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Abstract

In this work, we develop a bioequivalence analysis using nonlinear mixed effects
models (NLMEM) that mimics the standard non-compartmental analysis (NCA).
NLMEM parameters, including between (BSV) and within subject (WSV) variabil-
ity, and treatment, period, and sequence effects are estimated. We explain how to
perform a Wald test on a secondary parameter and we propose an extension of the
likelihood ratio test (LRT) for bioequivalence. These NLMEM-based bioequivalence
tests are compared to standard NCA-based tests. We evaluate by simulation the
NCA and NLMEM estimates, and the type I error of the bioequivalence tests. For
NLMEM, we use the SAEM algorithm implemented in MONOLIX. Crossover trials
are simulated under Hj using different numbers of subjects and of samples per sub-
ject. We simulate with different settings for BSV and WSV, and for the residual error
variance. The simulation study illustrates the accuracy of NLMEM-based geometric
means estimated with the SAEM algorithm, whereas the NCA estimates are biased
for sparse design. NCA-based bioequivalence tests show good type I error except for
high variability. For a rich design, type I errors of NLMEM-based bioequivalence tests
(Wald test and LRT) do not differ from the nominal level of 5%. Type I errors are
inflated for sparse design. We apply the bioequivalence Wald test based on NCA and
NLMEM estimates to a three-way crossover trial, showing that Omnitrope® powder
and solution are bioequivalent to Genotropin®. NLMEM-based bioequivalence tests
are an alternative to standard NCA-based tests. However, caution is needed for small

sample size and highly variable drug.

KEYWORDS: nonlinear mixed effects model; pharmacokinetics; non-compartmental

bioequivalence analysis; two one-sided tests; Wald test; likelihood ratio test



1 INTRODUCTION

Pharmacokinetic (PK) bioequivalence studies are performed to compare different drug
formulations. The most commonly used design for bioequivalence trials is the two-
period, two-sequence, crossover design. This design is recommended by the Food and
Drug Administration (FDA) (FDA 2001) and the European Medicines Evaluation
Agency (EMEA) (EMEA 2001). FDA and EMEA recommend to test bioequivalence
from the ratios of the geometric means of two parameters: the area under the curve
(AUC) and the maximal concentration (Cl,q,) estimated by non-compartmental anal-
ysis (NCA) (Gabrielson and Weiner 2006). As specified in the regulatory guidelines,
the bioequivalence analysis should take into account sources of variation that can
be reasonably assumed to have an effect on the endpoints AUC and C,,,,. There-
fore, linear mixed effects models (LMEM) including treatment, period, sequence, and
subject effects are usually used to analyse the log-transformed individual parameters
(Hauschke et al. 2007). Bioequivalence tests are then performed on the estimates of
the treatment effect.

NCA requires few hypotheses but a large number of samples per subject (usually be-
tween 10 and 20). PK data can also be analysed using nonlinear mixed effects models
(NLMEM). This method is more complex than NCA but has several advantages: it
takes advantage of the knowledge accumulated on the drug and can characterize the
PK with few samples per subject. This allows one to perform analyses in patients, the
target population, in whom pharmacokinetics can be different from healthy subjects.
In a previous work, Dubois et al (Dubois et al. 2010) compared the standard analysis
of bioequivalence crossover trials based on NCA to the same usual analysis based
on individual empirical Bayes estimates (EBE) obtained by NLMEM. PK data of
each treatment group were analysed separately using NLMEM. Linear mixed effects
models were then performed on individual AUC and C,,,, derived from the EBE.
However, this methodology cannot be performed when the EBE shrinkage is above
20%. Panhard and Mentré (Panhard and Mentré 2005) developed different compari-

son and bioequivalence tests based on NLMEM for the analysis of PK crossover trials



comparing two treatments. For comparison tests, they proposed both the Wald test
and the likelihood ratio test (LRT). For bioequivalence tests, they proposed the Wald
test but the LRT was not developed, due to the composite null hypothesis. They
applied these tests to two-period, one-sequence, crossover trials. In a later work,
Panhard et al (Panhard et al. 2007) demonstrated the importance of modelling the
between-subject (BSV) and within-subject (WSV) variability to control the inflation
of the type I error using the same sets of simulations as previously. In both simulation
studies, the NLMEM-based bioequivalence Wald test was performed on AUC only
because C),.,; was a secondary parameter of the PK model, as often in PK modelling.
The use of NLMEM is still rare to analyse bioequivalence crossover trials. Indeed,
there are few published studies which use NLMEM to analyse bioequivalence trials
(Kaniwa et al. 1990; Pentikis et al. 1996; Combrink et al. 1997; Maier et al. 1999; Hu
et al. 2003; Zhou et al. 2004; Fradette et al. 2005; Zhu et al. 2008). Seven of these
studies are previous to the different simulation studies (Kaniwa et al. 1990; Pentikis
et al. 1996; Combrink et al. 1997; Maier et al. 1999; Hu et al. 2003; Zhou et al. 2004;
Fradette et al. 2005). In six of these studies (Kaniwa et al. 1990; Pentikis et al. 1996;
Combrink et al. 1997; Maier et al. 1999; Hu et al. 2003; Fradette et al. 2005), bioe-
quivalence Wald tests were performed on treatment effects estimated by NLMEM,
as Panhard et al. However, all of these applied works used different statistical ap-
proaches. The addition of the treatment effect on different PK parameters was not
always justified. Only Hu et al (Hu et al. 2003) performed bioequivalence test on
average AUC' and C),,, obtained from the fixed effect estimates using Monte Carlo
simulation. Finally, none estimated the WSV or adds period or sequence effects as
recommended in the guidelines. There is currently no published simulation study or
applied work which takes into account treatment, period, sequence effects, BSV, and
WSV for the bioequivalence analysis of crossover trials by NLMEM.

In the different NLMEM-based bioequivalence analysis, NLMEM parameters were es-
timated by maximum likelihood. Except for the simulation by Dubois et al (Dubois

et al. 2010), an algorithm based on a first-order linearization was used, most often the



First-Order Conditional Estimation (FOCE) algorithm (Lindstrom and Bates 1990).
The FOCE algorithm is a widely used algorithm and corresponds to the industry
standard for model-based PK analyses. Yet, this linearization-based method cannot
be considered as fully established theoretically. For instance, Vonesh (Vonesh 1996)
and Ge et al (Ge et al. 2004) gave examples of specific designs resulting in inconsis-
tent estimates, such as when the number of observations per subject does not increase
faster than the number of subjects or when the variability of random effects is too
large. Several estimation methods of maximum likelihood theory have been proposed
as alternatives to linearization algorithms like the adaptative gaussian quadrature
(AGQ) method (Pinheiro and Bates 1995) or methods derived from the Expectation-
Maximisation (EM) algorithm (Dempster et al. 1977). The AGQ method requires
a sufficiently large number of quadrature points implying an often slow convergence
and is limited to a small number of random effects. Monte Carlo EM algorithms
as proposed by Wei and Tanner (Wei and Tanner 1990), Walker (Walker 1996), or
Wu (Wu 2004) are very time-consuming in computation since they require a huge
amount of simulated data. Alternatively, Delyon et al (Delyon et al. 1999) intro-
duced a stochastic approximation version of the EM algorithm (SAEM), which is
more efficient in terms of computation. Later, Kuhn and Lavielle (Kuhn and Lavielle
2004) developed an algorithm which combined the SAEM algorithm with a Monte-
Carlo procedure. They showed the good statistical convergence properties of this
algorithm. Recently, Panhard and Samson (Panhard and Samson 2009) developed
an extension of the SAEM algorithm for NLMEM including the estimation of the
within-subject variability.

