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AbstratIn this work, we develop a bioequivalene analysis using nonlinear mixed e�etsmodels (NLMEM) that mimis the standard non-ompartmental analysis (NCA).NLMEM parameters, inluding between (BSV) and within subjet (WSV) variabil-ity, and treatment, period, and sequene e�ets are estimated. We explain how toperform a Wald test on a seondary parameter and we propose an extension of thelikelihood ratio test (LRT) for bioequivalene. These NLMEM-based bioequivalenetests are ompared to standard NCA-based tests. We evaluate by simulation theNCA and NLMEM estimates, and the type I error of the bioequivalene tests. ForNLMEM, we use the SAEM algorithm implemented in MONOLIX. Crossover trialsare simulated under H0 using di�erent numbers of subjets and of samples per sub-jet. We simulate with di�erent settings for BSV and WSV, and for the residual errorvariane. The simulation study illustrates the auray of NLMEM-based geometrimeans estimated with the SAEM algorithm, whereas the NCA estimates are biasedfor sparse design. NCA-based bioequivalene tests show good type I error exept forhigh variability. For a rih design, type I errors of NLMEM-based bioequivalene tests(Wald test and LRT) do not di�er from the nominal level of 5%. Type I errors arein�ated for sparse design. We apply the bioequivalene Wald test based on NCA andNLMEM estimates to a three-way rossover trial, showing that Omnitrope® powderand solution are bioequivalent to Genotropin®. NLMEM-based bioequivalene testsare an alternative to standard NCA-based tests. However, aution is needed for smallsample size and highly variable drug.Keywords: nonlinear mixed e�ets model; pharmaokinetis; non-ompartmentalbioequivalene analysis; two one-sided tests; Wald test; likelihood ratio test



1 INTRODUCTIONPharmaokineti (PK) bioequivalene studies are performed to ompare di�erent drugformulations. The most ommonly used design for bioequivalene trials is the two-period, two-sequene, rossover design. This design is reommended by the Food andDrug Administration (FDA) (FDA 2001) and the European Mediines EvaluationAgeny (EMEA) (EMEA 2001). FDA and EMEA reommend to test bioequivalenefrom the ratios of the geometri means of two parameters: the area under the urve(AUC) and the maximal onentration (Cmax) estimated by non-ompartmental anal-ysis (NCA) (Gabrielson and Weiner 2006). As spei�ed in the regulatory guidelines,the bioequivalene analysis should take into aount soures of variation that anbe reasonably assumed to have an e�et on the endpoints AUC and Cmax. There-fore, linear mixed e�ets models (LMEM) inluding treatment, period, sequene, andsubjet e�ets are usually used to analyse the log-transformed individual parameters(Haushke et al. 2007). Bioequivalene tests are then performed on the estimates ofthe treatment e�et.NCA requires few hypotheses but a large number of samples per subjet (usually be-tween 10 and 20). PK data an also be analysed using nonlinear mixed e�ets models(NLMEM). This method is more omplex than NCA but has several advantages: ittakes advantage of the knowledge aumulated on the drug and an haraterize thePK with few samples per subjet. This allows one to perform analyses in patients, thetarget population, in whom pharmaokinetis an be di�erent from healthy subjets.In a previous work, Dubois et al (Dubois et al. 2010) ompared the standard analysisof bioequivalene rossover trials based on NCA to the same usual analysis basedon individual empirial Bayes estimates (EBE) obtained by NLMEM. PK data ofeah treatment group were analysed separately using NLMEM. Linear mixed e�etsmodels were then performed on individual AUC and Cmax derived from the EBE.However, this methodology annot be performed when the EBE shrinkage is above20%. Panhard and Mentré (Panhard and Mentré 2005) developed di�erent ompari-son and bioequivalene tests based on NLMEM for the analysis of PK rossover trials1



omparing two treatments. For omparison tests, they proposed both the Wald testand the likelihood ratio test (LRT). For bioequivalene tests, they proposed the Waldtest but the LRT was not developed, due to the omposite null hypothesis. Theyapplied these tests to two-period, one-sequene, rossover trials. In a later work,Panhard et al (Panhard et al. 2007) demonstrated the importane of modelling thebetween-subjet (BSV) and within-subjet (WSV) variability to ontrol the in�ationof the type I error using the same sets of simulations as previously. In both simulationstudies, the NLMEM-based bioequivalene Wald test was performed on AUC onlybeause Cmax was a seondary parameter of the PK model, as often in PK modelling.The use of NLMEM is still rare to analyse bioequivalene rossover trials. Indeed,there are few published studies whih use NLMEM to analyse bioequivalene trials(Kaniwa et al. 1990; Pentikis et al. 1996; Combrink et al. 1997; Maier et al. 1999; Huet al. 2003; Zhou et al. 2004; Fradette et al. 2005; Zhu et al. 2008). Seven of thesestudies are previous to the di�erent simulation studies (Kaniwa et al. 1990; Pentikiset al. 1996; Combrink et al. 1997; Maier et al. 1999; Hu et al. 2003; Zhou et al. 2004;Fradette et al. 2005). In six of these studies (Kaniwa et al. 1990; Pentikis et al. 1996;Combrink et al. 1997; Maier et al. 1999; Hu et al. 2003; Fradette et al. 2005), bioe-quivalene Wald tests were performed on treatment e�ets estimated by NLMEM,as Panhard et al. However, all of these applied works used di�erent statistial ap-proahes. The addition of the treatment e�et on di�erent PK parameters was notalways justi�ed. Only Hu et al (Hu et al. 2003) performed bioequivalene test onaverage AUC and Cmax obtained from the �xed e�et estimates using Monte Carlosimulation. Finally, none estimated the WSV or adds period or sequene e�ets asreommended in the guidelines. There is urrently no published simulation study orapplied work whih takes into aount treatment, period, sequene e�ets, BSV, andWSV for the bioequivalene analysis of rossover trials by NLMEM.In the di�erent NLMEM-based bioequivalene analysis, NLMEM parameters were es-timated by maximum likelihood. Exept for the simulation by Dubois et al (Duboiset al. 2010), an algorithm based on a �rst-order linearization was used, most often the2



First-Order Conditional Estimation (FOCE) algorithm (Lindstrom and Bates 1990).The FOCE algorithm is a widely used algorithm and orresponds to the industrystandard for model-based PK analyses. Yet, this linearization-based method annotbe onsidered as fully established theoretially. For instane, Vonesh (Vonesh 1996)and Ge et al (Ge et al. 2004) gave examples of spei� designs resulting in inonsis-tent estimates, suh as when the number of observations per subjet does not inreasefaster than the number of subjets or when the variability of random e�ets is toolarge. Several estimation methods of maximum likelihood theory have been proposedas alternatives to linearization algorithms like the adaptative gaussian quadrature(AGQ) method (Pinheiro and Bates 1995) or methods derived from the Expetation-Maximisation (EM) algorithm (Dempster et al. 1977). The AGQ method requiresa su�iently large number of quadrature points implying an often slow onvergeneand is limited to a small number of random e�ets. Monte Carlo EM algorithmsas proposed by Wei and Tanner (Wei and Tanner 1990), Walker (Walker 1996), orWu (Wu 2004) are very time-onsuming in omputation sine they require a hugeamount of simulated data. Alternatively, Delyon et al (Delyon et al. 1999) intro-dued a stohasti approximation version of the EM algorithm (SAEM), whih ismore e�ient in terms of omputation. Later, Kuhn and Lavielle (Kuhn and Lavielle2004) developed an algorithm whih ombined the SAEM algorithm with a Monte-Carlo proedure. They showed the good statistial onvergene properties of thisalgorithm. Reently, Panhard and Samson (Panhard and Samson 2009) developedan extension of the SAEM algorithm for NLMEM inluding the estimation of thewithin-subjet variability.The main objetive of this work is to develop a bioequivalene analysis based onNLMEM that mimis the standard bioequivalene analysis performed on NCA esti-mates. To do so, we use a NLMEM inluding treatment, period, sequene e�ets,BSV, and WSV. We also explain how to perform a Wald test on a seondary pa-rameter of the model (like Cmax), and we propose an extension of the LRT for bioe-quivalene. These NLMEM-based bioequivalene tests are ompared to standard3



