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Abstra
tIn this work, we develop a bioequivalen
e analysis using nonlinear mixed e�e
tsmodels (NLMEM) that mimi
s the standard non-
ompartmental analysis (NCA).NLMEM parameters, in
luding between (BSV) and within subje
t (WSV) variabil-ity, and treatment, period, and sequen
e e�e
ts are estimated. We explain how toperform a Wald test on a se
ondary parameter and we propose an extension of thelikelihood ratio test (LRT) for bioequivalen
e. These NLMEM-based bioequivalen
etests are 
ompared to standard NCA-based tests. We evaluate by simulation theNCA and NLMEM estimates, and the type I error of the bioequivalen
e tests. ForNLMEM, we use the SAEM algorithm implemented in MONOLIX. Crossover trialsare simulated under H0 using di�erent numbers of subje
ts and of samples per sub-je
t. We simulate with di�erent settings for BSV and WSV, and for the residual errorvarian
e. The simulation study illustrates the a

ura
y of NLMEM-based geometri
means estimated with the SAEM algorithm, whereas the NCA estimates are biasedfor sparse design. NCA-based bioequivalen
e tests show good type I error ex
ept forhigh variability. For a ri
h design, type I errors of NLMEM-based bioequivalen
e tests(Wald test and LRT) do not di�er from the nominal level of 5%. Type I errors arein�ated for sparse design. We apply the bioequivalen
e Wald test based on NCA andNLMEM estimates to a three-way 
rossover trial, showing that Omnitrope® powderand solution are bioequivalent to Genotropin®. NLMEM-based bioequivalen
e testsare an alternative to standard NCA-based tests. However, 
aution is needed for smallsample size and highly variable drug.Keywords: nonlinear mixed e�e
ts model; pharma
okineti
s; non-
ompartmentalbioequivalen
e analysis; two one-sided tests; Wald test; likelihood ratio test



1 INTRODUCTIONPharma
okineti
 (PK) bioequivalen
e studies are performed to 
ompare di�erent drugformulations. The most 
ommonly used design for bioequivalen
e trials is the two-period, two-sequen
e, 
rossover design. This design is re
ommended by the Food andDrug Administration (FDA) (FDA 2001) and the European Medi
ines EvaluationAgen
y (EMEA) (EMEA 2001). FDA and EMEA re
ommend to test bioequivalen
efrom the ratios of the geometri
 means of two parameters: the area under the 
urve(AUC) and the maximal 
on
entration (Cmax) estimated by non-
ompartmental anal-ysis (NCA) (Gabrielson and Weiner 2006). As spe
i�ed in the regulatory guidelines,the bioequivalen
e analysis should take into a

ount sour
es of variation that 
anbe reasonably assumed to have an e�e
t on the endpoints AUC and Cmax. There-fore, linear mixed e�e
ts models (LMEM) in
luding treatment, period, sequen
e, andsubje
t e�e
ts are usually used to analyse the log-transformed individual parameters(Haus
hke et al. 2007). Bioequivalen
e tests are then performed on the estimates ofthe treatment e�e
t.NCA requires few hypotheses but a large number of samples per subje
t (usually be-tween 10 and 20). PK data 
an also be analysed using nonlinear mixed e�e
ts models(NLMEM). This method is more 
omplex than NCA but has several advantages: ittakes advantage of the knowledge a

umulated on the drug and 
an 
hara
terize thePK with few samples per subje
t. This allows one to perform analyses in patients, thetarget population, in whom pharma
okineti
s 
an be di�erent from healthy subje
ts.In a previous work, Dubois et al (Dubois et al. 2010) 
ompared the standard analysisof bioequivalen
e 
rossover trials based on NCA to the same usual analysis basedon individual empiri
al Bayes estimates (EBE) obtained by NLMEM. PK data ofea
h treatment group were analysed separately using NLMEM. Linear mixed e�e
tsmodels were then performed on individual AUC and Cmax derived from the EBE.However, this methodology 
annot be performed when the EBE shrinkage is above20%. Panhard and Mentré (Panhard and Mentré 2005) developed di�erent 
ompari-son and bioequivalen
e tests based on NLMEM for the analysis of PK 
rossover trials1