The main objective of this work is to develop a bioequivalence analysis based on
NLMEM that mimics the standard bioequivalence analysis performed on NCA esti-
mates. To do so, we use a NLMEM including treatment, period, sequence effects,
BSV, and WSV. We also explain how to perform a Wald test on a secondary pa-
rameter of the model (like C,,,.), and we propose an extension of the LRT for bioe-

quivalence. These NLMEM-based bioequivalence tests are compared to standard



NCA-based tests. We evaluate by simulation the NCA and NLMEM estimates, and
the type I errors of the different bioequivalence tests. We use the same sets of sim-
ulations than the previous study by Dubois et al (Dubois et al. 2010) which allows
to compare the results. As in Dubois et al, we use different sampling designs and
levels of variability, investigating their influence on the results of the bioequivalence
tests. To estimate NLMEM parameters, we use the SAEM algorithm implemented
in MONOLIX. Then, we apply the Wald test based on NCA and NLMEM estimates
to a three-way crossover trial comparing three formulations of somatropin. A so-
matropin is a biosynthetic version of human growth hormone (hGH) synthesised in
bacteria modified by the addition of the gene for hGH. Replacement therapy with
somatropin is a well accepted, effective treatment for hGH deficiency in children and
adults (Fauci et al. 2008).

In Section 2 of this paper, we describe the LMEM for NCA estimates, the NLMEM
on concentrations, and the bioequivalence tests based on both approaches. In Sec-
tion 3, we present the simulation study, the estimation, and the evaluation of the
estimates and of the type I errors. We present the example in Section 4, followed by

a discussion in Section 5.

2 MODELS AND BIOEQUIVALENCE TESTS IN CROSSOVER
TRIALS

In the following, we consider crossover pharmacokinetic trials with C' treatments, K

periods, and () sequences.

2.1 Models

Linear Mixed Effects Model for NCA

The standard bioequivalence analysis recommended by FDA and EMEA (FDA
2001; EMEA 2001) is based on NCA individual estimates of AUC" and C,,.,. We

define 0y the [ individual parameter (AUC if | = 1 or C,,q, if [ = 2) for subject



i (i =1,---,N) at period k (k = 1,---,K). The individual parameters are log-

transformed and analysed using a linear mixed effects model written as follows:

log(ix) = v + BlT’ Tir + ﬁlp’ P, + ﬁlsl S; + i + €ip (1)

where v, is the expected value corresponding to the combination of covariate refer-
ence classes. 3], ﬁlp, and Bls are the vectors of coefficients of treatment, period, and
sequence effects for the (" individual parameter (AUC or Cpner). Tig, Pr, S; are the
known vectors of treatment, period, and sequence covariates of size C', K, and @),
respectively. Ty is composed of zeros except for the ¢ element (c = 1,--- ,C) which
is one when treatment c is given to patient ¢ at period k. Similarly, P, and S; are
composed of zeros except for the k* and ¢ elements (k =1,--- K, g=1,---,Q)
which are one. We consider that the first treatment, period, and sequence are the
reference classes. The first elements of 3], 3], and ﬁf are fixed to zero, and other
components are estimated. It is assumed that the random subject effect 7; and the

residual error €;;; are independently normally distributed with zero mean.

Nonlinear Mixed Effects Modelling

We denote by y;;, the concentration for subject ¢ (i = 1,---, N) at sampling time
j(G=1,---,ny) for period k (k=1,---, K). We define f to be the nonlinear phar-
macokinetic function which links concentrations to sampling times. The nonlinear

mixed effects model can be written as:

Yijk = [(tijk, Yir) + 9(tiji, Vik) €ijk (2)

with ;. the p-vector of pharmacokinetic parameters of subject ¢ for period k.
9(tijes Wik) €iji is the residual error where €, is a Gaussian random variable with
zero mean and variance one. All ¢, are independent and identically distributed.

We consider a combined error model, additive plus proportional, with ¢(¢;;x, Yik) =



a+ bf (tijw, Yir)-
The statistical model used for the individual parameters 1;; is derived from the lin-
ear mixed effects model used to analyse the NCA individual estimates. So, the [*"

component of 1);y is defined as:
log(vir) = log(\) + BF Ty, + BY" Py, + 55/ S; + N + Kik (3)

with A = (\;0 = 1,---,p) the p-vector of fixed effects for the covariate reference
classes. The known vectors of the treatment, period, and sequence covariates, Ty,
Py, and S;, are defined as for NCA (section 2.1). 3], ﬁlp, and ﬁls are the vectors of
coefficients of treatment, period, and sequence effects for the {** PK parameter. As
previously mentioned, we consider that the first treatment, period, and sequence are
the reference classes. The first elements of 3}, ﬁlp , and ﬁls are fixed to zero, and other
components are estimated. n; = (n;;1 = 1,--- ,p) is the vector of random effects of
subject ¢ corresponding to the between-subject variability. ki, = (ks =1, ,p)
is the vector of random effects of subject ¢ at period k corresponding to the variability
between periods of treatment for the same individual, or within-subject variability.
These random effects are assumed to be normally distributed with zero mean and
covariance matrix of size p X p named Q and T', respectively. We define w? and 77 the
variance for BSV and WSV of the [** parameter, corresponding to the {** element of
the diagonal of  and I'. 1;, Kk, and €5, are assumed to be mutually independent.
Finally, the unknown population parameters of the statistical model are the fixed

effects ("reference" and covariate effects) and the variance parameters (2, I', a, b).

2.2 Two-One Sided Tests

The bioequivalence test is performed on the ¢ treatment effect of the {** param-
eter, ﬁg:l (c=2,---,Cand l =1,2 for NCAorl=1,---,pfor NLMEM). Its null
hypothesis is Ho: {f], < =0 or 3, > §} which is decomposed in two one-sided hy-

potheses Hy_s: {81, < —0} and Hys: {7, > 6}. The bioequivalence test is based



on Schuirmann’s two one-sided tests (TOST) procedure (Schuirmann 1987). Hy _s
and Hy; are tested separately by a one-sided test. The global null hypothesis H,
is rejected with a type I error « if both one-sided hypotheses are rejected with a
type I error a. The p-value of the TOST is the maximum of both p-values of the
one-sided tests. The major issue of a bioequivalence test is to define §. To assess
pharmacokinetic bioequivalence, the guidelines (FDA 2001; EMEA 2001) recommend
0 = log(1.25) = 0.22 (i.e. —0 = log(0.8)) for log(AUC') and log(Claz). Due to the
linear model on log-parameters, these bounds corresponds to 80%-125% on the pa-

rameter scale.

Wald Tests Based on NCA Estimates

In the following, we call se( ch) the standard error of the treatment effect estimate

AZI. We also define W_; = (EZ, +0)/se(BL;) and W5 = (EZ, —8)/se(BY), the two
Wald statistics for the one-sided hypotheses H,_s5 and H s, respectively. For the
standard NCA-based bioequivalence analysis, we assume that W_s and Wjs follow a
Student t-distribution with df degrees of freedom under Hy _s and Hy s, respectively.
The global null hypothesis Hy is rejected with a type I error o if W_s > ¢;_,(df ) and
Ws < —t1_o(df), where t1_,(df) is the (1 — a) quantile of the Student t-distribution
with df degrees of freedom. For balanced datasets (i.e. with N subjects for each
period), df = N — 2 (Hauschke et al. 2007; Chow and Liu 2000). An alternative ap-

proach to perform a bioequivalence test is to compute the (1 —2a) confidence interval

(CI) of BL,. Hy is rejected if this (1 — 2) CI lies within [0;J].