NCA-based tests. We evaluate by simulation the NCA and NLMEM estimates, andthe type I errors of the di�erent bioequivalene tests. We use the same sets of sim-ulations than the previous study by Dubois et al (Dubois et al. 2010) whih allowsto ompare the results. As in Dubois et al, we use di�erent sampling designs andlevels of variability, investigating their in�uene on the results of the bioequivalenetests. To estimate NLMEM parameters, we use the SAEM algorithm implementedin MONOLIX. Then, we apply the Wald test based on NCA and NLMEM estimatesto a three-way rossover trial omparing three formulations of somatropin. A so-matropin is a biosyntheti version of human growth hormone (hGH) synthesised inbateria modi�ed by the addition of the gene for hGH. Replaement therapy withsomatropin is a well aepted, e�etive treatment for hGH de�ieny in hildren andadults (Faui et al. 2008).In Setion 2 of this paper, we desribe the LMEM for NCA estimates, the NLMEMon onentrations, and the bioequivalene tests based on both approahes. In Se-tion 3, we present the simulation study, the estimation, and the evaluation of theestimates and of the type I errors. We present the example in Setion 4, followed bya disussion in Setion 5.
2 MODELS AND BIOEQUIVALENCE TESTS IN CROSSOVERTRIALSIn the following, we onsider rossover pharmaokineti trials with C treatments, Kperiods, and Q sequenes.2.1 ModelsLinear Mixed E�ets Model for NCAThe standard bioequivalene analysis reommended by FDA and EMEA (FDA2001; EMEA 2001) is based on NCA individual estimates of AUC and Cmax. Wede�ne θikl the lth individual parameter (AUC if l = 1 or Cmax if l = 2) for subjet4



i (i = 1, · · · , N) at period k (k = 1, · · · , K). The individual parameters are log-transformed and analysed using a linear mixed e�ets model written as follows:
log(θikl) = νl + β
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are �xed to zero, and otheromponents are estimated. It is assumed that the random subjet e�et ηil and theresidual error ǫikl are independently normally distributed with zero mean.Nonlinear Mixed E�ets ModellingWe denote by yijk the onentration for subjet i (i = 1, · · · , N) at sampling time

j (j = 1, · · · , nik) for period k (k = 1, · · · , K). We de�ne f to be the nonlinear phar-maokineti funtion whih links onentrations to sampling times. The nonlinearmixed e�ets model an be written as:
yijk = f(tijk,ψik) + g(tijk,ψik) ǫijk (2)with ψik the p-vetor of pharmaokineti parameters of subjet i for period k.

g(tijk,ψik) ǫijk is the residual error where ǫijk is a Gaussian random variable withzero mean and variane one. All ǫijk are independent and identially distributed.We onsider a ombined error model, additive plus proportional, with g(tijk,ψik) =5



a+ bf(tijk,ψik).The statistial model used for the individual parameters ψik is derived from the lin-ear mixed e�ets model used to analyse the NCA individual estimates. So, the lthomponent of ψik is de�ned as:
log(ψikl) = log(λl) + β
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Pk, and Si, are de�ned as for NCA (setion 2.1). βT
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are �xed to zero, and otheromponents are estimated. ηi = (ηil; l = 1, · · · , p) is the vetor of random e�ets ofsubjet i orresponding to the between-subjet variability. κik = (κikl; l = 1, · · · , p)is the vetor of random e�ets of subjet i at period k orresponding to the variabilitybetween periods of treatment for the same individual, or within-subjet variability.These random e�ets are assumed to be normally distributed with zero mean andovariane matrix of size p×p named Ω and Γ, respetively. We de�ne ω2

l and γ2l thevariane for BSV and WSV of the lth parameter, orresponding to the lth element ofthe diagonal of Ω and Γ. ηi, κik, and ǫijk are assumed to be mutually independent.Finally, the unknown population parameters of the statistial model are the �xede�ets ("referene" and ovariate e�ets) and the variane parameters (Ω, Γ, a, b).2.2 Two-One Sided TestsThe bioequivalene test is performed on the cth treatment e�et of the lth param-eter, βT
c,l (c = 2, · · · , C and l = 1, 2 for NCA or l = 1, · · · , p for NLMEM). Its nullhypothesis is H0: {βT

c,l ≤ −δ or βT
c,l ≥ δ} whih is deomposed in two one-sided hy-potheses H0,−δ: {βT
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c,l ≥ δ}. The bioequivalene test is based6



on Shuirmann's two one-sided tests (TOST) proedure (Shuirmann 1987). H0,−δand H0,δ are tested separately by a one-sided test. The global null hypothesis H0is rejeted with a type I error α if both one-sided hypotheses are rejeted with atype I error α. The p-value of the TOST is the maximum of both p-values of theone-sided tests. The major issue of a bioequivalene test is to de�ne δ. To assesspharmaokineti bioequivalene, the guidelines (FDA 2001; EMEA 2001) reommend
δ = log(1.25) ≈ 0.22 (i.e. −δ = log(0.8)) for log(AUC) and log(Cmax). Due to thelinear model on log-parameters, these bounds orresponds to 80%-125% on the pa-rameter sale.Wald Tests Based on NCA EstimatesIn the following, we all se(βT

c,l) the standard error of the treatment e�et estimate
β̂T
c,l. We also de�ne W−δ = (β̂T

c,l + δ)/se(βT
c,l) and Wδ = (β̂T

c,l − δ)/se(βT
c,l), the twoWald statistis for the one-sided hypotheses H0,−δ and H0,δ, respetively. For thestandard NCA-based bioequivalene analysis, we assume that W−δ and Wδ follow aStudent t-distribution with df degrees of freedom under H0,−δ and H0,δ, respetively.The global null hypothesis H0 is rejeted with a type I error α if W−δ ≥ t1−α(df) and

Wδ ≤ −t1−α(df), where t1−α(df) is the (1− α) quantile of the Student t-distributionwith df degrees of freedom. For balaned datasets (i.e. with N subjets for eahperiod), df = N − 2 (Haushke et al. 2007; Chow and Liu 2000). An alternative ap-proah to perform a bioequivalene test is to ompute the (1−2α) on�dene interval(CI) of β̂T
c,l. H0 is rejeted if this (1− 2α) CI lies within [−δ; δ].Wald Test Based on NLMEM EstimatesFor the bioequivalene Wald test using NLMEM estimates, we use a very simi-lar approah to NCA-based bioequivalene Wald test. Same notations are used forNLMEM-based analyses as for NCA. For NLMEM, we assume that W−δ and Wδfollow a Gaussian distribution under H0,−δ and H0,δ, respetively. The global nullhypothesis H0 is rejeted with a type I error α if W−δ ≥ z1−α and Wδ ≤ −z1−α,7



where z1−α is the (1−α) quantile of the standard normal distribution. The rejetionof H0 an also be based on the (1− 2α) CI as desribed previously (setion 2.2).To mimi the standard bioequivalene analysis, we would like to perform the NLMEM-based bioequivalene Wald test on AUC and Cmax whih are often seondary pa-rameters of the PK model. So, we propose an approah to perform the NLMEM-based bioequivalene Wald on a seondary parameter. A seondary parameter is afuntion of the PK parameters of the strutural model. Its cth treatment e�et is
βT
c,SP = h(λ,βT

c
) with h the funtion linking βT

c,SP to the PK parameters, λ the refer-ene e�ets, and βT

c
the cth treatment e�ets. To perform a bioequivalene Wald teston the cth treatment e�et of a seondary parameter, βT

c,SP and its standard error,
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c,SP ), should be estimated. By de�nition, β̂T
c,SP = h(λ̂, β̂T

c
). However, se(βT

c,SP )annot be diretly omputed as h is usually a nonlinear funtion. We propose toapproximate it using the delta method (Oehlert 1992) or simulations. For the deltamethod, we use the partial derivatives of h, the �xed e�et estimates (λ̂,β̂T

c
), andtheir estimated ovariane matrix Σ̂, whih is a submatrix of the inverse of the Fisherinformation matrix estimate: se(βT
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√
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). To estimate
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c,SP ) by simulations, we simulate βT

c,SP Ns times using a Gaussian distributionwith mean the �xed e�et estimates (λ̂,β̂T

c
) and ovariane matrix Σ̂. Then, se(βT

c,SP )is estimated as the standard deviation of the Ns simulated βT
c,SP .Likelihood Ratio Test Based on NLMEM EstimatesThere is no simple extension of the likelihood ratio test for the omposite null hy-pothesis of a bioequivalene test. Therefore, for a parameter of the PK model, wedevelop a methodology to perform a NLMEM-based bioequivalene LRT based onpro�le likelihood methods (Bates and Watts 1988; Meeker and Esobar 1995). Letus de�ne Mall to be the NLMEM where all �xed e�ets are estimateed and Mδ,c,l theNLMEM where βT

c,l is �xed to δ and all other parameters (inluding the other ompo-nents of βT

l
) are estimated. The proposed approah test whether the likelihood-basedon�dene interval of β̂T

c,l lies within [−δ; δ]. To do so, we perform two "one-sided"8



LRT taking into aount β̂T
c,l estimated with Mall, and the estimation of the log-likelihood of three models Mall, M−δ,c,l, and Mδ,c,l. We de�ne the statisti Λδ,c,l asfollows: Λδ,c,l = −2 × (Lδ,c,l − Lall) with Lall and Lδ,c,l the estimated log-likelihoodsfor the models Mall and Mδ,c,l, respetively. The null hypothesis H0,−δ is rejetedwith a type I error α if Λ−δ,c,l ≥ χ2

1(1 − 2α) and −δ < β̂T
c,l, where χ2

1(1 − 2α) is the
(1− 2α) quantile of the Chi-squared distribution with one degree of freedom. H0,δ isrejeted if Λδ,c,l ≥ χ2