omparing two treatments. For 
omparison tests, they proposed both the Wald testand the likelihood ratio test (LRT). For bioequivalen
e tests, they proposed the Waldtest but the LRT was not developed, due to the 
omposite null hypothesis. Theyapplied these tests to two-period, one-sequen
e, 
rossover trials. In a later work,Panhard et al (Panhard et al. 2007) demonstrated the importan
e of modelling thebetween-subje
t (BSV) and within-subje
t (WSV) variability to 
ontrol the in�ationof the type I error using the same sets of simulations as previously. In both simulationstudies, the NLMEM-based bioequivalen
e Wald test was performed on AUC onlybe
ause Cmax was a se
ondary parameter of the PK model, as often in PK modelling.The use of NLMEM is still rare to analyse bioequivalen
e 
rossover trials. Indeed,there are few published studies whi
h use NLMEM to analyse bioequivalen
e trials(Kaniwa et al. 1990; Pentikis et al. 1996; Combrink et al. 1997; Maier et al. 1999; Huet al. 2003; Zhou et al. 2004; Fradette et al. 2005; Zhu et al. 2008). Seven of thesestudies are previous to the di�erent simulation studies (Kaniwa et al. 1990; Pentikiset al. 1996; Combrink et al. 1997; Maier et al. 1999; Hu et al. 2003; Zhou et al. 2004;Fradette et al. 2005). In six of these studies (Kaniwa et al. 1990; Pentikis et al. 1996;Combrink et al. 1997; Maier et al. 1999; Hu et al. 2003; Fradette et al. 2005), bioe-quivalen
e Wald tests were performed on treatment e�e
ts estimated by NLMEM,as Panhard et al. However, all of these applied works used di�erent statisti
al ap-proa
hes. The addition of the treatment e�e
t on di�erent PK parameters was notalways justi�ed. Only Hu et al (Hu et al. 2003) performed bioequivalen
e test onaverage AUC and Cmax obtained from the �xed e�e
t estimates using Monte Carlosimulation. Finally, none estimated the WSV or adds period or sequen
e e�e
ts asre
ommended in the guidelines. There is 
urrently no published simulation study orapplied work whi
h takes into a

ount treatment, period, sequen
e e�e
ts, BSV, andWSV for the bioequivalen
e analysis of 
rossover trials by NLMEM.In the di�erent NLMEM-based bioequivalen
e analysis, NLMEM parameters were es-timated by maximum likelihood. Ex
ept for the simulation by Dubois et al (Duboiset al. 2010), an algorithm based on a �rst-order linearization was used, most often the2



First-Order Conditional Estimation (FOCE) algorithm (Lindstrom and Bates 1990).The FOCE algorithm is a widely used algorithm and 
orresponds to the industrystandard for model-based PK analyses. Yet, this linearization-based method 
annotbe 
onsidered as fully established theoreti
ally. For instan
e, Vonesh (Vonesh 1996)and Ge et al (Ge et al. 2004) gave examples of spe
i�
 designs resulting in in
onsis-tent estimates, su
h as when the number of observations per subje
t does not in
reasefaster than the number of subje
ts or when the variability of random e�e
ts is toolarge. Several estimation methods of maximum likelihood theory have been proposedas alternatives to linearization algorithms like the adaptative gaussian quadrature(AGQ) method (Pinheiro and Bates 1995) or methods derived from the Expe
tation-Maximisation (EM) algorithm (Dempster et al. 1977). The AGQ method requiresa su�
iently large number of quadrature points implying an often slow 
onvergen
eand is limited to a small number of random e�e
ts. Monte Carlo EM algorithmsas proposed by Wei and Tanner (Wei and Tanner 1990), Walker (Walker 1996), orWu (Wu 2004) are very time-
onsuming in 
omputation sin
e they require a hugeamount of simulated data. Alternatively, Delyon et al (Delyon et al. 1999) intro-du
ed a sto
hasti
 approximation version of the EM algorithm (SAEM), whi
h ismore e�
ient in terms of 
omputation. Later, Kuhn and Lavielle (Kuhn and Lavielle2004) developed an algorithm whi
h 
ombined the SAEM algorithm with a Monte-Carlo pro
edure. They showed the good statisti
al 
onvergen
e properties of thisalgorithm. Re
ently, Panhard and Samson (Panhard and Samson 2009) developedan extension of the SAEM algorithm for NLMEM in
luding the estimation of thewithin-subje
t variability.The main obje
tive of this work is to develop a bioequivalen
e analysis based onNLMEM that mimi
s the standard bioequivalen
e analysis performed on NCA esti-mates. To do so, we use a NLMEM in
luding treatment, period, sequen
e e�e
ts,BSV, and WSV. We also explain how to perform a Wald test on a se
ondary pa-rameter of the model (like Cmax), and we propose an extension of the LRT for bioe-quivalen
e. These NLMEM-based bioequivalen
e tests are 
ompared to standard3