Wald Test Based on NLMEM Estimates

For the bioequivalence Wald test using NLMEM estimates, we use a very simi-
lar approach to NCA-based bioequivalence Wald test. Same notations are used for
NLMEM-based analyses as for NCA. For NLMEM, we assume that W_s and Wj
follow a Gaussian distribution under Hy _; and Hys, respectively. The global null

hypothesis Hy is rejected with a type I error o if W_5 > 2z, and W5 < —z1_,,



where z1_,, is the (1 — ) quantile of the standard normal distribution. The rejection
of Hy can also be based on the (1 — 2a) CI as described previously (section 2.2).

To mimic the standard bioequivalence analysis, we would like to perform the NLMEM-
based bioequivalence Wald test on AUC and C,,,, which are often secondary pa-
rameters of the PK model. So, we propose an approach to perform the NLMEM-
based bioequivalence Wald on a secondary parameter. A secondary parameter is a
function of the PK parameters of the structural model. Its ¢ treatment effect is
BZSP = h(X, BT) with h the function linking ﬁZ:SP to the PK parameters, A the refer-
ence effects, and B the ¢ treatment effects. To perform a bioequivalence Wald test
on the ¢ treatment effect of a secondary parameter, BZSP and its standard error,
se(fBLgp), should be estimated. By definition, BZ:SP = h(, B\Z) However, se(8Lgp)
cannot be directly computed as h is usually a nonlinear function. We propose to
approximate it using the delta method (Oehlert 1992) or simulations. For the delta
method, we use the partial derivatives of h, the fixed effect estimates (X,Bf), and

their estimated covariance matrix f), which is a submatrix of the inverse of the Fisher

information matrix estimate: se(5lgp) = \/Vh(x, BTY S Vh(X, BT). To estimate
se(BLgp) by simulations, we simulate 5! gp N, times using a Gaussian distribution
with mean the fixed effect estimates (X,37) and covariance matrix 3. Then, se(Blsp)

is estimated as the standard deviation of the N, simulated 5! ¢p.

Likelihood Ratio Test Based on NLMEM Estimates

There is no simple extension of the likelihood ratio test for the composite null hy-
pothesis of a bioequivalence test. Therefore, for a parameter of the PK model, we
develop a methodology to perform a NLMEM-based bioequivalence LRT based on
profile likelihood methods (Bates and Watts 1988; Meeker and Escobar 1995). Let
us define M,y to be the NLMEM where all fixed effects are estimateed and M;,.; the
NLMEM where 5;% is fixed to 0 and all other parameters (including the other compo-
nents of ﬁlT) are estimated. The proposed approach test whether the likelihood-based

confidence interval of Efl lies within [—4;d]. To do so, we perform two "one-sided"



LRT taking into account B;‘Fl estimated with M,;, and the estimation of the log-
likelihood of three models My, M_s5.;, and Ms.;. We define the statistic As.; as
follows: As.; = —2 X (Lseq — Lau) with Lyy and Ls.; the estimated log-likelihoods
for the models M,; and Ms,;, respectively. The null hypothesis Hy_s is rejected
with a type [ error o if A_5.; > x3(1 — 2a) and —§ < Agl, where x?(1 — 2a) is the
(1 —2a) quantile of the Chi-squared distribution with one degree of freedom. Hy s is
rejected if As.; > x3(1 — 2a) and Agl < 0. Consequently, the global null hypothesis
Hy is rejected with a type I error av if —6 < Agl < dand A _s5.; > x3(1 — 2a) and

A(S,CJ Z X%(l — 2(1/)

3 SIMULATION STUDY
3.1 Simulation Settings

We use the concentration data of the anti-asthmatic drug theophylline to define the
population PK model for the simulation study. These data are classical in population
pharmacokinetics (Pinheiro and Bates 2000) and have been used in previous simu-
lation studies (Panhard and Mentré 2005; Panhard et al. 2007; Dubois et al. 2010).
We assume that concentrations can be described by a one-compartment model with

first-order absorption and first-order elimination:

f(t, ke, CL/F,V/F) = %ﬁ;ka (exp( —ky t) — exp( —CL/V 1)) (4)

where D is the dose, F' the bioavailability, k, the absorption rate constant, C'L the
clearance of the drug, and V' the volume of distribution.

We simulate two-treatment, two-sequence, crossover trials with two or four periods.
For each two-period trial, the N/2 subjects of the first sequence receive the reference
treatment (Ref) and the test treatment (7est) in period one and two, respectively.
The other N/2 subjects allocated to the second sequence receive treaments in the

reverse order. For each four-period trial, the N/2 subjects of the first sequence re-



ceive the treatment Ref in periods one and three, and the treatment Test in periods
two and four. The N/2 subjects of the second sequence receive the treament Test in
periods one and three, and the treatment Ref in periods two and four.

We consider that sampling times are similar for all subjects and all periods. So,
j=1,---,n, where n is a fixed number of sampling times for each simulated sam-
pling design. We use four different sampling designs, which are also used by Dubois
et al (Dubois et al. 2010). We simulate with the original design with N = 12 subjects
and n = 10 samples per subject and per period, taken at the times of the initial
study (0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12, and 24 h after dosing). We also simulate with
an intermediate design with N = 24 subjects and n = 5 samples, taken at 0.25, 1.5,
3.35, 12, and 24 h after dosing, a sparse design with N = 40 subjects and n = 3
samples, taken at 0.25, 3.35, and 24 h after dosing, and a rich design N = 40 subjects
and n = 10 samples, taken at the times of the initial study.

For the simulation study, we assume that o = 5% and 0 = log(1.25). We fix the
dose to 4 mg for all subjects. The vector of population parameters A is composed of
Ak, = 1.48 b1 Acryp = 40.36 mL/h, and Ay p = 0.48 L for the reference treatment.
We assume that the bioavailability changes between treatments, i.e., we assume the
same modification for CL/F and V/F. It also similarly affects both secondary pa-
rameters AUC and C,,, with AUC = FD/CL and C,,,, defined in Equation 5 of
the Appendix. In the following, as we consider only two treatments in the simula-
tion study, we omit the subscript ¢; we define ﬁgL P and B‘:C/ - the treatment effect on
CL/F and V/F for the treatment Test (8], = 0). As suggested by Liu and Weng (Liu
and Weng 1995), the type I error of the bioequivalence test can be evaluated for each
boundary of Hy space, i.e., log(0.8) and log(1.25). Consequently, we simulate under
two different hypotheses: BgL/F = 65/17 = log(0.8) and ﬁgL/F = 55/1; = log(1.25)
which are the boundaries of Hyjog(0.8) and Hy jog(1.25), respectively. In the following,
we call Hogoy and Ho.q259 these two simulated hypotheses. We assume no period
effect or sequence effect, and 2 and I' are diagonal.

We simulate with two levels of variability for the between-subject and within-subject

10



variability. For the low level of variability, we fix wy, and wer/r to 0.2, and wy/r to
0.1; Y&,, Ycor/r and vy p are fixed to half BSV for the three parameters. For the high
level, we fix the three standard deviations to 0.5 for BSV, and 0.15 for WSV. We also
simulate with two levels of variability for the residual error: a = 0.1 mg/L, b =0.10
for the low level, and a = 1 mg/L, b = 0.25 for the high level. The high level of
residual error is only used with the high level of BSV and WSV. We call S;; the
variability setting with low variability for BSV, WSV, and for the residual error. Sy
is the variability setting corresponding to high variability for BSV, WSV, and low for
the residual error. Finally, S, 5 is the variability setting with high variability for BSV,
WSV, and for the residual error. In the following, we call a simulation setting the
association of one design with one variability setting and one simulated hypothesis.