1(1 − 2α) and β̂T
c,l < δ. Consequently, the global null hypothesis

H0 is rejeted with a type I error α if −δ < β̂T
c,l < δ and Λ−δ,c,l ≥ χ2

1(1 − 2α) and
Λδ,c,l ≥ χ2

1(1− 2α).
3 SIMULATION STUDY3.1 Simulation SettingsWe use the onentration data of the anti-asthmati drug theophylline to de�ne thepopulation PK model for the simulation study. These data are lassial in populationpharmaokinetis (Pinheiro and Bates 2000) and have been used in previous simu-lation studies (Panhard and Mentré 2005; Panhard et al. 2007; Dubois et al. 2010).We assume that onentrations an be desribed by a one-ompartment model with�rst-order absorption and �rst-order elimination:

f(t, ka, CL/F, V/F ) =
FDka

CL− V ka
(exp(−ka t)− exp(−CL/V t)) (4)where D is the dose, F the bioavailability, ka the absorption rate onstant, CL thelearane of the drug, and V the volume of distribution.We simulate two-treatment, two-sequene, rossover trials with two or four periods.For eah two-period trial, the N/2 subjets of the �rst sequene reeive the referenetreatment (Ref ) and the test treatment (Test) in period one and two, respetively.The other N/2 subjets alloated to the seond sequene reeive treaments in thereverse order. For eah four-period trial, the N/2 subjets of the �rst sequene re-9



eive the treatment Ref in periods one and three, and the treatment Test in periodstwo and four. The N/2 subjets of the seond sequene reeive the treament Test inperiods one and three, and the treatment Ref in periods two and four.We onsider that sampling times are similar for all subjets and all periods. So,
j = 1, · · · , n, where n is a �xed number of sampling times for eah simulated sam-pling design. We use four di�erent sampling designs, whih are also used by Duboiset al (Dubois et al. 2010). We simulate with the original design with N = 12 subjetsand n = 10 samples per subjet and per period, taken at the times of the initialstudy (0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12, and 24 h after dosing). We also simulate withan intermediate design with N = 24 subjets and n = 5 samples, taken at 0.25, 1.5,3.35, 12, and 24 h after dosing, a sparse design with N = 40 subjets and n = 3samples, taken at 0.25, 3.35, and 24 h after dosing, and a rih design N = 40 subjetsand n = 10 samples, taken at the times of the initial study.For the simulation study, we assume that α = 5% and δ = log(1.25). We �x thedose to 4 mg for all subjets. The vetor of population parameters λ is omposed of
λka = 1.48 h−1, λCL/F = 40.36 mL/h, and λV/F = 0.48 L for the referene treatment.We assume that the bioavailability hanges between treatments, i.e., we assume thesame modi�ation for CL/F and V/F . It also similarly a�ets both seondary pa-rameters AUC and Cmax with AUC = FD/CL and Cmax de�ned in Equation 5 ofthe Appendix. In the following, as we onsider only two treatments in the simula-tion study, we omit the subsript c; we de�ne βT

CL/F and βT
V/F the treatment e�et on

CL/F and V/F for the treatment Test (βT
ka

= 0). As suggested by Liu and Weng (Liuand Weng 1995), the type I error of the bioequivalene test an be evaluated for eahboundary of H0 spae, i.e., log(0.8) and log(1.25). Consequently, we simulate undertwo di�erent hypotheses: βT
CL/F = βT

V/F = log(0.8) and βT
CL/F = βT

V/F = log(1.25)whih are the boundaries of H0,log(0.8) and H0,log(1.25), respetively. In the following,we all H0;80% and H0;125% these two simulated hypotheses. We assume no periode�et or sequene e�et, and Ω and Γ are diagonal.We simulate with two levels of variability for the between-subjet and within-subjet10



variability. For the low level of variability, we �x ωka and ωCL/F to 0.2, and ωV/F to0.1; γka, γCL/F and γV/F are �xed to half BSV for the three parameters. For the highlevel, we �x the three standard deviations to 0.5 for BSV, and 0.15 for WSV. We alsosimulate with two levels of variability for the residual error: a = 0.1 mg/L, b = 0.10for the low level, and a = 1 mg/L, b = 0.25 for the high level. The high level ofresidual error is only used with the high level of BSV and WSV. We all Sl,l thevariability setting with low variability for BSV, WSV, and for the residual error. Sh,lis the variability setting orresponding to high variability for BSV, WSV, and low forthe residual error. Finally, Sh,h is the variability setting with high variability for BSV,WSV, and for the residual error. In the following, we all a simulation setting theassoiation of one design with one variability setting and one simulated hypothesis.We simulate rossover trials with 2 periods under H0;80% and H0;125%. In that ase,for eah sampling design, we simulate using the variability settings Sl,l and Sh,l. Wesimulate using Sh,h only for the intermediate design. We simulate rossover trialswith 4 periods under H0;80% using rih and sparse sampling designs, and the twovariability settings Sl,l and Sh,l. All simulations are performed using the statistialsoftware R 2.7.1. We use the funtion rmvnorm of the pakage mvtnorm, whih is apseudorandom number generator for the multivariate normal distribution. For eahsimulated trial, we speify the seed using the funtion set.seed in order to makesimulations reproduible.3.2 EstimationNCAAs in Dubois et al (Dubois et al. 2010), we estimateAUC and Cmax by non ompart-mental analysis (Gabrielson and Weiner 2006) using a R funtion whih we develop.For a rossover trial, this funtion provides the estimation of di�erent NCA param-eters for eah subjet and eah treatment group. In this study, we use the lineartrapezoidal rule to ompute the AUC0−last between the time of dose (equal to 0) andthe last sampling time. To obtain the total AUC (between the time of dose and in-11



�nity), we estimate the terminal slope equal to CL/V using the logarithm of the lastonentrations to perform a log-linear regression. To do so, we use a �xed numberof onentrations whih depends on the number of samples per subjet in the design.For the original and rih designs where n = 10, we use the last four onentrationswhih orrespond to sampling times 7, 9, 12 and 24 h. For intermediate and sparsedesigns where n = 5 and n = 3 respetively, we use the last two onentrations whihorrespond to sampling times 12 and 24 h for the intermediate design, and to 3.35and 24 h for the sparse design. For all designs, Cmax is estimated as the maximalobserved onentration.The analysis of log parameters by LMEM is then performed using the R funtionlme from the pakage nlme. For the estimation of LMEM parameters (inluding thetreatment e�et and its SE), the restrited maximum likelihood (REML) preoedureis used, as reommended in the guidelines (FDA 2001; EMEA 2001). For the originaldesign where N = 12, df = 10. For the rih and sparse design where N = 40, df = 38.For the intermediate design where N = 24, df = 22.All omputations inluding the dataset simulation, the estimation by NCA, and thestandard bioequivalene analysis by LMEM are made under R 2.7.1. The di�erent Rsripts are available upon request to the orresponding author.NLMEMWe estimate the NLMEM parameters (inluded treatment, period, sequene e�ets,BSV and WSV) by maximum likelihood using the SAEM algorithm (Panhard andSamson 2009) implemented in MONOLIX (Lavielle et al. 2010). Estimation of stan-dard errors (SE) and log-likelihood are also needed to perform Wald and likelihoodratio tests, respetively. SE an be evaluated as the square root of the diagonal ele-ments of the inverse of the Fisher information matrix estimate whih has no analytiform. In MONOLIX, one method to evaluate this matrix is to derive an approximateexpression by the linearization of the funtion f around the onditional mean of theindividual parameters obtained with the SAEM algorithm. Although linearization-12



based algorithms are not reommended to estimate NLMEM parameters, satisfatoryresults for SE estimation have been shown using this approah for omputation ofthe FIM (Bazzoli et al. 2009). There is no analytial expression of the likelihood inNLMEM. In MONOLIX, it is proposed to estimate the log-likelihood of the obser-vations without approximation using the Importane Sampling (IS) method (Kuhnand Lavielle 2005; Samson et al. 2007). The IS method is a Monte-Carlo proedurewhere individual parameters are simulated at eah iteration using an instrumentaldistribution adequately hosen to redue the variane of the estimator.NLMEM parameters, standard errors and log-likelihoods are estimated with MONO-LIX 2.4., supported by MATLAB R2007a. The use of MONOLIX software for theanalysis of rossover bioequivalene trials is explained in a online Supplementary Ma-terial 1.3.3 Evaluation MethodsEstimatesThe SAEM algorithm used for the estimation of NLMEM parameters has not beenevaluated for models inluding treatment, period, sequene e�ets, BSV, and WSV.Therefore, we evaluate the SAEM algorithm for two and four-period rossover trialswith the rih and sparse design. We use the H0;80% simulation settings of the twovariability settings Sl,l and Sh,l. There are 8 di�erent simulation settings used (2 or4 periods, rih or sparse design, Sl,l or Sh,l variability). We �t the statistial model
Mall for the 1000 trials of eah simulation setting of both types of rossover trials (2or 4 periods). Then, for the 1000 repliates, we ompute the bias and the root meansquare error (RMSE) for eah estimated parameter.Furthermore, in the standard bioequivalene analysis, the geometri means of AUCand Cmax are reported for eah treatment group. We evaluate those estimates forthe referene treatment, and for NCA and NLMEM. We also evaluate the treatmente�et estimates for AUC and Cmax, and for NCA and NLMEM. Lastly, good estima-1Supporting information may be found in the online version of this artile.13



