 MAPT 27 0.07; 35.58 0 5 7 15

1 CTSS 6 0.07; 33.28 0 1 1 4

5 FOXI1 15 0.07; 37.30 0 2 0 12

2 LY75 83 0.07; 45.91 0 11 12 60

K, number of variants in gene; V, number of true causal variants in gene.

Table 2 Type I error rates at a = 5% by gene in the unrelated individuals data set

Gene SMa Tmaf = 0.01 Tmaf = 0.05 WS VT CMC1 CMC2 CMC3

CA CP CA CP

Unadjusted Q1

CTSS 0.020 0.005 0.005 0.030 0.040 0.055 0.020 0.020 0.020 0.030

FAM73A 0.020 0.035 0.035 n/a n/a 0.075 0.055 n/a n/a n/a

FOXI1 0.150 0.040 0.030 0.040 0.030 0.000 0.000 n/a n/a 0.110

PTGFR 0.040 0.020 0.025 0.025 0.025 0.010 0.080 0.035 0.040 n/a

IFI44 0.350 0.055 0.050 0.110 0.140 0.040 0.120 0.305 0.305 0.220

MAPT 0.175 0.100 0.200 0.610 0.350 0.555 0.390 0.130 0.110 0.115

LY75 0.075 0.010 0.005 0.015 0.030 0.020 0.010 0.065 0.075 0.155

Q1 adjusted for the top five principal components

CTSS 0.015 0.040 0.040 0.040 0.040 0.125 0.060 0.025 0.030 0.045

FAM73A 0.025 0.005 0.005 n/a n/a 0.020 0.020 n/a n/a n/a

FOXI1 0.040 0.020 0.030 0.020 0.030 0.000 0.000 n/a n/a 0.035

PTGFR 0.015 0.065 0.025 0.010 0.015 0.125 0.060 0.035 0.030 n/a

IFI44 0.075 0.030 0.025 0.010 0.015 0.010 0.015 0.020 0.020 0.000

MAPT 0.055 0.010 0.015 0.025 0.040 0.010 0.005 0.010 0.050 0.215

LY75 0.055 0.005 0.010 0.010 0.010 0.060 0.030 0.015 0.025 0.015

Estimates outside the 95% confidence interval are underlined. n/a, not applicable.
a Bonferroni-corrected P-value.
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differences in the mean of Q1 between the four popula-
tions (−0.059, −0.002, 0.021, and 0.072 in Africans, Chi-
nese, Japanese, and Europeans, respectively.
We recomputed the type I error accounting for possible

clusters. First, we ran a principal components (PC) analysis
with Eigenstrat [11] using the full mini-exome SNP data
excluding SNPs with MAF < 5%. In each replicate, we
computed the residual of Q1 obtained by regression of Q1
on the first five PCs. We reestimated the type I error levels
using the residual of Q1 as the phenotype. The last 10 col-
umns of Table 2 show the results. As can be seen, after
adjusting for the five PCs, only a few of the type I error
estimates remained higher than expected. In fact, most of
the estimates were lower than expected.
In conclusion, to estimate the power of these approaches

in the data sets, we used two strategies (Table 3): Power
was first computed at a theoretical level of 5%, although
the different approaches may not have comparable true
false-positive rates; second, power was computed account-
ing for the five PCs, that is, using the residuals of Q1. All
methods performed well for the KDR and FLT1 genes.
Conversely, all but two methods performed poorly (power
< 10%) for two genes: For ELAVL4 the power was greater
than 30% using the SM and CMC3 approaches, and for
HIF3A the power was greater than 17% for the CMC2 and
CMC3 approaches. For the remaining four genes, one of

the pooling methods outperformed the SM method after a
Bonferroni correction. In these data, the CA and CP
approaches had roughly similar power, and so, in what fol-
lows, the CP method will serve as a reference.
The choice of the threshold Tmaf seems to have a large