We simulate crossover trials with 2 periods under Hygo and Hy,25%. In that case,
for each sampling design, we simulate using the variability settings S;; and S;;. We
simulate using S5, only for the intermediate design. We simulate crossover trials
with 4 periods under Hygoy using rich and sparse sampling designs, and the two
variability settings S;; and Sy, ;. All simulations are performed using the statistical
software R 2.7.1. We use the function rmvnorm of the package mvtnorm, which is a
pseudorandom number generator for the multivariate normal distribution. For each
simulated trial, we specify the seed using the function set.seed in order to make

simulations reproducible.

3.2 Estimation
NCA

As in Dubois et al (Dubois et al. 2010), we estimate AUC and C,,,, by non compart-
mental analysis (Gabrielson and Weiner 2006) using a R function which we develop.
For a crossover trial, this function provides the estimation of different NCA param-
eters for each subject and each treatment group. In this study, we use the linear
trapezoidal rule to compute the AUC)_;45: between the time of dose (equal to 0) and

the last sampling time. To obtain the total AUC' (between the time of dose and in-

11



finity), we estimate the terminal slope equal to C'L/V using the logarithm of the last
concentrations to perform a log-linear regression. To do so, we use a fixed number
of concentrations which depends on the number of samples per subject in the design.
For the original and rich designs where n = 10, we use the last four concentrations
which correspond to sampling times 7, 9, 12 and 24 h. For intermediate and sparse
designs where n = 5 and n = 3 respectively, we use the last two concentrations which
correspond to sampling times 12 and 24 h for the intermediate design, and to 3.35
and 24 h for the sparse design. For all designs, C,,,. is estimated as the maximal
observed concentration.

The analysis of log parameters by LMEM is then performed using the R function
1me from the package nlme. For the estimation of LMEM parameters (including the
treatment effect and its SE), the restricted maximum likelihood (REML) preocedure
is used, as recommended in the guidelines (FDA 2001; EMEA 2001). For the original
design where N = 12, df = 10. For the rich and sparse design where N = 40, df = 38.
For the intermediate design where N = 24, df = 22.

All computations including the dataset simulation, the estimation by NCA, and the
standard bioequivalence analysis by LMEM are made under R 2.7.1. The different R

scripts are available upon request to the corresponding author.

NLMEM

We estimate the NLMEM parameters (included treatment, period, sequence effects,
BSV and WSV) by maximum likelihood using the SAEM algorithm (Panhard and
Samson 2009) implemented in MONOLIX (Lavielle et al. 2010). Estimation of stan-
dard errors (SE) and log-likelihood are also needed to perform Wald and likelihood
ratio tests, respectively. SE can be evaluated as the square root of the diagonal ele-
ments of the inverse of the Fisher information matrix estimate which has no analytic
form. In MONOLIX, one method to evaluate this matrix is to derive an approximate
expression by the linearization of the function f around the conditional mean of the

individual parameters obtained with the SAEM algorithm. Although linearization-

12



based algorithms are not recommended to estimate NLMEM parameters, satisfactory
results for SE estimation have been shown using this approach for computation of
the FIM (Bazzoli et al. 2009). There is no analytical expression of the likelihood in
NLMEM. In MONOLIX, it is proposed to estimate the log-likelihood of the obser-
vations without approximation using the Importance Sampling (IS) method (Kuhn
and Lavielle 2005; Samson et al. 2007). The IS method is a Monte-Carlo procedure
where individual parameters are simulated at each iteration using an instrumental
distribution adequately chosen to reduce the variance of the estimator.

NLMEM parameters, standard errors and log-likelihoods are estimated with MONO-
LIX 2.4., supported by MATLAB R2007a. The use of MONOLIX software for the
analysis of crossover bioequivalence trials is explained in a online Supplementary Ma-

terial 1.

3.3 Evaluation Methods
Estimates

The SAEM algorithm used for the estimation of NLMEM parameters has not been
evaluated for models including treatment, period, sequence effects, BSV, and WSV.
Therefore, we evaluate the SAEM algorithm for two and four-period crossover trials
with the rich and sparse design. We use the H.gyy simulation settings of the two
variability settings S;; and S ;. There are 8 different simulation settings used (2 or
4 periods, rich or sparse design, S;; or Sy, variability). We fit the statistical model
M,y for the 1000 trials of each simulation setting of both types of crossover trials (2
or 4 periods). Then, for the 1000 replicates, we compute the bias and the root mean
square error (RMSE) for each estimated parameter.

Furthermore, in the standard bioequivalence analysis, the geometric means of AUC
and C),,, are reported for each treatment group. We evaluate those estimates for
the reference treatment, and for NCA and NLMEM. We also evaluate the treatment

effect estimates for AUC and C,,,;, and for NCA and NLMEM. Lastly, good estima-

'Supporting information may be found in the online version of this article.
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tion of the standard error is important when performing Wald tests. So, we evaluate
the SE of the treatment effect estimates, for NCA and NLMEM. To evaluate the
geometric means, the treatment effects, and their SE we use the two-period crossover
trials simulated under the null hypothesis Hy.go% with the four different sampling
designs (rich, original, intermediate and sparse), and the three variability settings
(Si1, Shy and Sy ). There are 9 different used simulation settings, 4 for S;; and Sy,
and 1 for Sy, where only the intermediate design is simulated. For NCA, for each
simulated trial, the geometric mean of AUC' (C,,..) for the reference treatment is
computed from the N individual estimated AUC (Ciuqy). For NLMEM, due to the
log-normal distribution of the random effects, the fixed effect estimates for the refer-
ence classes correspond to the geometric mean estimates for the reference treatment.
So, the NLMEM-based geometric mean of AUC' for the reference treatment is directly
obtained from the clearance estimate as AUC = FD/CL. For C,,,,, the geometric
mean is computed from the fixed effect estimates using Equation 5 of the Appendix.
For NCA and NLMEM estimates, the geometric means are compared to the AUC or
Cinae computed from the NLMEM simulated parameters. For NCA, the treatment
effect on AUC' and C,,,, are estimated by LMEM as explained in section 2.1. For
NLMEM, due to the linear covariate model on log-parameters, BZUC = —BgL/F. The
treatment effect Bgm is computed from X and ET using Equation 6. For NCA and
NLMEM estimates, the treatment effect estimates are compared to the simulated
value of the treatment effect. For NCA, standard errors of the treatment effect are
estimated by LMEM. For NLMEM, as EZ;UC = —B\gL/F, their standard error are
equal. The SE of Bgm is estimated by the delta method and simulations (with
Ns; = 10000). For the delta method, the expression and details are given in the
Appendix. The estimated standard errors of the treatment effect are compared to
the corresponding empirical standard error for NCA and NLMEM estimates. For
one simulation setting and one approach (NCA or NLMEM), the empirical standard

error is computed as the standard deviation of the 1000 treatment effect estimates.
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Type I Error

To evaluate the type I error of the bioequivalence tests, we use the two-period

crossover trials simulated with the four different sampling designs, both hypotheses
and the three variability settings. There are 18 different simulation settings used, 8
for S;; and Sy, and 2 for Sj, ;, where only the intermediate design is simulated. The
simulation settings under Hy.goy are also used to evaluate the estimates of AUC and
Crnaz (section 3.3).
We perform the bioequivalence Wald test based on NCA estimates on AUC and C),,45.
For NLMEM, tests on CL/F and AUC' are equivalent because BA%FUC = —BgL/F and
se(Blye) = se(ﬁgL/F). So, the NLMEM-based bioequivalence Wald test and LRT
are performed on AUC. As ()4 is a secondary parameter of the NLMEM, only
the NLMEM-based Wald test is performed on this parameter, and not the LRT. For
NLMEM, the treatment effect Egm is computed from X and BT. I[ts standard error
is estimated both by the delta method and by simulations (with Ny = 10000). For
AUC and C,,4,, the NLMEM-based bioequivalence Wald test is performed using esti-
mated and empirical SE. For C,,,., it is performed using estimated SE obtained from
the delta method and simulations, for comparison. For each one-sided hypothesis
Hy.g09 and Hy.195%, the type I error is estimated by the proportion of the simulated
trials for which the null hypothesis Hj is rejected. The global type I error is defined
as the maximum value of both estimated type I errors (Dubois et al. 2010; Panhard
and Mentré 2005). For 1000 replicates, the 95% prediction interval (95% PI) for a
type I error of 5% is [3.7%; 6.4%).