tion of the standard error is important when performing Wald tests. So, we evaluatethe SE of the treatment e�et estimates, for NCA and NLMEM. To evaluate thegeometri means, the treatment e�ets, and their SE we use the two-period rossovertrials simulated under the null hypothesis H0;80% with the four di�erent samplingdesigns (rih, original, intermediate and sparse), and the three variability settings(Sl,l, Sh,l and Sh,h). There are 9 di�erent used simulation settings, 4 for Sl,l and Sh,l,and 1 for Sh,h where only the intermediate design is simulated. For NCA, for eahsimulated trial, the geometri mean of AUC (Cmax) for the referene treatment isomputed from the N individual estimated AUC (Cmax). For NLMEM, due to thelog-normal distribution of the random e�ets, the �xed e�et estimates for the refer-ene lasses orrespond to the geometri mean estimates for the referene treatment.So, the NLMEM-based geometri mean of AUC for the referene treatment is diretlyobtained from the learane estimate as AUC = FD/CL. For Cmax, the geometrimean is omputed from the �xed e�et estimates using Equation 5 of the Appendix.For NCA and NLMEM estimates, the geometri means are ompared to the AUC or
Cmax omputed from the NLMEM simulated parameters. For NCA, the treatmente�et on AUC and Cmax are estimated by LMEM as explained in setion 2.1. ForNLMEM, due to the linear ovariate model on log-parameters, β̂T

AUC = −β̂T
CL/F . Thetreatment e�et β̂T

Cmax
is omputed from λ̂ and β̂T using Equation 6. For NCA andNLMEM estimates, the treatment e�et estimates are ompared to the simulatedvalue of the treatment e�et. For NCA, standard errors of the treatment e�et areestimated by LMEM. For NLMEM, as β̂T

AUC = −β̂T
CL/F , their standard error areequal. The SE of β̂T

Cmax
is estimated by the delta method and simulations (with

Ns = 10000). For the delta method, the expression and details are given in theAppendix. The estimated standard errors of the treatment e�et are ompared tothe orresponding empirial standard error for NCA and NLMEM estimates. Forone simulation setting and one approah (NCA or NLMEM), the empirial standarderror is omputed as the standard deviation of the 1000 treatment e�et estimates.
14



Type I ErrorTo evaluate the type I error of the bioequivalene tests, we use the two-periodrossover trials simulated with the four di�erent sampling designs, both hypothesesand the three variability settings. There are 18 di�erent simulation settings used, 8for Sl,l and Sh,l, and 2 for Sh,h where only the intermediate design is simulated. Thesimulation settings under H0;80% are also used to evaluate the estimates of AUC and
Cmax (setion 3.3).We perform the bioequivalene Wald test based on NCA estimates on AUC and Cmax.For NLMEM, tests on CL/F and AUC are equivalent beause β̂T

AUC = −β̂T
CL/F and

se(βT
AUC) = se(βT

CL/F ). So, the NLMEM-based bioequivalene Wald test and LRTare performed on AUC. As Cmax is a seondary parameter of the NLMEM, onlythe NLMEM-based Wald test is performed on this parameter, and not the LRT. ForNLMEM, the treatment e�et β̂T
Cmax

is omputed from λ̂ and β̂T . Its standard erroris estimated both by the delta method and by simulations (with Ns = 10000). For
AUC and Cmax, the NLMEM-based bioequivalene Wald test is performed using esti-mated and empirial SE. For Cmax, it is performed using estimated SE obtained fromthe delta method and simulations, for omparison. For eah one-sided hypothesis
H0;80% and H0;125%, the type I error is estimated by the proportion of the simulatedtrials for whih the null hypothesis H0 is rejeted. The global type I error is de�nedas the maximum value of both estimated type I errors (Dubois et al. 2010; Panhardand Mentré 2005). For 1000 repliates, the 95% predition interval (95% PI) for atype I error of 5% is [3.7%; 6.4%].3.4 ResultsEvaluation of the EstimatesFor the evaluated settings, all NLMEM parameters inluding treatment, period,sequene e�ets are estimated by the SAEM algorithm. Boxplots of the estimates ofthe learane referene e�et, the orresponding ovariate e�ets and the standarddeviations of BSV and WSV are displayed in Figure 1. For the six parameters and15



both variability settings, the distribution is narrower when the number of samples orperiods inreases. For all simulation settings of both types of trials, the median of the�xed e�ets is lose to the orresponding simulated value. For BSV and WSV, themedian of the estimates is loser to the simulated value for four-period trials than fortwo-period trials. For the variability setting Sh,l, BSV and WSV are slightly under-estimated espeially for the sparse design. Similar results (not shown) are obtainedfor both PK parameters, ka and V/F . Table 1 provides the bias (×100) and RMSE(×100) of estimates of the referene e�ets and the standard deviations for BSV,WSV, and residual error. For all simulation settings and both types of rossover tri-als (2 or 4 periods), there is no bias and RMSE are small for the referene e�ets andthe residual error. For BSV and WSV, bias dereases when the number of samplesinreases. For all parameters, RMSE derease when the number of samples inreases.Furthermore, RMSE are smaller for Sl,l than for Sh,l and smaller for four-period tri-als than for two-period trials. The same observations are made for ovariate e�ets(results not shown).For eah simulation setting of two-period rossover trials of the hypothesis H0;80% andfor NCA and NLMEM, boxplots of the referene treatment geometri mean estimatesof AUC and Cmax are displayed in Figure 2. For AUC and Cmax, and for NCA andNLMEM estimates, the distribution is narrower when the variability is smaller. ForNCA estimates, the median of the estimates is loser to the true simulated meanfor the rih design, and there is a lear and very large bias of the geometri meanestimates for sparse design. For NLMEM estimates, the median of the estimates islose to the true simulated mean for all simulation settings. Figure 3 displays theboxplot of the treatment e�et estimates on AUC and Cmax and their standard er-rors for NCA and NLMEM estimates. The standard errors se(βT
Cmax

) are estimatedby the delta method, and very similar results are obtained by simulations. For NCAand NLMEM, for both parameters and all simulation settings, the median of the esti-mated treatment e�ets is lose to the simulated value. Furthermore, the distributionis narrower when the variability dereases or when the number of subjets inreases.16



The distribution of the estimated standard errors is narrower and the empirial stan-dard error is smaller when the variability dereases or when the number of subjetsinreases. For both parameters, the median of the estimated standard error is loserto the empirial one when the variability dereases. For the original design under
Sh,l and the intermediate design under Sh,h, standard errors of both parameters areunderestimated for NCA and NLMEM estimates.Evaluation of the Type I ErrorTable 2 provides type I errors of bioequivalene tests performed on the treatmente�ets of AUC, and Cmax for eah one-sided hypothesis and eah sampling design oftwo-period rossover trials. Mostly, for all tests and both parameters, type I errorsof both hypotheses are lose. Only the type I errors for Cmax and the Sh,h settingare somewhat di�erent. For Wald tests based on NCA estimates, and for Sl,l and Sh,lsettings, type I errors do not di�er from the nominal level of 5%. For Sh,h setting,the type I errors are muh too onservative for AUC, and are in�ated for Cmax. Forthe NLMEM-based Wald test, type I errors for Cmax using SE obtained by the deltamethod or simulations are idential. For AUC, type I errors of the NLMEM-basedWald test are lose to type I errors of the LRT. For the rih design (N = 40, n = 10),type I errors of both tests do not di�er from the nominal level of 5%. However, foreah simulation setting, there is an inrease of the type I error of both tests when thenumber of subjets and/or the number of samples dereases.The left hand side of Figure 4 displays the global type I error for AUC (top) and
Cmax (bottom) versus the design for eah variability setting for the Wald test basedon NCA estimates. For both parameters, the global type I error lies in the 95%PI ofthe nominal level for all the designs of Sl,l and Sh,l settings. For the Sh,h setting, itis too onservative for AUC and in�ated for Cmax. The right hand side of Figure 4displays the global type I error of the NLMEM-based Wald test using the estimatedor empirial standard error, and the NLMEM-based LRT. For the Wald tests usingestimated SE and LRT, and for both parameters, the global type I error lies in the17