NCA-based tests. We evaluate by simulation the NCA and NLMEM estimates, andthe type I errors of the di�erent bioequivalen
e tests. We use the same sets of sim-ulations than the previous study by Dubois et al (Dubois et al. 2010) whi
h allowsto 
ompare the results. As in Dubois et al, we use di�erent sampling designs andlevels of variability, investigating their in�uen
e on the results of the bioequivalen
etests. To estimate NLMEM parameters, we use the SAEM algorithm implementedin MONOLIX. Then, we apply the Wald test based on NCA and NLMEM estimatesto a three-way 
rossover trial 
omparing three formulations of somatropin. A so-matropin is a biosyntheti
 version of human growth hormone (hGH) synthesised inba
teria modi�ed by the addition of the gene for hGH. Repla
ement therapy withsomatropin is a well a

epted, e�e
tive treatment for hGH de�
ien
y in 
hildren andadults (Fau
i et al. 2008).In Se
tion 2 of this paper, we des
ribe the LMEM for NCA estimates, the NLMEMon 
on
entrations, and the bioequivalen
e tests based on both approa
hes. In Se
-tion 3, we present the simulation study, the estimation, and the evaluation of theestimates and of the type I errors. We present the example in Se
tion 4, followed bya dis
ussion in Se
tion 5.
2 MODELS AND BIOEQUIVALENCE TESTS IN CROSSOVERTRIALSIn the following, we 
onsider 
rossover pharma
okineti
 trials with C treatments, Kperiods, and Q sequen
es.2.1 ModelsLinear Mixed E�e
ts Model for NCAThe standard bioequivalen
e analysis re
ommended by FDA and EMEA (FDA2001; EMEA 2001) is based on NCA individual estimates of AUC and Cmax. Wede�ne θikl the lth individual parameter (AUC if l = 1 or Cmax if l = 2) for subje
t4



i (i = 1, · · · , N) at period k (k = 1, · · · , K). The individual parameters are log-transformed and analysed using a linear mixed e�e
ts model written as follows:
log(θikl) = νl + β

T ′

l
Tik + β

P ′

l
Pk + β

S ′

l
Si + ηil + ǫikl (1)where νl is the expe
ted value 
orresponding to the 
ombination of 
ovariate refer-en
e 
lasses. βT

l
, βP

l
, and βS

l
are the ve
tors of 
oe�
ients of treatment, period, andsequen
e e�e
ts for the lth individual parameter (AUC or Cmax). Tik, Pk, Si are theknown ve
tors of treatment, period, and sequen
e 
ovariates of size C, K, and Q,respe
tively. Tik is 
omposed of zeros ex
ept for the cth element (c = 1, · · · , C) whi
his one when treatment c is given to patient i at period k. Similarly, Pk and Si are
omposed of zeros ex
ept for the kth and qth elements (k = 1, · · · , K, q = 1, · · · , Q)whi
h are one. We 
onsider that the �rst treatment, period, and sequen
e are thereferen
e 
lasses. The �rst elements of βT

l
, βP

l
, and βS

l
are �xed to zero, and other
omponents are estimated. It is assumed that the random subje
t e�e
t ηil and theresidual error ǫikl are independently normally distributed with zero mean.Nonlinear Mixed E�e
ts ModellingWe denote by yijk the 
on
entration for subje
t i (i = 1, · · · , N) at sampling time

j (j = 1, · · · , nik) for period k (k = 1, · · · , K). We de�ne f to be the nonlinear phar-ma
okineti
 fun
tion whi
h links 
on
entrations to sampling times. The nonlinearmixed e�e
ts model 
an be written as:
yijk = f(tijk,ψik) + g(tijk,ψik) ǫijk (2)with ψik the p-ve
tor of pharma
okineti
 parameters of subje
t i for period k.

g(tijk,ψik) ǫijk is the residual error where ǫijk is a Gaussian random variable withzero mean and varian
e one. All ǫijk are independent and identi
ally distributed.We 
onsider a 
ombined error model, additive plus proportional, with g(tijk,ψik) =5



a+ bf(tijk,ψik).The statisti
al model used for the individual parameters ψik is derived from the lin-ear mixed e�e
ts model used to analyse the NCA individual estimates. So, the lth
omponent of ψik is de�ned as:
log(ψikl) = log(λl) + β

T ′

l
Tik + β

P ′

l
Pk + β

S ′

l
Si + ηil + κikl (3)with λ = (λl; l = 1, · · · , p) the p-ve
tor of �xed e�e
ts for the 
ovariate referen
e
lasses. The known ve
tors of the treatment, period, and sequen
e 
ovariates, Tik,

Pk, and Si, are de�ned as for NCA (se
tion 2.1). βT

l
, βP

l
, and βS

l
are the ve
tors of
oe�
ients of treatment, period, and sequen
e e�e
ts for the lth PK parameter. Aspreviously mentioned, we 
onsider that the �rst treatment, period, and sequen
e arethe referen
e 
lasses. The �rst elements of βT

l
, βP

l
, and βS

l
are �xed to zero, and other
omponents are estimated. ηi = (ηil; l = 1, · · · , p) is the ve
tor of random e�e
ts ofsubje
t i 
orresponding to the between-subje
t variability. κik = (κikl; l = 1, · · · , p)is the ve
tor of random e�e
ts of subje
t i at period k 
orresponding to the variabilitybetween periods of treatment for the same individual, or within-subje
t variability.These random e�e
ts are assumed to be normally distributed with zero mean and
ovarian
e matrix of size p×p named Ω and Γ, respe
tively. We de�ne ω2