3.4 Results

Evaluation of the Estimates

For the evaluated settings, all NLMEM parameters including treatment, period,
sequence effects are estimated by the SAEM algorithm. Boxplots of the estimates of
the clearance reference effect, the corresponding covariate effects and the standard

deviations of BSV and WSV are displayed in Figure 1. For the six parameters and
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both variability settings, the distribution is narrower when the number of samples or
periods increases. For all simulation settings of both types of trials, the median of the
fixed effects is close to the corresponding simulated value. For BSV and WSV, the
median of the estimates is closer to the simulated value for four-period trials than for
two-period trials. For the variability setting Sy ;, BSV and WSV are slightly under-
estimated especially for the sparse design. Similar results (not shown) are obtained
for both PK parameters, k, and V/F. Table 1 provides the bias (x100) and RMSE
(x100) of estimates of the reference effects and the standard deviations for BSV,
WSV, and residual error. For all simulation settings and both types of crossover tri-
als (2 or 4 periods), there is no bias and RMSE are small for the reference effects and
the residual error. For BSV and WSV, bias decreases when the number of samples
increases. For all parameters, RMSE decrease when the number of samples increases.
Furthermore, RMSE are smaller for S;; than for Sj,; and smaller for four-period tri-
als than for two-period trials. The same observations are made for covariate effects
(results not shown).

For each simulation setting of two-period crossover trials of the hypothesis H.go% and
for NCA and NLMEM, boxplots of the reference treatment geometric mean estimates
of AUC and C,,,, are displayed in Figure 2. For AUC and C,,,., and for NCA and
NLMEM estimates, the distribution is narrower when the variability is smaller. For
NCA estimates, the median of the estimates is closer to the true simulated mean
for the rich design, and there is a clear and very large bias of the geometric mean
estimates for sparse design. For NLMEM estimates, the median of the estimates is
close to the true simulated mean for all simulation settings. Figure 3 displays the
boxplot of the treatment effect estimates on AUC and C),,, and their standard er-
rors for NCA and NLMEM estimates. The standard errors se(ﬁgmw) are estimated
by the delta method, and very similar results are obtained by simulations. For NCA
and NLMEM, for both parameters and all simulation settings, the median of the esti-
mated treatment effects is close to the simulated value. Furthermore, the distribution

is narrower when the variability decreases or when the number of subjects increases.
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The distribution of the estimated standard errors is narrower and the empirical stan-
dard error is smaller when the variability decreases or when the number of subjects
increases. For both parameters, the median of the estimated standard error is closer
to the empirical one when the variability decreases. For the original design under
Sp, and the intermediate design under Sy p,, standard errors of both parameters are

underestimated for NCA and NLMEM estimates.

Evaluation of the Type I Error

Table 2 provides type I errors of bioequivalence tests performed on the treatment
effects of AUC', and C),,, for each one-sided hypothesis and each sampling design of
two-period crossover trials. Mostly, for all tests and both parameters, type I errors
of both hypotheses are close. Only the type I errors for C),,, and the Sy ) setting
are somewhat different. For Wald tests based on NCA estimates, and for S;; and Sp
settings, type I errors do not differ from the nominal level of 5%. For S, setting,
the type I errors are much too conservative for AUC, and are inflated for C,,,,. For
the NLMEM-based Wald test, type I errors for C,,,, using SE obtained by the delta
method or simulations are identical. For AUC, type I errors of the NLMEM-based
Wald test are close to type I errors of the LRT. For the rich design (V = 40, n = 10),
type I errors of both tests do not differ from the nominal level of 5%. However, for
each simulation setting, there is an increase of the type I error of both tests when the
number of subjects and/or the number of samples decreases.

The left hand side of Figure 4 displays the global type I error for AUC (top) and
Chnaz (bottom) versus the design for each variability setting for the Wald test based
on NCA estimates. For both parameters, the global type I error lies in the 95%PI of
the nominal level for all the designs of S;; and Sj; settings. For the S}, ; setting, it
is too conservative for AUC and inflated for C),,,. The right hand side of Figure 4
displays the global type I error of the NLMEM-based Wald test using the estimated
or empirical standard error, and the NLMEM-based LRT. For the Wald tests using

estimated SE and LRT, and for both parameters, the global type I error lies in the
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95%PT of the nominal level for the rich design. It increases when the number of
subjects or the number of samples decreases and is lower for S;; than for Sj;.For
the NLMEM-based Wald test using the empirical SE, it can be seen that for both
parameters the global type I errors almost never differ from the nominal level of 5%
showing the influence of the underestimation of the standard errors on the properties

of the NLMEM-based Wald test.

4 APPLICATION

In 2005, somatropins available in the United States (and their manufacturers) in-
cluded Nutropin® (Genentech), Humatrope® (Lilly), Genotropin® (Pfizer), Norditro-
pin® (Novo), and Saizen® (Merck Serono). In 2006, the FDA approved a new somat-
ropin called Omnitropee® (Sandoz). For this approval, bioequivalence crossover trials
were performed. We analyse one of them with the standard NCA-based approach and
the proposed NLMEM-based approach. Then, we perfom the bioequivalence Wald
test using NCA and NLMEM estimates.

4.1 Material and methods

A randomized, double-blind, single-dose, 3-way crossover study with three treat-
ments, three periods, and six sequences was conducted to compare the pharmacoki-
netic parameters of Omnitrope® powder for solution for injection, Omnitrope® 3.3
mg/mL solution for injection, and Genotropin® powder for solution after a single sub-
cutaneous dose of 5 mg. Thirty-six healthy caucasian adults were recruited and they
received octreotide for endogenous hGH suppression before each treatment period.
The three treatment periods were separated by a seven day wash-out period. Blood
samples for pharmacokinetic assessments were collected after dose administration for
each period at times 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, and 24 h. Concentrations were
measured by chemiluminescent immunometric assay (Iranmanesh et al. 1994) with a

limit of quantification (LOQ) of 0.2 ng/mL. Figure 5 (top) displays concentrations
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versus time for the three formulations. There are very few concentrations below LOQ
for the last sampling times.

We analyse the data with NCA and NLMEM using the SAEM algorithm implemented
in MONOLIX 2.4. For NCA analysis, we use the linear trapezoid rule to estimate
AUCy_yqst- To obtain the total AUC, we compute the terminal slope by log-linear
regression using 2 to 4 sampling times. As described in 2.1, the log-transformed indi-
vidual AUC and C,,,, are then analysed using a LMEM including treatment, period,
sequence, and subject effects. The reference classes are the Genotropin® treatment,
the first period, and the sequence Genotropin® - Omnitrope® powder - Omnitrope®
solution for the treatment, period, and sequence covariates, respectively.