95%PI of the nominal level for the rih design. It inreases when the number ofsubjets or the number of samples dereases and is lower for Sl,l than for Sh,l.Forthe NLMEM-based Wald test using the empirial SE, it an be seen that for bothparameters the global type I errors almost never di�er from the nominal level of 5%showing the in�uene of the underestimation of the standard errors on the propertiesof the NLMEM-based Wald test.
4 APPLICATIONIn 2005, somatropins available in the United States (and their manufaturers) in-luded Nutropin® (Genenteh), Humatrope® (Lilly), Genotropin® (P�zer), Norditro-pin® (Novo), and Saizen® (Merk Serono). In 2006, the FDA approved a new somat-ropin alled Omnitropee® (Sandoz). For this approval, bioequivalene rossover trialswere performed. We analyse one of them with the standard NCA-based approah andthe proposed NLMEM-based approah. Then, we perfom the bioequivalene Waldtest using NCA and NLMEM estimates.4.1 Material and methodsA randomized, double-blind, single-dose, 3-way rossover study with three treat-ments, three periods, and six sequenes was onduted to ompare the pharmaoki-neti parameters of Omnitrope® powder for solution for injetion, Omnitrope® 3.3mg/mL solution for injetion, and Genotropin® powder for solution after a single sub-utaneous dose of 5 mg. Thirty-six healthy auasian adults were reruited and theyreeived otreotide for endogenous hGH suppression before eah treatment period.The three treatment periods were separated by a seven day wash-out period. Bloodsamples for pharmaokineti assessments were olleted after dose administration foreah period at times 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, and 24 h. Conentrations weremeasured by hemiluminesent immunometri assay (Iranmanesh et al. 1994) with alimit of quanti�ation (LOQ) of 0.2 ng/mL. Figure 5 (top) displays onentrations18



versus time for the three formulations. There are very few onentrations below LOQfor the last sampling times.We analyse the data with NCA and NLMEM using the SAEM algorithm implementedin MONOLIX 2.4. For NCA analysis, we use the linear trapezoid rule to estimate
AUC0−tlast. To obtain the total AUC, we ompute the terminal slope by log-linearregression using 2 to 4 sampling times. As desribed in 2.1, the log-transformed indi-vidual AUC and Cmax are then analysed using a LMEM inluding treatment, period,sequene, and subjet e�ets. The referene lasses are the Genotropin® treatment,the �rst period, and the sequene Genotropin® - Omnitrope® powder - Omnitrope®solution for the treatment, period, and sequene ovariates, respetively.For NLMEM analysis, we use a one-ompartment model with �rst-order absorptionwith a lag time (tlag) and �rst-order elimination to desribe the data. With thismodel, for sampling times before tlag, onentrations are null. For sampling timesafter tlag, onentrations are desribed by Equation 4 replaing t by t − tlag. To de-termine the struture of the random e�ets matries and the residual error model,we analyse the Genotropin® data. Models are ompared using the Bayesian Infor-mation Criteria (BIC), the best statistial model orresponding to the smallest BIC(Bertrand et al. 2008). For the struture of the BSV matrix, we test diagonal, blokdiagonal, and omplete matries. Regarding the error model, we test a homosedasti(b = 0) and a ombined error model. For the analysis of all data, the struture ofthe WSV matrix is hosen to be idential to the struture of the BSV matrix deter-mined during the analysis of the Genotropin® data. We add treatment, period, andsequene e�ets on the four PK parameters. The referene lasses are the same asfor NCA analysis. After �tting the data, the model is graphially evaluated usingthe individual weighted residuals (IWRES) and the 90% predition interval for eahformulation. For the model evaluation, from the �nal statistial model and its esti-mates, we simulate 200 datasets based on the struture of the original data (dose,ovariates). For eah formulation, we ompute the 5% and 95% perentiles of thesimulated time-ourse distribution to obtain the 90% predition interval. The orre-19



spoding graph is alled a Visual Preditive Chek.We perform bioequivalene Wald tests on AUC and Cmax using NCA and NLMEMestimates with a type I error of 5%. For NLMEM, we ompute the treatment e�eton Cmax using �xed e�ets estimates and its standard error by the delta method.4.2 ResultsFor the analysis of the Genotropin® data, the best statistial model inlude BSVfor all PK parameters with a orrelation between the learane and the volume ofdistribution, and a ombined error model. Parameter estimates (exept period andsequene e�ets) are displayed in Table 3 with their standard errors. Preision ofestimation is judged satisfatory for all parameters. Conentrations of somatropinversus time with their 90% predition interval and the IWRES versus time are dis-played in Figure 5 for eah treatment group. These model evaluation plots are judgedsatisfatory.After estimating the parameters by NCA and NLMEM, we perform bioequivaleneWald tests on AUC and Cmax for both formulations of Omnitrope®. The results ofthose tests are displayed in Table 4 with the ratios of AUC and Cmax, the orre-sponding 90% CI, and the p-values of the bioequivalene Wald tests. With a type Ierror of 5%, AUC and Cmax of Omnitrope® powder and solution are bioequivalentto those of Genotropin® using NCA and NLMEM bioequivalene analysis.
5 DISCUSSIONIn this study, we evaluate the type I error of NLMEM-based bioequivalene testsperformed on the treatment e�et estimates when treatment, period, and sequenee�ets but also within-subjet variability are taken into aount during the NLMEMestimation. This new approah is ompared to the standard non-ompartmentalanalysis where bioequivalene Wald tests are performed on the treatment e�et esti-mated by linear mixed e�ets model taking into aount the same three ovariates,20



BSV (orresponding to the random subjet e�et) and WSV (i.e. residual error).Conerning the NLMEM-based bioequivalene tests, we show how Wald tests an beperformed on a seondary parameter suh as Cmax whih allows the extension of thestandard bioequivalene analysis based on NCA estimates to the NLMEM ontext.Furthermore, for a parameter of the PK model, we extend the likelihood ratio testfor bioequivalene.As Panhard et al (Panhard et al. 2007), and Dubois et al (Dubois et al. 2010), we simu-late under a one-ompartment PK model and estimate the NLMEM parameters usingthe same model. So, we do not study the impat of having the inorret model beingused in the bioequivalene NLMEM-based tests, and how would it ompare to theNCA approah in that ase. Nevertheless, when bioequivalene analysis is performed,there is already aumulated information on the drug and the pharmaokineti modelis usually known. Furthermore, even if NCA is known as a "model-free" approah, itassumes linear terminal elimination and provides meaningless parameters when it isapplied to nonlinear pharmaokinetis. So, the problem of estimating with a "wrong"model ould exist for NCA and NLMEM.The NLMEM-based bioequivalene analysis requires to estimate many parameters.So, a robust algorithm has to be used. The simulation study illustrates the aurayof the SAEM algorithm, espeially in the ontext of bioequivalene analysis. Weshow that biases and RMSE obtained by the SAEM algorithm are satisfatory for allparameters although BSV and WSV are slightly underestimated for large variabilityand low number of patients. These results are similar to those obtained by Panhardand Samson (Panhard and Samson 2009). As expeted, biases and RMSE dereasewhen the amount of information inreases (by the inrease of the number of patientsor periods). All �xed e�ets are orretly estimated with no bias, whih is of greatinterest for testing treatment e�et estimates. The good estimation of the �xed ef-fets using the SAEM algorithm leads to a good estimation of the geometri meansof AUC and Cmax, as illustrated by our evaluation. At the opposite, this evaluationalso shows that geometri means estimated by NCA are biased for sparse design,21



espeially with high variability. Usually, NCA is used with rih designs where thereare about ten to twenty samples per subjet. This method is not well suited for trialsperformed in patients where the number of samples is often limited. In omparisonto model-based approahes, the estimation of parameters through NCA has severaldrawbaks. It is giving equal weight to all onentrations without taking into aountthe measurement error. Furthermore, NCA is sensitive to missing data, espeially forthe determination of Cmax and the omputation of the terminal slope. Even withoutmissing data, the interpolation of the AUC between the last sampling time and in-�nity is very sensitive to the number of samples used to ompute the terminal slope.However, even with biased geometri mean, the treatment e�et estimated by NCAare not biased whih partly explains the good results for the type I error.When the number of samples per subjet is large and the variability is not too high,tests based on individual NCA estimates remain a good approah sine they are sim-ple and showed satisfatory properties for both tested parameters. For Cmax and thesparse design, we expeted an inrease of the type I error beause there is no samplingtime orresponding to the maximal onentration whih is lose to 2 h. But even withpoor geometri mean estimates, the type I error is maintained at the nominal levelof 5%. It ould be explain by the good estimation of the treatment e�et estimatedespite the biased geometri mean. Though, for simulation with Sh,h, the global typeI error of AUC is very onservative (0.8%) whih shows the limits of NCA for datawith high residual error.The type I error of the NLMEM-based bioequivalene Wald test and LRT are rathersimilar but Wald tests are easier to perform. Indeed, the bioequivalene LRT requiresto estimate the parameters and log-likelihood of three statistial models. Further-more, there is urrently no methodology to perform a LRT on a seondary parameterif the model annot be reparameterized using this parameter (e.g. Cmax). For a Waldtest on Cmax, the delta method or simulations an be used to estimate its treatmente�et standard error. Based on our simulation study, for a one-ompartment PKmodel, the use of simulations is not more e�ient than the delta method. Indeed,22