l and γ2l thevarian
e for BSV and WSV of the lth parameter, 
orresponding to the lth element ofthe diagonal of Ω and Γ. ηi, κik, and ǫijk are assumed to be mutually independent.Finally, the unknown population parameters of the statisti
al model are the �xede�e
ts ("referen
e" and 
ovariate e�e
ts) and the varian
e parameters (Ω, Γ, a, b).2.2 Two-One Sided TestsThe bioequivalen
e test is performed on the cth treatment e�e
t of the lth param-eter, βT
c,l (c = 2, · · · , C and l = 1, 2 for NCA or l = 1, · · · , p for NLMEM). Its nullhypothesis is H0: {βT

c,l ≤ −δ or βT
c,l ≥ δ} whi
h is de
omposed in two one-sided hy-potheses H0,−δ: {βT

c,l ≤ −δ} and H0,δ: {βT
c,l ≥ δ}. The bioequivalen
e test is based6



on S
huirmann's two one-sided tests (TOST) pro
edure (S
huirmann 1987). H0,−δand H0,δ are tested separately by a one-sided test. The global null hypothesis H0is reje
ted with a type I error α if both one-sided hypotheses are reje
ted with atype I error α. The p-value of the TOST is the maximum of both p-values of theone-sided tests. The major issue of a bioequivalen
e test is to de�ne δ. To assesspharma
okineti
 bioequivalen
e, the guidelines (FDA 2001; EMEA 2001) re
ommend
δ = log(1.25) ≈ 0.22 (i.e. −δ = log(0.8)) for log(AUC) and log(Cmax). Due to thelinear model on log-parameters, these bounds 
orresponds to 80%-125% on the pa-rameter s
ale.Wald Tests Based on NCA EstimatesIn the following, we 
all se(βT

c,l) the standard error of the treatment e�e
t estimate
β̂T
c,l. We also de�ne W−δ = (β̂T

c,l + δ)/se(βT
c,l) and Wδ = (β̂T

c,l − δ)/se(βT
c,l), the twoWald statisti
s for the one-sided hypotheses H0,−δ and H0,δ, respe
tively. For thestandard NCA-based bioequivalen
e analysis, we assume that W−δ and Wδ follow aStudent t-distribution with df degrees of freedom under H0,−δ and H0,δ, respe
tively.The global null hypothesis H0 is reje
ted with a type I error α if W−δ ≥ t1−α(df) and

Wδ ≤ −t1−α(df), where t1−α(df) is the (1− α) quantile of the Student t-distributionwith df degrees of freedom. For balan
ed datasets (i.e. with N subje
ts for ea
hperiod), df = N − 2 (Haus
hke et al. 2007; Chow and Liu 2000). An alternative ap-proa
h to perform a bioequivalen
e test is to 
ompute the (1−2α) 
on�den
e interval(CI) of β̂T
c,l. H0 is reje
ted if this (1− 2α) CI lies within [−δ; δ].Wald Test Based on NLMEM EstimatesFor the bioequivalen
e Wald test using NLMEM estimates, we use a very simi-lar approa
h to NCA-based bioequivalen
e Wald test. Same notations are used forNLMEM-based analyses as for NCA. For NLMEM, we assume that W−δ and Wδfollow a Gaussian distribution under H0,−δ and H0,δ, respe
tively. The global nullhypothesis H0 is reje
ted with a type I error α if W−δ ≥ z1−α and Wδ ≤ −z1−α,7



where z1−α is the (1−α) quantile of the standard normal distribution. The reje
tionof H0 
an also be based on the (1− 2α) CI as des
ribed previously (se
tion 2.2).To mimi
 the standard bioequivalen
e analysis, we would like to perform the NLMEM-based bioequivalen
e Wald test on AUC and Cmax whi
h are often se
ondary pa-rameters of the PK model. So, we propose an approa
h to perform the NLMEM-based bioequivalen
e Wald on a se
ondary parameter. A se
ondary parameter is afun
tion of the PK parameters of the stru
tural model. Its cth treatment e�e
t is
βT
c,SP = h(λ,βT

c
) with h the fun
tion linking βT

c,SP to the PK parameters, λ the refer-en
e e�e
ts, and βT

c
the cth treatment e�e
ts. To perform a bioequivalen
e Wald teston the cth treatment e�e
t of a se
ondary parameter, βT

c,SP and its standard error,
se(βT

c,SP ), should be estimated. By de�nition, β̂T
c,SP = h(λ̂, β̂T

c
). However, se(βT

c,SP )
annot be dire
tly 
omputed as h is usually a nonlinear fun
tion. We propose toapproximate it using the delta method (Oehlert 1992) or simulations. For the deltamethod, we use the partial derivatives of h, the �xed e�e
t estimates (λ̂,β̂T