effect on power, and, in general, the power is higher when
the criteria are less stringent (Tmaf = 5% vs. 1%). Although
this is not surprising for genes with causal SNPs having
1% < MAF < 5% (ARNT, HIF1A), we made the same
observation for genes with all causal SNPs having a MAF
< 1% (FLT4 and VEGFA; see Table 1). This may suggest
that allele correlation within these genes exists among cau-
sal and noncausal rare variants. The VT approach, which
does not require a predefined choice on Tmaf, did not
appear to outperform the CP approach. On the other
hand, one of the univariate (WS) or multivariate (CMC3)
collapsing methods that uses all SNPs showed better
power than the CP method. This again may be explained
by allele correlation among SNPs. When adjusting for
population stratification, again, all approaches had the
greatest power for the FLT1 and KDR genes and the low-
est power for the ELAVL4 and HIF3A genes. Nonetheless,
most power estimates were lower, and the power drop was
noticeable, especially for the FLT4 and HIF1A genes. How-
ever, it is unclear whether this drop is fully explained by
the lower values of the adjusted false-positive rates.

Table 3 Power rates at a = 5% by gene in the unrelated individuals data set

Gene SMa Tmaf = 0.01 Tmaf = 0.05 WS VT CMC1 CMC2 CMC3

CA CP CA CP

Unadjusted Q1

ARNT 0.86 0.04 0.04 0.79 0.83 0.53 0.76 0.93 0.96 0.94

ELAVL4 0.31 0.05 0.05 0.05 0.05 0.00 0.06 0.07 0.07 0.41

FLT1 0.99 0.85 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FLT4 0.33 0.41 0.38 0.65 0.62 0.78 0.76 0.50 0.47 n/a

HIF1A 0.42 0.07 0.07 0.62 0.59 0.45 0.51 0.62 0.62 n/a

HIF3A 0.02 0.03 0.02 0.07 0.07 0.06 0.04 0.20 0.17 0.10

KDR 0.96 0.97 0.99 1.00 1.00 1.00 1.00 0.99 0.99 1.00

VEGFA 0.26 0.13 0.13 0.41 0.44 0.54 0.45 0.31 0.31 n/a

VEGFC 0.58 n/a n/a n/a n/a n/a n/a n/a n/a n/a

Q1 adjusted for the top five principal components

ARNT 0.44 0.05 0.05 0.49 0.05 0.37 0.44 0.56 0.67 0.60

ELAVL4 0.07 0.07 0.07 0.07 0.07 0.05 0.12 0.06 0.06 0.01

FLT1 1.00 0.67 0.80 0.98 1.00 1.00 1.00 0.99 1.00 1.00

FLT4 0.09 0.03 0.02 0.04 0.03 0.01 0.02 0.04 0.06 n/a

HIF1A 0.13 0.08 0.08 0.00 0.01 0.01 0.01 0.19 0.19 n/a

HIF3A 0.03 0.05 0.03 0.01 0.00 0.00 0.00 0.03 0.04 0.03

KDR 0.74 0.63 0.74 0.84 0.85 0.99 0.93 0.72 0.69 0.78

VEGFA 0.25 0.13 0.13 0.04 0.06 0.19 0.32 0.08 0.10 n/a

VEGFC 0.56 n/a n/a n/a n/a n/a n/a n/a n/a n/a

Estimates outside the 95% confidence interval are underlined. n/a, not applicable.
a Bonferroni-corrected P-value.
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Estimates of type I error and power rates in the family
data set
Table 4 shows the type I error and power rates estimated
at the gene level of each association approach for the
family data set. It also shows the number of SNPs, causal
and noncausal, that are polymorphic in the family samples.
Type I error rates appeared to be better controlled in the
family data than in the unrelated individuals data set with
a few exceptions, especially the MAPT gene, for which
most type I errors were biased upward. This gene is
located in a genomic region with a low recombination rate
and a long range of linkage disequilibrium. All association
approaches show high and similar power rates for VEGFA.
High power (>80%) was observed for FLT1 using the SM
and CP approaches and for KDR using the CA(0–5%), CP
(0–5%), VT, and CMC1 approaches. In general, as
observed in the unrelated individuals data set, the CA and
CP approaches showed greater power under the less strin-
gent Tmaf criterion of 5% versus when Tmaf = 1%.