for eah simulation setting, standard errors estimated by delta method or simulationsare really lose and the results of the type I error are similar for both estimations.However, the use of the delta method an be triky sine the analytial expression of
Cmax is not always available for omplex or nonlinear PK models.For NLMEM-based Wald tests and LRT, we found an in�ation of the type I errorwhen the onditions move away from asymptoti, i.e. for small sample size and/ordata with high variability. The use of NLMEM-based bioequivalene analysis in itsurrent proposed form would be questionable for regulatory agenies in these asesdue to onerns about potential type I error in�ation. For NLMEM-based Wald tests,the underestimation of the standard errors are responsible of the in�ation of the typeI error. Indeed, there is no in�ation when the empirial standard error is used insteadof the estimated. The empirial standard error an be used in pratie but not easilybeause of the omputing time. It requires �rst to estimate the parameters usingthe data of the linial trial of interest, then to simulate trials with the same designas the original dataset and �nally to re-estimate the parameters for eah simulatedtrial. This approah also assumes that the underlying strutural model is orretwhih is usually the ase when bioequivalene analysis is performed, as previouslymentionned. In our simulation, the number of subjets is more in�uential on thein�ation of the type I error than the number of samples. Indeed, there is a slightin�ation of the type I error for the sparse design (N = 40, n = 3) ompared to therih (N = 40, n = 10, same N) whereas the in�ation is higher for the original design(N = 12, n = 10) also ompared to the rih (same n). For NLMEM-based Wald test,this is explained by the slighter underestimation of the standard errors for the sparsedesign. The in�ation of the type I error for NLMEM-based Wald tests and LRT isnot spei� to bioequivalene tests. It is due to the asymptoti properties of thesetests and was also demonstrated for omparison tests by Panhard et al (Panhard andMentré 2005) and Wälhby et al (Wählby et al. 2001). Similarly, the underestimationof the standard errors was also related to the in�ation of the type I error for ompar-ison NLMEM-based Wald tests (Bertrand et al. 2009). A good ontrol of the type23



I error for a bioequivalene test with sparse sampling should be therefore possibleby inreasing the number of patients. Furthermore, di�erent approahes ould beexplored to orret the type I error in�ation of NLMEM-based bioequivalene tests.For NLMEM-based Wald tests, the underestimation of BSV and WSV ould explainthe underestimation of the standard errors. Even though maximum likelihood es-timation is the standard approah in NLMEM, the variane omponents are oftenunderestimated for small sample size and high variability. In linear mixed e�ets mod-els, the REML estimation is widely implemented, but in NLMEM it has been barelystudied, although the REML proedure may improve the estimation of variane om-ponents in NLMEM. Meza et al (Meza et al. 2007) developped a REML estimationproedure for the standard SAEM algorithm. They showed that the SAEM-REMLalgorithm redues bias and RMSE of the variane parameter estimates in a simu-lation study on a simple NLMEM. Further work is needed to propose the REMLestimation proedure for the extended SAEM algorithm developed for rossover trialanalysis.By improving the estimation of variane parameters, the REML estimationproedure should improve the bioequivalene Wald test. As explained in setion 2.1and 3.2, for bioequivalene Wald tests based on NCA estimates, the LMEM param-eters are estimated by REML and both test statistis follow a Student t-distributionwith degrees of freedom depending on the number of subjets. So, we perform theNLMEM-based bioequivalene Wald tests assuming a Student t-distribution under
H0 with the same number of degrees of freedom as the NCA-based bioequivaleneWald tests (unshown results). For all simulation settings, the type error dereasesompared to the NLMEM-based Wald test with a Gaussian distribution but thereis still a slight in�ation of the type I error while the use of empirial SE orrets it.To our knowledge, there is no theoritial development or evaluation of the degrees offreedom in the ontext of NLMEM. The distribution we use is more or less empirial,and further work is needed.Other approahes ould be studied suh as the orretion of the nominal level usingpermutation tests or bootstrap methods to estimate the 90% CI. However, perform-24



ing a permutation test may not be suitable for bioequivalene, and boostrap methodshave not yet been properly studied in NLMEM. In NLMEM ontext, the paired boot-strap is usually used but without taking into aount the di�erent levels of variabilityof the NLMEM. Furthermore, there is no theoritial or simulation result to justifyits appliation. To our knowledge, only two published studies adress the issue ofbootstrap in NLMEM (Das and Krishen 1999; Oaña et al. 2005). Oaña et al (Dasand Krishen 1999) proposed a bootstrap approah resampling the random e�ets andresidual errors. They evaluated it by simulation but they performed it using two-stage�tting proedure (Steimer et al. 1984) where "population" mean parameters are es-timated from individual parameters obtained after separate �tting of eah subjetdata. Further simulations studies are needed to really understand bootstrap methodsproperties in NLMEM. So, we would favor a orretion of the tests by degrees offreedom, whih is also a less omputer intensive method.The analysis of the rossover trial of three somatropin formulations shows the abilityto perform a NLMEM-based bioequivalene analysis using the SAEM algorithm on areal data set. Even with forty �xed e�ets and ten variane parameters in the statis-tial model, the SAEM algorithm onverges. Furthermore, the SAEM algorithm anhandle data below the limit of quanti�ation ontrary to NCA. The PK parameter es-timates for Genotropin® are similar to those found by Stanhope et al (Stanhope et al.2010). We perform NLMEM-based bioequivalene Wald tests and not LRT beauseresults on Wald tests and LRT are similar in the simulation study, and we would liketo perform tests on the treatment e�ets of AUC and Cmax, whih is not possible byLRT. The results of the bioequivalene analysis based on NCA and NLMEM are sim-ilar. In both ases, we assess the bioequivalene of both Omnitropee® formulations.Bioequivalene tests based on NLMEM allow one to derease the number of sam-ples per subjet, whih is of great interest for trials performed in patients. However,aution is needed for small sample size and data with high variability. With sparsesampling, the hoie of design is important notably to improve the properties of tests.For instane, Bertrand et al (Bertrand et al. 2009) showed that, for the same number25



of samples, some designs have better power than others for detetion of a pharmao-geneti e�et in a one-period trial. Design optimisation algorithms for models withdisrete ovariates and di�erent periods of treatment ould be used for rossoverstudies. They are now available in the version 3.2 of PFIM software (Bazzoli et al.2010).
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APPENDIX: DELTA METHOD FOR CMAXFor a one-ompartment model with �rst-order absorption and �rst-order elimation
Cmax is a funtion of the three PK parameters:

Cmax =
FD

V
exp

(
CL log(ka)− log(CL/V )

V ka − CL

) (5)So, βT
Cmax

is a funtion h of λka , λV/F , λCL/F , βT
ka , βT

V/F , and βT
CL/F :

βT
Cmax

=h(λka, λV/F , λCL/F , β
T
ka , β

T
V/F , β

T
CL/F )

=− βT
V/F − A2

λCL/F exp(βT
CL/F )

A1

+
λCL/F√
A6

log

(
λkaλV/F
λCL/F

) (6)The vetor of partial derivatives of h is:
∇h =

(
1

λka

(
A4

A3
− A5

A6

)
, 1
λV/F

(
A4

A3
− A5

A6

)
, 1
λCL/F

(
−A4

A3
+ A5

A6

)
, A4

A3
, A4

A3
− 1, −A4

A3

)
′ (7)where

A1 =λkaλV/F exp(βT
ka + βT

V/F )− λCL/F exp(βT
CL/F )

A2 = log

(
λkaλV/F
λCL/F

)
+ βT

ka + βT
V/F − βT

CL/F

A3 =
(
−A1λCL/F exp(βT

CL/F )
)2

A4 =A3 + A2 λka λV/F λCL/F exp(βT
ka + βT

V/F + βT
CL/F )

A5 =λkaλV/FλCL/F log(λkaλV/F/λCL/F ) + λCL/F (λCL/F − λkaλV/F )

A6 =
(
λkaλV/F − λCL/F

)2

(8)

27



REFERENCESBates, D. M. and Watts, D. G. (1988), Nonlinear regression analysis and its applia-tions, John Wiley & sons, Chihester.Bazzoli, C., Retout, S., and Mentré, F. (2009), �Fisher information matrix for non-linear mixed e�ets multiple response models: Evaluation of the appropriatenessof the �rst order linearization using a pharmaokineti/pharmaodynami model,�Statistis in Mediine, 28, 1940�1956.Bazzoli, C., Nguyen, T. T., Dubois, A., Retout, S., Comets, E., and Mentré, F.(2010), �PFIM,� url: http://www.p�m.biostat.fr/.Bertrand, J., Comets, E., and Mentré, F. (2008), �Comparison of model-based testsand seletion strategies to detet geneti polymorphisms in�uening pharmaoki-neti parameters,� Journal of Biopharmaeutial Statistis, 18, 1084�1102.Bertrand, J., Comets, E., La�ont, C., Chenel, M., and Mentré, F. (2009), �Pharma-ogenetis and population pharmaokinetis: impat of the design on three testsusing the SAEM algorithm,� Journal of Pharmaokinetis and Pharmaodynamis,36, 317�339.Chow, S. C. and Liu, J. P. (2000), Design and analysis of bioavailability and bioe-quivalene studies, Marel Dekker.Combrink, M., MFadyen, M.-L., and Miller, R. (1997), �A omparison of standardapproah and the NONMEM approah in the estimation of bioavailability in man,�The Journal of Pharmay and Pharmaology, 49, 731�733.Das, S. and Krishen, A. (1999), �Some bootstrap methods in nonlinear mixed-e�etmodels,� Journal of Statistial Planning and Inferene, 75, 237�245.Delyon, B., Lavielle, M., and Moulines, E. (1999), �Convergene of a stohasti ap-proximation version of EM algorithm,� The Annals of Statistis, 27, 94�128.28



Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), �Maximum likelihood frominomplete data via the EM algorithm,� Journal of the Royal Statistial Soiety,39, 1�38.Dubois, A., Gsteiger, S., Pigeolet, E., and Mentré, F. (2010), �Bioequivalene testsbased on individual estimates using non ompartmental or model-based analyses:evaluation of estimates of sample means and type I error for di�erent designs,�Pharmaeutial Researh, 27, 92�104.EMEA (2001), �Note for guidane on the investigation of bioavailability and bioe-quivalene,� Tehnial report, EMEA.Faui, A., Braunwald, E., Kasper, D., Hauser, S., Longo, D., Jameson, J., andLosalzo, J. (2008), Harrison's Priniples of Internal Mediine - 17th Edition,MGraw-Hill Professional, Columbus.FDA (2001), �Guidane for Industry - Statistial Approahes to establishing bioe-quivalene,� Tehnial report, FDA.Fradette, C., Lavigne, J., Waters, D., and Duharme, M. (2005), �The utility ofthe population approah applied to bioequivalene in patients,� Therapeuti DrugMonitoring, 27, 592�600.Gabrielson, J. and Weiner, D. (2006), Pharmaokineti and pharmaodynami dataanalysis: onepts and appliations, Apotekarsoieteten, Stokholm.Ge, Z., Bikel, P., and Rie, J. (2004), �An approximate likelihood approah to non-linear mixed e�ets models via spline approximation,� Computational Statistis &Data Analysis, 46, 747�776.Haushke, D., Steinijans, V., and Pigeot, I. (2007), Bioequivalene studies in drugdevelopment, John Wiley & sons, Chihester.Hu, C., Moore, K., Kim, Y., and Sale, M. (2003), �Statistial issues in a modelingapproah to assessing bioequivalene or PK similarity with presene of sparsely29



sampled subjets,� Journal of Pharmaokinetis and Pharmaodynamis, 31, 312�339.Iranmanesh, A., Grisso, B., and Veldhuis, J. D. (1994), �Low basal and persistentpulsatile growth hormone seretion are revealed in normal and hyposomatotropimen studied with a new ultrasensitive hemiluminesene assay,� The Journal ofClinial Endorinology and Metabolism, 78, 526�535.Kaniwa, N., Aoyagi, N., Ogata, H., and Ishii, M. (1990), �Appliation of the NON-MEM method to evaluation of the bioavailability of drug produts,� Journal ofPharmaeutial Sienes, 79, 1116�1120.Kuhn, E. and Lavielle, M. (2004), �Coupling a stohasti approximation version ofEM with a MCMC proedure,� ESAIM Probability and Statistis, 8, 115�131.Kuhn, E. and Lavielle, M. (2005), �Maximum likelihood estimation in nonlinear mixede�ets models,� Computational Statistis and Data Analysis, 49, 1020�1038.Lavielle, M., Meza, H., and Chatel, K. (2010), �The MONOLIX software,� url:http://software.monolix.org.Lindstrom, M. and Bates, D. (1990), �Nonlinear mixed e�ets models for repeatedmeasures data,� Biometris, 46, 673�687.Liu, J. P. and Weng, C. S. (1995), �Bias of two one-sided tests proedures in assess-ment of bioequivalene,� Statistis in Mediine, 14, 853�861.Maier, G. A., Lokwood, G. F., Oppermann, J. A., Wei, G., Bauer, P., Fedler-Kelly,J., and Grasela, T. (1999), �Charaterization of the highly variable bioavailability oftiludronate in normal volunteers using population pharmaokineti methodologies,�European Journal of Drug Metabolism and Pharmaokinetis, 24, 249�254.Meeker, W. Q. and Esobar, L. A. (1995), �Teahing about approximate on�deneregions based on maximum likelihood estimation,� The Amerian Statistiian, 49,48�53. 30



Meza, C., Ja�rézi, F., and Foulley, J.-L. (2007), �REML estimation of varianeparameters in nonlinear mixed e�ets models using SAEM algorithm,� BiometrialJournal, 49, 876�888.Oaña, J., El Halimi, R., Ruiz de Villa, C., and Sánhez, J. (2005), �Bootstrap-ping repeated measures data in nonlinear mixed-models ontext,� Universitat deBarelona IMUB.Oehlert, G. W. (1992), �A note on the delta method,� The Amerian Statistiian, 46,27�29.Panhard, X. and Mentré, F. (2005), �Evaluation by simulation of tests based onnon-linear mixed-e�ets models in pharmaokineti interation and bioequivaleneross-over trials,� Statistis in Mediine, 24, 1509�1524.Panhard, X. and Samson, A. (2009), �Extension of the SAEM algorithm for nonlinearmixed models with two levels of random e�ets,� Biostatistis, 10, 121�135.Panhard, X., Taburet, A. M., Piketti, C., and Mentré, F. (2007), �Impat of mod-elling intra-subjet variability on tests based on non-linear mixed-e�ets models inross-over pharmaokineti trials with appliation to the interation of tenofoviron atazanavir in HIV patients,� Statistis in Mediine, 26, 1268�1284.Pentikis, H., Henderson, J., Tran, N., and Ludden, T. (1996), �Bioequivalene: in-dividual and population ompartmental modeling ompared to nonompartmentalapproah,� Pharmaeutial Researh, 13, 1116�1121.Pinheiro, J. and Bates, D. (1995), �Approximations to the log-likelihood funtionin the non-linear mixed-e�et models,� Journal of Computational and GraphialStatisti, 4, 12�35.Pinheiro, J. C. and Bates, D. M. (2000),Mixed-e�ets models in S and Splus, Springer,New-York. 31



Samson, A., Lavielle, M., and Mentré, F. (2007), �The SAEM algorithm for groupomparison tests in longitudinal data analysis based on non-linear mixed-e�etsmodel,� Statistis in Mediine, 26, 4860�4875.Shuirmann, D. J. (1987), �A omparison of the two one-sided tests proedure and thepower approah for assessing the equivalene of average bioavailability,� Journal ofPharmaokinetis and Biopharmaeutis, 15, 657�680.Stanhope, R., Sörgel, F., Gravel, P., Shuetz, Y. B. P., Zabransky, M., andMuenzberg, M. (2010), �Bioequivalene studies of Omnitrope, the �rst biosim-ilar/rhGH follow-on protein: two omparative phase 1 randomized studies andpopulation pharmaokineti analysis,� Journal of Clinial Pharmaology, 50, 1339�1348.Steimer, J. L., Mallet, A., Golmard, J. L., and Boisvieux, J. F. (1984), �Alternativeapproahes to estimation of population pharmaokineti parameters: omparisonwith the nonlinear mixed e�et model.� Drug Metabolism Reviews, 15, 265�269.Vonesh, E. F. (1996), �A note on the use of laplae's approximation for nonlinearmixed-e�ets models,� Biometrika, 83, 447�452.Walker, S. (1996), �An EM algorithm for non-linear random e�ets models,� Biomet-ris, 52, 934�944.Wei, G. and Tanner, M. A. (1990), �Calulating the ontent and boundary of thehighest posterior density region via data augmentation,� Biometrika, 77, 649�652.Wählby, U., Jonsson, E. N., and Karlsson, M. O. (2001), �Assessment of atual sig-ni�ane levels for ovariate e�ets in NONMEM,� J Pharmaokinet Pharmaodyn,28, 231�252.Wu, L. (2004), �Exat and approximate inferenes for nonlinear mixed-e�ets modelswith missing ovariates,� Journal of the Amerian Statistial Assoiation, 99, 700�709. 32



Zhou, H., Mayer, P., Wajdula, J., and Fatenejad, S. (2004), �Unaltered etanereptpharmaokinetis with onurrent methotrexate in patients with rheumatoid arthri-tis,� Journal of Clinial Pharmaology, 44, 1235�1243.Zhu, M., Bifano, M., Wang, X. X. Y., LaCreta, F., Grasela, D., and P�ster, M.(2008), �Lak of an e�et of human immunode�ieny virus oinfetion on thepharmaokinetis of enteavir in hepatitis B virus-infeted patients,� Antimirobialagents and hemotherapy, 52, 2836�2841.