For NLMEM analysis, we use a one-compartment model with first-order absorption
with a lag time (#,,) and first-order elimination to describe the data. With this
model, for sampling times before #;,,, concentrations are null. For sampling times
after t;,4, concentrations are described by Equation 4 replacing ¢ by ¢ — ¢;,4. To de-
termine the structure of the random effects matrices and the residual error model,
we analyse the Genotropin® data. Models are compared using the Bayesian Infor-
mation Criteria (BIC), the best statistical model corresponding to the smallest BIC
(Bertrand et al. 2008). For the structure of the BSV matrix, we test diagonal, block
diagonal, and complete matrices. Regarding the error model, we test a homoscedastic
(b = 0) and a combined error model. For the analysis of all data, the structure of
the WSV matrix is chosen to be identical to the structure of the BSV matrix deter-
mined during the analysis of the Genotropin® data. We add treatment, period, and
sequence effects on the four PK parameters. The reference classes are the same as
for NCA analysis. After fitting the data, the model is graphically evaluated using
the individual weighted residuals (IWRES) and the 90% prediction interval for each
formulation. For the model evaluation, from the final statistical model and its esti-
mates, we simulate 200 datasets based on the structure of the original data (dose,
covariates). For each formulation, we compute the 5% and 95% percentiles of the

simulated time-course distribution to obtain the 90% prediction interval. The corre-
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spoding graph is called a Visual Predictive Check.
We perform bioequivalence Wald tests on AUC and C,,,, using NCA and NLMEM
estimates with a type I error of 5%. For NLMEM, we compute the treatment effect

on Ci,., using fixed effects estimates and its standard error by the delta method.

4.2 Results

For the analysis of the Genotropin® data, the best statistical model include BSV
for all PK parameters with a correlation between the clearance and the volume of
distribution, and a combined error model. Parameter estimates (except period and
sequence effects) are displayed in Table 3 with their standard errors. Precision of
estimation is judged satisfactory for all parameters. Concentrations of somatropin
versus time with their 90% prediction interval and the IWRES versus time are dis-
played in Figure 5 for each treatment group. These model evaluation plots are judged
satisfactory.

After estimating the parameters by NCA and NLMEM, we perform bioequivalence
Wald tests on AUC and C,,,, for both formulations of Omnitrope®. The results of
those tests are displayed in Table 4 with the ratios of AUC and C,,,,, the corre-
sponding 90% CI, and the p-values of the bioequivalence Wald tests. With a type I
error of 5%, AUC and C,,,, of Omnitrope® powder and solution are bioequivalent

to those of Genotropin® using NCA and NLMEM bioequivalence analysis.

5 DISCUSSION

In this study, we evaluate the type I error of NLMEM-based bioequivalence tests
performed on the treatment effect estimates when treatment, period, and sequence
effects but also within-subject variability are taken into account during the NLMEM
estimation. This new approach is compared to the standard non-compartmental
analysis where bioequivalence Wald tests are performed on the treatment effect esti-

mated by linear mixed effects model taking into account the same three covariates,
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BSV (corresponding to the random subject effect) and WSV (i.e. residual error).
Concerning the NLMEM-based bioequivalence tests, we show how Wald tests can be
performed on a secondary parameter such as C),,, which allows the extension of the
standard bioequivalence analysis based on NCA estimates to the NLMEM context.
Furthermore, for a parameter of the PK model, we extend the likelihood ratio test
for bioequivalence.

As Panhard et al (Panhard et al. 2007), and Dubois et al (Dubois et al. 2010), we simu-
late under a one-compartment PK model and estimate the NLMEM parameters using
the same model. So, we do not study the impact of having the incorrect model being
used in the bioequivalence NLMEM-based tests, and how would it compare to the
NCA approach in that case. Nevertheless, when bioequivalence analysis is performed,
there is already accumulated information on the drug and the pharmacokinetic model
is usually known. Furthermore, even if NCA is known as a "model-free" approach, it
assumes linear terminal elimination and provides meaningless parameters when it is
applied to nonlinear pharmacokinetics. So, the problem of estimating with a "wrong"
model could exist for NCA and NLMEM.

The NLMEM-based bioequivalence analysis requires to estimate many parameters.
So, a robust algorithm has to be used. The simulation study illustrates the accuracy
of the SAEM algorithm, especially in the context of bioequivalence analysis. We
show that biases and RMSE obtained by the SAEM algorithm are satisfactory for all
parameters although BSV and WSV are slightly underestimated for large variability
and low number of patients. These results are similar to those obtained by Panhard
and Samson (Panhard and Samson 2009). As expected, biases and RMSE decrease
when the amount of information increases (by the increase of the number of patients
or periods). All fixed effects are correctly estimated with no bias, which is of great
interest for testing treatment effect estimates. The good estimation of the fixed ef-
fects using the SAEM algorithm leads to a good estimation of the geometric means
of AUC and ()., as illustrated by our evaluation. At the opposite, this evaluation

also shows that geometric means estimated by NCA are biased for sparse design,
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especially with high variability. Usually, NCA is used with rich designs where there
are about ten to twenty samples per subject. This method is not well suited for trials
performed in patients where the number of samples is often limited. In comparison
to model-based approaches, the estimation of parameters through NCA has several
drawbacks. It is giving equal weight to all concentrations without taking into account
the measurement error. Furthermore, NCA is sensitive to missing data, especially for
the determination of C,,,, and the computation of the terminal slope. Even without
missing data, the interpolation of the AUC between the last sampling time and in-
finity is very sensitive to the number of samples used to compute the terminal slope.
However, even with biased geometric mean, the treatment effect estimated by NCA
are not biased which partly explains the good results for the type I error.

When the number of samples per subject is large and the variability is not too high,
tests based on individual NCA estimates remain a good approach since they are sim-
ple and showed satisfactory properties for both tested parameters. For C,,,, and the
sparse design, we expected an increase of the type I error because there is no sampling
time corresponding to the maximal concentration which is close to 2 h. But even with
poor geometric mean estimates, the type I error is maintained at the nominal level
of 5%. It could be explain by the good estimation of the treatment effect estimate
despite the biased geometric mean. Though, for simulation with S}, 5, the global type
I error of AUC' is very conservative (0.8%) which shows the limits of NCA for data
with high residual error.

The type I error of the NLMEM-based bioequivalence Wald test and LRT are rather
similar but Wald tests are easier to perform. Indeed, the bioequivalence LRT requires
to estimate the parameters and log-likelihood of three statistical models. Further-
more, there is currently no methodology to perform a LRT on a secondary parameter
if the model cannot be reparameterized using this parameter (e.g. Cyuq.). For a Wald
test on C,,4., the delta method or simulations can be used to estimate its treatment
effect standard error. Based on our simulation study, for a one-compartment PK

model, the use of simulations is not more efficient than the delta method. Indeed,
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for each simulation setting, standard errors estimated by delta method or simulations
are really close and the results of the type I error are similar for both estimations.
However, the use of the delta method can be tricky since the analytical expression of
Cinae 18 not always available for complex or nonlinear PK models.