Power of collapsing approaches in unrelated individuals
versus family data set
Two causal genes (FLT1, KDR) were consistently
detected with good power (>80%) in the unrelated indivi-
dual and family data sets, irrespective of the association
approach. One gene (VEGFA) was detected in the family
sample but not in the unrelated individuals data set
(power < 54%, or power < 32% after adjusting for

population stratification). Conversely, ARNT was
detected in the unrelated individuals data set (power =
96%, or power = 77% after adjusting for population strati-
fication) but not in the family data (power = 12%).

Conclusions
We found that for some genes collapsing approaches may
be powerful tools to detect multiple rare variants for
complex traits. In particular, the choice of the threshold
Tmaf seems to have a large effect on power, and, in gen-
eral, we found a higher power when the criterion was less
stringent (Tmaf = 5% vs. 1%). In the same vein, including
all SNPs, whether by means of a univariate or a multi-
variate collapsing approach, can improve the power. In
addition, a few of the causal genes were detected in both
the related and the unrelated individuals data, whereas
other causal genes were detected only in either the unre-
lated individuals or the family data. However, in these
data the power of association was often limited. More
important, we found that type I error rates may be highly
variable between genes and between approaches.
We faced the challenge of assessing the proper type I

error to validate our power comparisons. We acknowl-
edge that our type I and type II error rates may not be
generalized because of the way the GAW17 data were
simulated: Phenotype but not genotype data were gener-
ated. Further, because the genotypes of founders did not
vary between replicates, each family was either always

Table 4 Type I error and power at a = 5% by gene in family data set

Gene N N (V) with MAF < 5% N (V) with MAF < 1% SMa Tmaf = 0.01 Tmaf = 0.05 WS CMC1

CA CP CA CP

Noncausal genes: type I error

PTGFR 7 4 (0) 7 (0) 0.030 0.095 0.065 0.015 0.010 0.070 0.030

IFI44 9 7 (0) 8 (0) 0.060 0.030 0.025 0.030 0.040 0.010 0.175

FAM73A 3 3 (0) 3 (0) 0.025 0.020 0.020 0.015 0.020 0.035 n/a

MAPT 19 8 (0) 14 (0) 0.210 0.145 0.180 0.035 0.010 0.155 0.015

CTSS 3 2 (0) 2 (0) 0.020 0.015 0.015 0.015 0.015 0.020 n/a

FOXI1 5 3 (0) 3 (0) 0.020 0.020 0.055 0.055 0.055 0.045 0.000

LY75 49 30 (0) 39 (0) 0.055 0.070 0.045 0.030 0.035 0.120 0.035

Causal genes: power

ARNT 7 6 (2) 4 (1) 0.04 0.04 0.03 0.01 0.01 0.12 0.03

ELAVL4 8 6 (1) 5 (1) 0.13 0.07 0.07 0.10 0.10 0.04 0.07

FLT1 16 13 (4) 8 (2) 0.95 0.02 0.02 0.57 0.82 0.44 0.33

FLT4 3 3 (0) 2 (0) 0.04 0.16 0.16 0.17 0.17 0.12 0.10

HIF1A 1 1 (1) 0 (0) 0.01 n/a n/a 0.05 n/a 0.05 n/a

HIF3A 12 8 (1) 6 (1) 0.10 0.01 0.01 0.04 0.05 0.13 0.03

KDR 5 4 (4) 3 (3) 0.61 0.51 0.51 0.89 0.89 0.91 0.82

VEGFA 4 4 (1) 3 (1) 1 1 1 1 1 0.82 1

VEGFC 1 1 (1) 1 (1) 1 n/a n/a n/a n/a n/a n/a

N, number of polymorphic SNPs. V, number of polymorphic causal variants.
a Bonferroni-corrected P-value.
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informative (at least one founder carries a causal variant)
or never informative (no founder carries a causal variant)
for testing association to a given causal variant.
Finally, our results also raise an interesting point that

might deserve future investigation, namely, that the collap-
sing and the single-locus association approaches may not
be affected to the same extent by population stratification.
Our results suggest that collapsing approaches may be
more robust, especially in the presence of multiple
variants.
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