33



Table 1: Bias (×100) and root mean square error (RMSE ×100) of estimates ofreferene e�ets and of standard deviations for BSV, WSV, and residual error.Period λka λV/F λCL/F ωka ωV/F ωCL/F γka γV/F γCL/F b

N = 40, n = 10
Sl,l 2 bias 0 0 0 -0.2 -0.1 -0.2 -0.1 0 -0.1 0RMSE 9.2 1.3 0.2 1.3 0.3 1.1 0.6 0.1 0.3 0.44 bias -1.1 -0.2 0 -0.2 -0.1 -0.2 -0.1 0 0 0RMSE 8.7 1.3 0.2 1.1 0.3 1 0.4 0.1 0.2 0.3
Sh,l 2 bias -1.8 -0.5 0 2.7 3.6 -1.2 -0.1 -0.1 -0.2 0.1RMSE 18.5 5.8 0.5 8.6 8.9 6 1.3 0.7 0.7 0.44 bias 0.2 0.2 0 -0.4 -0.4 -1.2 -0.1 -0.1 -0.1 0.1RMSE 17.9 5.7 0.5 6.1 5.8 5.8 0.7 0.4 0.4 0.3

N = 40, n = 3
Sl,l 2 bias 0.3 -0.1 0 -0.2 -0.1 -0.2 0 0 -0.1 -0.4RMSE 11 1.7 0.2 1.6 0.4 1.1 0.9 0.3 0.5 1.54 bias -0.8 0 0 -0.3 -0.1 -0.2 -0.1 0 0 -0.2RMSE 9.5 1.6 0.2 1.2 0.3 1 0.6 0.2 0.3 0.9
Sh,l 2 bias 6.9 1.6 -0.1 2.1 -3.2 -4.2 0 -0.3 -0.3 0.3RMSE 22.8 5.8 0.4 8.9 6.3 6.8 1.9 0.9 1 2.54 bias 6.5 1.8 -0.1 2.1 -3.6 -4.2 -0.1 -0.3 -0.2 0.6RMSE 21.4 5.9 0.4 8.6 6.2 6.5 1.3 0.6 0.6 1.7NOTE: Bias and RMSE are estimated from 1000 rossover trials simulated under H0;80%with two or four periods, for the rih (N = 40, n = 10) and sparse (N = 40, n = 3) designs,and two variability settings (Sl,l and Sh,l).
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Table 2: Type I error (×100) of bioequivalene tests performed on the treatment e�et of AUC and Cmax for eah unilateral hypothesis,
H0;80% and H0;125%.

N = 40, n = 10 N = 12, n = 10 N = 24, n = 5 N = 40, n = 3NCA NLMEM NCA NLMEM NCA NLMEM NCA NLMEMWald LRT Wald LRT Wald LRT Wald LRT
Sll AUC H0;80% 4.0 5.3 5.3 5.2 9.3 8.1 4.3 7.0 6.8 5.9 4.8 4.8

H0;125% 5.1 5.2 5.2 5.2 9.3 7.6 3.8 5.8 5.6 5.1 5.6 5.2
Cmax H0;80% 6.6 4.6 (4.7) 5.1 7.3 5.3 5.2 6.8 8.5

H0;125% 6.3 6.8 5.6 8.0 5.2 8.0 5.5 6.9 (6.8)
Sh,l AUC H0;80% 5.4 4.8 5.3 4.4 11.0 10.0 5.2 9 8.2 4.5 6.4 6.0

H0;125% 6.1 6.6 6.0 4.7 10.7 8.9 3.9 6.7 6.8 5.1 8.6 7.2
Cmax H0;80% 5.1 4.9 5.3 9.1 (9.0) 6.0 6.3 (6.2) 7.2 6.9

H0;125% 5.4 5.3 5.1 8.9 6.1 7.0 6.2 6.9
Sh,h AUC H0;80% 0.8 6.0 8.3

H0;125% 0.4 5.8 5.9
Cmax H0;80% 7.0 5.8 (5.3)

H0;125% 9.3 10.3 (9.9)NOTE: The Wald tests based on NCA and NLMEM estimates are performed on the treatment e�et of AUC and Cmax. The NLMEM-basedlikelihood ratio test (LRT) is performed on CL/F (i.e. AUC) only. The type I error is estimated from 1000 two-period rossover trials simulatedunder H0;80% or H0;125% for di�erent sampling designs (N : number of subjets, n: number of samples per subjet and period) and three variabilitysettings (Sl,l, Sh,l, and Sh,h). For NLMEM-based bioequivalene Wald tests performed on the treatment e�et of Cmax, type I errors are estimatedusing the delta method or simulations. The values of both type I errors are reported only if they are not equal; in that ase, the type I error of

Cmax from simulations is in brakets.
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Table 3: Pharmaokineti parameter estimates of somatropin (standard errors) fromthe three-way rossover study on somatropin (period and sequene e�ets are notreported).
tlag (h) ka (h−1) V/F (L) CL/F (L/h) corrCL/F,V/F

λ 0.46 (0.08) 0.32 (0.05) 25.83 (6.24) 8.66 (0.86)
βT
powder -0.25 (0.08) -0.24 (0.1) -0.14 (0.12) 0.01 (0.03)

βT
solution -0.04 (0.06) -0.11 (0.11) 0.01 (0.13) 0.05 (0.03)

ω 0.38 (0.06) 0.15 (0.08) 0.39 (0.04) 0.23 (0.01) 0.95
γ 0.12 (0.06) 0.27 (0.08) 0.36 (0.04) 0.10 (0.01) 0.67
a (ng/mL) 0.12 (0.02)
b 0.14 (0.004)NOTE: The referene formulation is the Genotropin®. Treatment e�ets are estimated forOmnitrope® powder (βT

powder) and Omnitrope® solution (βT
solution)
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Table 4: Bioequivalene Wald tests using NCA and NLMEM estimates for the three-way rossover study on somatropin.NCA NLMEMFormulation Ratio 90% CI p Ratio 90% CI p
AUC

powder 0.99 [0.94; 1.03℄ 7 10−11 0.99 [0.95; 1.04℄ 3 10−17solution 0.95 [0.90; 0.99℄ 3 10−8 0.95 [0.92; 1.00℄ 5 10−12

Cmax
powder 0.95 [0.88; 1.03℄ 3 10−4 0.94 [0.84; 1.04℄ 0.008solution 0.93 [0.86; 1.01℄ 0.001 0.92 [0.83; 1.02℄ 0.015NOTE: p is the p-value of the bioequivalene Wald test. The referene formulation is theGenotropin®. The ratios orrespond to Omnitrope® powder versus Genotropin® and toOmnitrope® solution versus Genotropin®.
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Legend to �guresFigure 1. Boxplots of the estimates of the learane referene e�et (λCL/F ), or-responding ovariate e�ets (βT
CL/F , βP

CL/F and βS
CL/F ), and standard deviation ofthe between-subjet (ωCL/F ) and within-subjet (γCL/F ) variability for the hypothe-sis H0;80%. Parameters are estimated from the 1000 rossover trials simulated under

H0;80% with two or four periods, for the rih (N = 40, n = 10) and sparse (N = 40,
n = 3) designs, and two variability settings, Sl,l (top) and Sh,l (bottom). For four-period rossover trials, only the period e�et estimates β̂P

2,CL/F are displayed. Thehorizontal lines orrespond to the true simulated values.Figure 2. Boxplots of the geometri mean estimates of AUC (top) and Cmax (bottom)estimated by NCA (left) or NLMEM (right), for eah simulation setting of two-periodrossover trials, the hypothesis H0;80%, and the referene treatment. The horizontallines orrespond to the geometri means omputed from the NLMEM simulated pa-rameters.Figure 3.Boxplots of the treatment e�et on AUC (�rst row) and Cmax (third row) andtheir standard errors (seond and fourth rows) estimated by NCA (left) or NLMEM(right), for eah simulation setting of two-period rossover trials and the hypothesis
H0;80%. For NCA, βT

AUC , β̂T
Cmax

, se(βT
AUC) and se(βT

Cmax
) are obtained from LMEManalysis. For NLMEM, the estimates of βT

AUC and se(βT
AUC) are diretly obtainedfrom β̂T

CL/F and se(βT
CL/F ). The treatment e�et β̂T

Cmax
is omputed from λ̂ and β̂T ,and se(βT

Cmax
) is estimated by the delta method. The horizontal lines orrespond tothe true simulated values of the treatment e�ets. The ross symbols orrespond tothe empirial standard errors of the treatment e�et omputed for eah simulationsetting.Figure 4. Gobal type I error of the bioequivalene tests performed on the treat-ment e�et of AUC (top) and Cmax (bottom) from NCA (right) and NLMEM (left)estimates. The Wald tests based on NCA and NLMEM estimates are performedon both parameters, the likelihood ratio test (LRT) is performed only on AUC.For NLMEM-based bioequivalene Wald tests, se(βT

Cmax
) are estimated by the delta38



method. NLMEM-based bioequivalene Wald tests are performed with the estimatedor empirial standard error. The type I error is estimated from 1000 bioequivalenetrials simulated under H0;80% and H0;125% for di�erent sampling designs (N : numberof subjets, n: number of samples per subjet) and di�erent variability settings Sl,l,
Sh,l, and Sh,h. The horizontal dashed lines represent the nominal level at 5% and its95% predition interval ([3.7%; 6.4%]).Figure 5. Observed onentrations of somatropin versus time with their 90% predi-tion interval (top), and individual weighted residuals (IWRES) versus time (bot-tom) for eah treatment, Genotropin® (left), Omnitrope® powder (middle), andOmnitrope® solution (right).
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Omnitrope® powder

data below LOQ
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Visual predictive check

data below LOQ
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Individual weighted residuals versus time

Figure 5
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