c
), andtheir estimated 
ovarian
e matrix Σ̂, whi
h is a submatrix of the inverse of the Fisherinformation matrix estimate: se(βT

c,SP ) =
√

∇h(λ̂, β̂T

c
)′ Σ̂ ∇h(λ̂, β̂T

c
). To estimate

se(βT
c,SP ) by simulations, we simulate βT

c,SP Ns times using a Gaussian distributionwith mean the �xed e�e
t estimates (λ̂,β̂T

c
) and 
ovarian
e matrix Σ̂. Then, se(βT

c,SP )is estimated as the standard deviation of the Ns simulated βT
c,SP .Likelihood Ratio Test Based on NLMEM EstimatesThere is no simple extension of the likelihood ratio test for the 
omposite null hy-pothesis of a bioequivalen
e test. Therefore, for a parameter of the PK model, wedevelop a methodology to perform a NLMEM-based bioequivalen
e LRT based onpro�le likelihood methods (Bates and Watts 1988; Meeker and Es
obar 1995). Letus de�ne Mall to be the NLMEM where all �xed e�e
ts are estimateed and Mδ,c,l theNLMEM where βT

c,l is �xed to δ and all other parameters (in
luding the other 
ompo-nents of βT

l
) are estimated. The proposed approa
h test whether the likelihood-based
on�den
e interval of β̂T

c,l lies within [−δ; δ]. To do so, we perform two "one-sided"8



LRT taking into a

ount β̂T
c,l estimated with Mall, and the estimation of the log-likelihood of three models Mall, M−δ,c,l, and Mδ,c,l. We de�ne the statisti
 Λδ,c,l asfollows: Λδ,c,l = −2 × (Lδ,c,l − Lall) with Lall and Lδ,c,l the estimated log-likelihoodsfor the models Mall and Mδ,c,l, respe
tively. The null hypothesis H0,−δ is reje
tedwith a type I error α if Λ−δ,c,l ≥ χ2

1(1 − 2α) and −δ < β̂T
c,l, where χ2

1(1 − 2α) is the
(1− 2α) quantile of the Chi-squared distribution with one degree of freedom. H0,δ isreje
ted if Λδ,c,l ≥ χ2

1(1 − 2α) and β̂T
c,l < δ. Consequently, the global null hypothesis

H0 is reje
ted with a type I error α if −δ < β̂T
c,l < δ and Λ−δ,c,l ≥ χ2

1(1 − 2α) and
Λδ,c,l ≥ χ2

1(1− 2α).
3 SIMULATION STUDY3.1 Simulation SettingsWe use the 
on
entration data of the anti-asthmati
 drug theophylline to de�ne thepopulation PK model for the simulation study. These data are 
lassi
al in populationpharma
okineti
s (Pinheiro and Bates 2000) and have been used in previous simu-lation studies (Panhard and Mentré 2005; Panhard et al. 2007; Dubois et al. 2010).We assume that 
on
entrations 
an be des
ribed by a one-
ompartment model with�rst-order absorption and �rst-order elimination:

f(t, ka, CL/F, V/F ) =
FDka

CL− V ka
(exp(−ka t)− exp(−CL/V t)) (4)where D is the dose, F the bioavailability, ka the absorption rate 
onstant, CL the
learan
e of the drug, and V the volume of distribution.We simulate two-treatment, two-sequen
e, 
rossover trials with two or four periods.For ea
h two-period trial, the N/2 subje
ts of the �rst sequen
e re
eive the referen
etreatment (Ref ) and the test treatment (Test) in period one and two, respe
tively.The other N/2 subje
ts allo
ated to the se
ond sequen
e re
eive treaments in thereverse order. For ea
h four-period trial, the N/2 subje
ts of the �rst sequen
e re-9




eive the treatment Ref in periods one and three, and the treatment Test in periodstwo and four. The N/2 subje
ts of the se
ond sequen
e re
eive the treament Test inperiods one and three, and the treatment Ref in periods two and four.We 
onsider that sampling times are similar for all subje
ts and all periods. So,
j = 1, · · · , n, where n is a �xed number of sampling times for ea
h simulated sam-pling design. We use four di�erent sampling designs, whi
h are also used by Duboiset al (Dubois et al. 2010). We simulate with the original design with N = 12 subje
tsand n = 10 samples per subje
t and per period, taken at the times of the initialstudy (0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12, and 24 h after dosing). We also simulate withan intermediate design with N = 24 subje
ts and n = 5 samples, taken at 0.25, 1.5,3.35, 12, and 24 h after dosing, a sparse design with N = 40 subje
ts and n = 3samples, taken at 0.25, 3.35, and 24 h after dosing, and a ri
h design N = 40 subje
tsand n = 10 samples, taken at the times of the initial study.For the simulation study, we assume that α = 5% and δ = log(1.25). We �x thedose to 4 mg for all subje
ts. The ve
tor of population parameters λ is 
omposed of
λka = 1.48 h−1, λCL/F = 40.36 mL/h, and λV/F = 0.48 L for the referen
e treatment.We assume that the bioavailability 
hanges between treatments, i.e., we assume thesame modi�
ation for CL/F and V/F . It also similarly a�e
ts both se
ondary pa-rameters AUC and Cmax with AUC = FD/CL and Cmax de�ned in Equation 5 ofthe Appendix. In the following, as we 
onsider only two treatments in the simula-tion study, we omit the subs
ript c; we de�ne βT