For NLMEM-based Wald tests and LRT, we found an inflation of the type I error
when the conditions move away from asymptotic, i.e. for small sample size and/or
data with high variability. The use of NLMEM-based bioequivalence analysis in its
current proposed form would be questionable for regulatory agencies in these cases
due to concerns about potential type I error inflation. For NLMEM-based Wald tests,
the underestimation of the standard errors are responsible of the inflation of the type
[ error. Indeed, there is no inflation when the empirical standard error is used instead
of the estimated. The empirical standard error can be used in practice but not easily
because of the computing time. [t requires first to estimate the parameters using
the data of the clinical trial of interest, then to simulate trials with the same design
as the original dataset and finally to re-estimate the parameters for each simulated
trial. This approach also assumes that the underlying structural model is correct
which is usually the case when bioequivalence analysis is performed, as previously
mentionned. In our simulation, the number of subjects is more influential on the
inflation of the type I error than the number of samples. Indeed, there is a slight
inflation of the type I error for the sparse design (N = 40, n = 3) compared to the
rich (N =40, n = 10, same N) whereas the inflation is higher for the original design
(N =12, n = 10) also compared to the rich (same n). For NLMEM-based Wald test,
this is explained by the slighter underestimation of the standard errors for the sparse
design. The inflation of the type I error for NLMEM-based Wald tests and LRT is
not specific to bioequivalence tests. It is due to the asymptotic properties of these
tests and was also demonstrated for comparison tests by Panhard et al (Panhard and
Mentré 2005) and Wilhby et al (Wahlby et al. 2001). Similarly, the underestimation
of the standard errors was also related to the inflation of the type I error for compar-

ison NLMEM-based Wald tests (Bertrand et al. 2009). A good control of the type
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I error for a bioequivalence test with sparse sampling should be therefore possible
by increasing the number of patients. Furthermore, different approaches could be
explored to correct the type I error inflation of NLMEM-based bioequivalence tests.
For NLMEM-based Wald tests, the underestimation of BSV and WSV could explain
the underestimation of the standard errors. Even though maximum likelihood es-
timation is the standard approach in NLMEM, the variance components are often
underestimated for small sample size and high variability. In linear mixed effects mod-
els, the REML estimation is widely implemented, but in NLMEM it has been barely
studied, although the REML procedure may improve the estimation of variance com-
ponents in NLMEM. Meza et al (Meza et al. 2007) developped a REML estimation
procedure for the standard SAEM algorithm. They showed that the SAEM-REML
algorithm reduces bias and RMSE of the variance parameter estimates in a simu-
lation study on a simple NLMEM. Further work is needed to propose the REML
estimation procedure for the extended SAEM algorithm developed for crossover trial
analysis.By improving the estimation of variance parameters, the REML estimation
procedure should improve the bioequivalence Wald test. As explained in section 2.1
and 3.2, for bioequivalence Wald tests based on NCA estimates, the LMEM param-
eters are estimated by REML and both test statistics follow a Student t-distribution
with degrees of freedom depending on the number of subjects. So, we perform the
NLMEM-based bioequivalence Wald tests assuming a Student t-distribution under
Hy with the same number of degrees of freedom as the NCA-based bioequivalence
Wald tests (unshown results). For all simulation settings, the type error decreases
compared to the NLMEM-based Wald test with a Gaussian distribution but there
is still a slight inflation of the type I error while the use of empirical SE corrects it.
To our knowledge, there is no theoritical development or evaluation of the degrees of
freedom in the context of NLMEM. The distribution we use is more or less empirical,
and further work is needed.

Other approaches could be studied such as the correction of the nominal level using

permutation tests or bootstrap methods to estimate the 90% CI. However, perform-

24



ing a permutation test may not be suitable for bioequivalence, and boostrap methods
have not yet been properly studied in NLMEM. In NLMEM context, the paired boot-
strap is usually used but without taking into account the different levels of variability
of the NLMEM. Furthermore, there is no theoritical or simulation result to justify
its application. To our knowledge, only two published studies adress the issue of
bootstrap in NLMEM (Das and Krishen 1999; Ocana et al. 2005). Ocana et al (Das
and Krishen 1999) proposed a bootstrap approach resampling the random effects and
residual errors. They evaluated it by simulation but they performed it using two-stage
fitting procedure (Steimer et al. 1984) where "population" mean parameters are es-
timated from individual parameters obtained after separate fitting of each subject
data. Further simulations studies are needed to really understand bootstrap methods
properties in NLMEM. So, we would favor a correction of the tests by degrees of
freedom, which is also a less computer intensive method.

The analysis of the crossover trial of three somatropin formulations shows the ability
to perform a NLMEM-based bioequivalence analysis using the SAEM algorithm on a
real data set. Even with forty fixed effects and ten variance parameters in the statis-
tical model, the SAEM algorithm converges. Furthermore, the SAEM algorithm can
handle data below the limit of quantification contrary to NCA. The PK parameter es-
timates for Genotropin® are similar to those found by Stanhope et al (Stanhope et al.
2010). We perform NLMEM-based bioequivalence Wald tests and not LRT because
results on Wald tests and LRT are similar in the simulation study, and we would like
to perform tests on the treatment effects of AUC and C),4., which is not possible by
LRT. The results of the bioequivalence analysis based on NCA and NLMEM are sim-
ilar. In both cases, we assess the bioequivalence of both Omnitropee® formulations.
Bioequivalence tests based on NLMEM allow one to decrease the number of sam-
ples per subject, which is of great interest for trials performed in patients. However,
caution is needed for small sample size and data with high variability. With sparse
sampling, the choice of design is important notably to improve the properties of tests.

For instance, Bertrand et al (Bertrand et al. 2009) showed that, for the same number
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of samples, some designs have better power than others for detection of a pharmaco-
genetic effect in a one-period trial. Design optimisation algorithms for models with
discrete covariates and different periods of treatment could be used for crossover
studies. They are now available in the version 3.2 of PFIM software (Bazzoli et al.

2010).
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APPENDIX: DELTA METHOD FOR Chax

For a one-compartment model with first-order absorption and first-order elimation

Cinae 18 a function of the three PK parameters:

_FD CL log(k,) — log(CL/V)
Crnae = =5 €xP ( Ve — CL

So, ﬁgmw is a function h of Ai,, Av/r, Acr/F, 6,21, ﬁ‘ff/F, and ﬁgL/F:
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The vector of partial derivatives of A is:
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Table 1: Bias (x100) and root mean square error (RMSE x100) of estimates of
reference effects and of standard deviations for BSV, WSV, and residual error.

)

Shi

St

)

NOTE: Bias and RMSE are estimated from 1000 crossover trials simulated under H.gyy

with two or four periods, for the rich (N = 40, n = 10) and sparse (N = 40, n = 3) designs,

Period

bias
RMSE
bias
RMSE
bias
RMSE
bias
RMSE

bias
RMSE
bias
RMSE
bias
RMSE
bias
RMSE

Ak,

0
9.2
-1.1
8.7
-1.8
18.5
0.2
17.9

0.3
11
-0.8
9.5
6.9
22.8
6.5
214

Av/F AcL/F Wk,

1.3
-0.2
1.3
-0.5
5.8
0.2
5.7

-0.1
1.7

1.6
1.6
5.8
1.8
5.9

0.2

0.2

0.5

0.5

0.2

0.2
-0.1
0.4
-0.1
0.4

and two variability settings (5;; and Sp ).