CL/F and βT
V/F the treatment e�e
t on

CL/F and V/F for the treatment Test (βT
ka

= 0). As suggested by Liu and Weng (Liuand Weng 1995), the type I error of the bioequivalen
e test 
an be evaluated for ea
hboundary of H0 spa
e, i.e., log(0.8) and log(1.25). Consequently, we simulate undertwo di�erent hypotheses: βT
CL/F = βT

V/F = log(0.8) and βT
CL/F = βT

V/F = log(1.25)whi
h are the boundaries of H0,log(0.8) and H0,log(1.25), respe
tively. In the following,we 
all H0;80% and H0;125% these two simulated hypotheses. We assume no periode�e
t or sequen
e e�e
t, and Ω and Γ are diagonal.We simulate with two levels of variability for the between-subje
t and within-subje
t10



variability. For the low level of variability, we �x ωka and ωCL/F to 0.2, and ωV/F to0.1; γka, γCL/F and γV/F are �xed to half BSV for the three parameters. For the highlevel, we �x the three standard deviations to 0.5 for BSV, and 0.15 for WSV. We alsosimulate with two levels of variability for the residual error: a = 0.1 mg/L, b = 0.10for the low level, and a = 1 mg/L, b = 0.25 for the high level. The high level ofresidual error is only used with the high level of BSV and WSV. We 
all Sl,l thevariability setting with low variability for BSV, WSV, and for the residual error. Sh,lis the variability setting 
orresponding to high variability for BSV, WSV, and low forthe residual error. Finally, Sh,h is the variability setting with high variability for BSV,WSV, and for the residual error. In the following, we 
all a simulation setting theasso
iation of one design with one variability setting and one simulated hypothesis.We simulate 
rossover trials with 2 periods under H0;80% and H0;125%. In that 
ase,for ea
h sampling design, we simulate using the variability settings Sl,l and Sh,l. Wesimulate using Sh,h only for the intermediate design. We simulate 
rossover trialswith 4 periods under H0;80% using ri
h and sparse sampling designs, and the twovariability settings Sl,l and Sh,l. All simulations are performed using the statisti
alsoftware R 2.7.1. We use the fun
tion rmvnorm of the pa
kage mvtnorm, whi
h is apseudorandom number generator for the multivariate normal distribution. For ea
hsimulated trial, we spe
ify the seed using the fun
tion set.seed in order to makesimulations reprodu
ible.3.2 EstimationNCAAs in Dubois et al (Dubois et al. 2010), we estimateAUC and Cmax by non 
ompart-mental analysis (Gabrielson and Weiner 2006) using a R fun
tion whi
h we develop.For a 
rossover trial, this fun
tion provides the estimation of di�erent NCA param-eters for ea
h subje
t and ea
h treatment group. In this study, we use the lineartrapezoidal rule to 
ompute the AUC0−last between the time of dose (equal to 0) andthe last sampling time. To obtain the total AUC (between the time of dose and in-11



�nity), we estimate the terminal slope equal to CL/V using the logarithm of the last
on
entrations to perform a log-linear regression. To do so, we use a �xed numberof 
on
entrations whi
h depends on the number of samples per subje
t in the design.For the original and ri
h designs where n = 10, we use the last four 
on
entrationswhi
h 
orrespond to sampling times 7, 9, 12 and 24 h. For intermediate and sparsedesigns where n = 5 and n = 3 respe
tively, we use the last two 
on
entrations whi
h
orrespond to sampling times 12 and 24 h for the intermediate design, and to 3.35and 24 h for the sparse design. For all designs, Cmax is estimated as the maximalobserved 
on
entration.The analysis of log parameters by LMEM is then performed using the R fun
tionlme from the pa
kage nlme. For the estimation of LMEM parameters (in
luding thetreatment e�e
t and its SE), the restri
ted maximum likelihood (REML) preo
edureis used, as re
ommended in the guidelines (FDA 2001; EMEA 2001). For the originaldesign where N = 12, df = 10. For the ri
h and sparse design where N = 40, df = 38.For the intermediate design where N = 24, df = 22.All 
omputations in
luding the dataset simulation, the estimation by NCA, and thestandard bioequivalen
e analysis by LMEM are made under R 2.7.1. The di�erent Rs
ripts are available upon request to the 
orresponding author.NLMEMWe estimate the NLMEM parameters (in
luded treatment, period, sequen
e e�e
ts,BSV and WSV) by maximum likelihood using the SAEM algorithm (Panhard andSamson 2009) implemented in MONOLIX (Lavielle et al. 2010). Estimation of stan-dard errors (SE) and log-likelihood are also needed to perform Wald and likelihoodratio tests, respe
tively. SE 
an be evaluated as the square root of the diagonal ele-ments of the inverse of the Fisher information matrix estimate whi
h has no analyti
form. In MONOLIX, one method to evaluate this matrix is to derive an approximateexpression by the linearization of the fun
tion f around the 
onditional mean of theindividual parameters obtained with the SAEM algorithm. Although linearization-12



based algorithms are not re
ommended to estimate NLMEM parameters, satisfa
toryresults for SE estimation have been shown using this approa
h for 
omputation ofthe FIM (Bazzoli et al. 2009). There is no analyti
al expression of the likelihood inNLMEM. In MONOLIX, it is proposed to estimate the log-likelihood of the obser-vations without approximation using the Importan
e Sampling (IS) method (Kuhnand Lavielle 2005; Samson et al. 2007). The IS method is a Monte-Carlo pro
edurewhere individual parameters are simulated at ea
h iteration using an instrumentaldistribution adequately 
hosen to redu
e the varian
e of the estimator.NLMEM parameters, standard errors and log-likelihoods are estimated with MONO-LIX 2.4., supported by MATLAB R2007a. The use of MONOLIX software for theanalysis of 
rossover bioequivalen
e trials is explained in a online Supplementary Ma-terial 1.3.3 Evaluation MethodsEstimatesThe SAEM algorithm used for the estimation of NLMEM parameters has not beenevaluated for models in
luding treatment, period, sequen
e e�e
ts, BSV, and WSV.Therefore, we evaluate the SAEM algorithm for two and four-period 
rossover trialswith the ri
h and sparse design. We use the H0;80% simulation settings of the twovariability settings Sl,l and Sh,l. There are 8 di�erent simulation settings used (2 or4 periods, ri
h or sparse design, Sl,l or Sh,l variability). We �t the statisti
al model
Mall for the 1000 trials of ea
h simulation setting of both types of 
rossover trials (2or 4 periods). Then, for the 1000 repli
ates, we 
ompute the bias and the root meansquare error (RMSE) for ea
h estimated parameter.Furthermore, in the standard bioequivalen
e analysis, the geometri
 means of AUCand Cmax are reported for ea
h treatment group. We evaluate those estimates forthe referen
e treatment, and for NCA and NLMEM. We also evaluate the treatmente�e
t estimates for AUC and Cmax, and for NCA and NLMEM. Lastly, good estima-1Supporting information may be found in the online version of this arti
le.13



tion of the standard error is important when performing Wald tests. So, we evaluatethe SE of the treatment e�e
t estimates, for NCA and NLMEM. To evaluate thegeometri
 means, the treatment e�e
ts, and their SE we use the two-period 
rossovertrials simulated under the null hypothesis H0;80% with the four di�erent samplingdesigns (ri
h, original, intermediate and sparse), and the three variability settings(Sl,l, Sh,l and Sh,h). There are 9 di�erent used simulation settings, 4 for Sl,l and Sh,l,and 1 for Sh,h where only the intermediate design is simulated. For NCA, for ea
hsimulated trial, the geometri
 mean of AUC (Cmax) for the referen
e treatment is
omputed from the N individual estimated AUC (Cmax). For NLMEM, due to thelog-normal distribution of the random e�e
ts, the �xed e�e
t estimates for the refer-en
e 
lasses 
orrespond to the geometri
 mean estimates for the referen
e treatment.So, the NLMEM-based geometri
 mean of AUC for the referen
e treatment is dire
tlyobtained from the 
learan
e estimate as AUC = FD/CL. For Cmax, the geometri
mean is 
omputed from the �xed e�e
t estimates using Equation 5 of the Appendix.For NCA and NLMEM estimates, the geometri
 means are 
ompared to the AUC or
Cmax 
omputed from the NLMEM simulated parameters. For NCA, the treatmente�e
t on AUC and Cmax are estimated by LMEM as explained in se
tion 2.1. ForNLMEM, due to the linear 
ovariate model on log-parameters, β̂T

AUC = −β̂T
CL/F . Thetreatment e�e
t β̂T

Cmax
is 
omputed from λ̂ and β̂T using Equation 6. For NCA andNLMEM estimates, the treatment e�e
t estimates are 
ompared to the simulatedvalue of the treatment e�e
t. For NCA, standard errors of the treatment e�e
t areestimated by LMEM. For NLMEM, as β̂T

AUC = −β̂T
CL/F , their standard error areequal. The SE of β̂T

Cmax
is estimated by the delta method and simulations (with

Ns = 10000). For the delta method, the expression and details are given in theAppendix. The estimated standard errors of the treatment e�e
t are 
ompared tothe 
orresponding empiri
al standard error for NCA and NLMEM estimates. Forone simulation setting and one approa
h (NCA or NLMEM), the empiri
al standarderror is 
omputed as the standard deviation of the 1000 treatment e�e
t estimates.
14