34

-0.2
1.3
-0.2
1.1
2.7
8.6
-0.4
6.1

-0.2
1.6
-0.3
1.2
2.1
8.9
21
8.6

Wy/rp  WCL/F

N =40, n=10
-0.1 -0.2
0.3 1.1
-0.1 -0.2
0.3 1
3.6 -1.2
8.9 6
-0.4 -1.2
5.8 5.8

N =40, n=3
-0.1 -0.2
0.4 1.1
-0.1 -0.2
0.3 1
-3.2 -4.2
6.3 6.8
-3.6 -4.2
6.2 6.5

Vka

-0.1
0.6
-0.1
0.4
-0.1
1.3
-0.1
0.7

0.9
-0.1
0.6

1.9
-0.1
1.3

YW/F  YCL/F

0
0.1
0
0.1
-0.1
0.7
-0.1
0.4

0.3

0.2
-0.3
0.9
-0.3
0.6

-0.1
0.3
0
0.2
-0.2
0.7
-0.1
0.4

-0.1
0.5
0
0.3
-0.3
1
-0.2
0.6

b

0.4

0.3
0.1
0.4
0.1
0.3

-0.4
1.5
-0.2
0.9
0.3
2.5
0.6
1.7
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Table 2: Type I error (x100) of bioequivalence tests performed on the treatment effect of AUC and C,,,, for each unilateral hypothesis,
Ho.g0% and Ho,125%-

N =40, n =10 N =12, n=10 N=24n=5 N =40, n=3
NCA NLMEM NCA NLMEM NCA NLMEM NCA NLMEM
Wald  LRT Wald  LRT Wald  LRT Wald  LRT
Su AUC Hyge, 40 5.3 53 5.2 9.3 81 43 7.0 68 5.9 13 13
Hygasn 5.1 5.2 52 5.2 9.3 76 3.8 5.8 56 5.1 5.6 5.2
Cmar  Hosow, 6.6 4.6 (4.7) 5.1 7.3 5.3 5.2 6.8 8.5
Hygos% 6.3 6.8 5.6 8.0 5.2 8.0 55 6.9 (6.8)
Swi AUC  Hyggr 5.4 4.8 53 44 110 100 5.2 9 82 45 6.4 6.0
Hygas9 6.1 6.6 6.0 47 107 89 39 6.7 68 5.1 8.6 7.2
Cmar  Hosow, 5.1 4.9 53 9.1(9.0) 60 6.3 (6.2) 7.2 6.9
Hygos0, 5.4 5.3 5.1 8.9 6.1 7.0 6.2 6.9
Shn AUC  Hygy 0.8 6.0 8.3
Ho.105% 0.4 5.8 5.9
Conax  Howso% 70 58 (5.3)
Ho.195% 9.3 10.3 (9.9)

NOTE: The Wald tests based on NCA and NLMEM estimates are performed on the treatment effect of AUC and Cq.. The NLMEM-based
likelihood ratio test (LRT) is performed on CL/F (i.e. AUC) only. The type I error is estimated from 1000 two-period crossover trials simulated
under Hy.ggy or Hy.q959 for different sampling designs (IN: number of subjects, n: number of samples per subject and period) and three variability
settings (Sy1, Sk, and Sy ). For NLMEM-based bioequivalence Wald tests performed on the treatment effect of Ciy,qz, type I errors are estimated
using the delta method or simulations. The values of both type I errors are reported only if they are not equal; in that case, the type I error of

Cinaz from simulations is in brackets.



Table 3: Pharmacokinetic parameter estimates of somatropin (standard errors) from
the three-way crossover study on somatropin (period and sequence effects are not
reported).

tiag (R) ka (h™1) V/F (L) CLJF (L/h) corrcr/ryv/r
B 0.46 (0.08) 032 (0.05) 25.83 (6.24) 8.66 (0.86)
T er 20.25 (0.08)  -0.24 (0.1)  -0.14 (0.12)  0.01 (0.03)
BT 0.04 (0.06) -0.11 (0.11) 0.01 (0.13)  0.05 (0.03)
w 0.38 (0.06)  0.15 (0.08) 0.39 (0.04) 023 (0.01)  0.95
0.12 (0.06) 0.27 (0.08) 0.36 (0.04) 0.10 (0.01)  0.67

(
gl (
a (ng/mL) 0.12 (0.02)
b 0.14 (0.004)

NOTE: The reference formulation is the Genotropin®. Treatment effects are estimated for

Omnitrope® powder (ﬁ;ﬂ)wder) and Omnitrope® solution (37

solution )
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Table 4: Bioequivalence Wald tests using NCA and NLMEM estimates for the three-
way crossover study on somatropin.

NCA NLMEM
Formulation Ratio  90% CI  p Ratio  90% CI  p

powder 0.99 [0.94; 1.03] 7107t 0.99 [0.95; 1.04] 3107
solution 0.95 [0.90;0.99] 310=%  0.95 [0.92;1.00] 510~'2
powder 0.95 [0.88;1.03] 310~*  0.94 [0.84;1.04] 0.008
solution 0.93 [0.86; 1.01] 0.001 0.92 [0.83; 1.02] 0.015

AUC

,_,,_,,_,,_,
—_——_—— —_——

Cmax

NOTE: p is the p-value of the bioequivalence Wald test. The reference formulation is the
Genotropin®. The ratios correspond to Omnitrope® powder versus Genotropin® and to

Omnitrope® solution versus Genotropin®.
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Legend to figures

Figure 1. Boxplots of the estimates of the clearance reference effect (Acr/r), cor-
responding covariate effects (ﬁgL/F, BgL/F and 65L/F), and standard deviation of
the between-subject (wer ) and within-subject (yor/r) variability for the hypothe-
sis Ho.go%. Parameters are estimated from the 1000 crossover trials simulated under
Ho.s09% with two or four periods, for the rich (IV = 40, n = 10) and sparse (N = 40,
n = 3) designs, and two variability settings, S;; (top) and Sy, (bottom). For four-
period crossover trials, only the period effect estimates Ef oL/ are displayed. The
horizontal lines correspond to the true simulated values.

Figure 2. Boxplots of the geometric mean estimates of AUC (top) and C,,4, (bottom)
estimated by NCA (left) or NLMEM (right), for each simulation setting of two-period
crossover trials, the hypothesis H.go%, and the reference treatment. The horizontal
lines correspond to the geometric means computed from the NLMEM simulated pa-
rameters.

Figure 3.Boxplots of the treatment effect on AUC' (first row) and C,,4, (third row) and
their standard errors (second and fourth rows) estimated by NCA (left) or NLMEM

(right), for each simulation setting of two-period crossover trials and the hypothesis
Hoygo%. For NCA, 8%, B\gmz, se(Bhuc) and se(BE ) are obtained from LMEM
analysis. For NLMEM, the estimates of 3%~ and se(8%;) are directly obtained
from EgL/F and se(ﬁgL/F). The treatment effect Bgm is computed from X and BT,
and se(SL ) is estimated by the delta method. The horizontal lines correspond to
the true simulated values of the treatment effects. The cross symbols correspond to
the empirical standard errors of the treatment effect computed for each simulation
setting.

Figure 4. Gobal type I error of the bioequivalence tests performed on the treat-
ment effect of AUC (top) and Cje, (bottom) from NCA (right) and NLMEM (left)
estimates. The Wald tests based on NCA and NLMEM estimates are performed
on both parameters, the likelihood ratio test (LRT) is performed only on AUC.

For NLMEM-based bioequivalence Wald tests, se(ﬁgmm) are estimated by the delta
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method. NLMEM-based bioequivalence Wald tests are performed with the estimated
or empirical standard error. The type I error is estimated from 1000 bioequivalence
trials simulated under Hygoy and Hy.jo5% for different sampling designs (/N: number
of subjects, n: number of samples per subject) and different variability settings .S,
Sh1, and Sp . The horizontal dashed lines represent the nominal level at 5% and its
95% prediction interval ([3.7%;6.4%)).

Figure 5. Observed concentrations of somatropin versus time with their 90% predic-
tion interval (top), and individual weighted residuals (IWRES) versus time (bot-
tom) for each treatment, Genotropin® (left), Omnitrope® powder (middle), and

Omnitrope® solution (right).
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