Type I ErrorTo evaluate the type I error of the bioequivalen
e tests, we use the two-period
rossover trials simulated with the four di�erent sampling designs, both hypothesesand the three variability settings. There are 18 di�erent simulation settings used, 8for Sl,l and Sh,l, and 2 for Sh,h where only the intermediate design is simulated. Thesimulation settings under H0;80% are also used to evaluate the estimates of AUC and
Cmax (se
tion 3.3).We perform the bioequivalen
e Wald test based on NCA estimates on AUC and Cmax.For NLMEM, tests on CL/F and AUC are equivalent be
ause β̂T

AUC = −β̂T
CL/F and

se(βT
AUC) = se(βT

CL/F ). So, the NLMEM-based bioequivalen
e Wald test and LRTare performed on AUC. As Cmax is a se
ondary parameter of the NLMEM, onlythe NLMEM-based Wald test is performed on this parameter, and not the LRT. ForNLMEM, the treatment e�e
t β̂T
Cmax

is 
omputed from λ̂ and β̂T . Its standard erroris estimated both by the delta method and by simulations (with Ns = 10000). For
AUC and Cmax, the NLMEM-based bioequivalen
e Wald test is performed using esti-mated and empiri
al SE. For Cmax, it is performed using estimated SE obtained fromthe delta method and simulations, for 
omparison. For ea
h one-sided hypothesis
H0;80% and H0;125%, the type I error is estimated by the proportion of the simulatedtrials for whi
h the null hypothesis H0 is reje
ted. The global type I error is de�nedas the maximum value of both estimated type I errors (Dubois et al. 2010; Panhardand Mentré 2005). For 1000 repli
ates, the 95% predi
tion interval (95% PI) for atype I error of 5% is [3.7%; 6.4%].3.4 ResultsEvaluation of the EstimatesFor the evaluated settings, all NLMEM parameters in
luding treatment, period,sequen
e e�e
ts are estimated by the SAEM algorithm. Boxplots of the estimates ofthe 
learan
e referen
e e�e
t, the 
orresponding 
ovariate e�e
ts and the standarddeviations of BSV and WSV are displayed in Figure 1. For the six parameters and15



both variability settings, the distribution is narrower when the number of samples orperiods in
reases. For all simulation settings of both types of trials, the median of the�xed e�e
ts is 
lose to the 
orresponding simulated value. For BSV and WSV, themedian of the estimates is 
loser to the simulated value for four-period trials than fortwo-period trials. For the variability setting Sh,l, BSV and WSV are slightly under-estimated espe
ially for the sparse design. Similar results (not shown) are obtainedfor both PK parameters, ka and V/F . Table 1 provides the bias (×100) and RMSE(×100) of estimates of the referen
e e�e
ts and the standard deviations for BSV,WSV, and residual error. For all simulation settings and both types of 
rossover tri-als (2 or 4 periods), there is no bias and RMSE are small for the referen
e e�e
ts andthe residual error. For BSV and WSV, bias de
reases when the number of samplesin
reases. For all parameters, RMSE de
rease when the number of samples in
reases.Furthermore, RMSE are smaller for Sl,l than for Sh,l and smaller for four-period tri-als than for two-period trials. The same observations are made for 
ovariate e�e
ts(results not shown).For ea
h simulation setting of two-period 
rossover trials of the hypothesis H0;80% andfor NCA and NLMEM, boxplots of the referen
e treatment geometri
 mean estimatesof AUC and Cmax are displayed in Figure 2. For AUC and Cmax, and for NCA andNLMEM estimates, the distribution is narrower when the variability is smaller. ForNCA estimates, the median of the estimates is 
loser to the true simulated meanfor the ri
h design, and there is a 
lear and very large bias of the geometri
 meanestimates for sparse design. For NLMEM estimates, the median of the estimates is
lose to the true simulated mean for all simulation settings. Figure 3 displays theboxplot of the treatment e�e
t estimates on AUC and Cmax and their standard er-rors for NCA and NLMEM estimates. The standard errors se(βT
Cmax

) are estimatedby the delta method, and very similar results are obtained by simulations. For NCAand NLMEM, for both parameters and all simulation settings, the median of the esti-mated treatment e�e
ts is 
lose to the simulated value. Furthermore, the distributionis narrower when the variability de
reases or when the number of subje
ts in
reases.16



The distribution of the estimated standard errors is narrower and the empiri
al stan-dard error is smaller when the variability de
reases or when the number of subje
tsin
reases. For both parameters, the median of the estimated standard error is 
loserto the empiri
al one when the variability de
reases. For the original design under
Sh,l and the intermediate design under Sh,h, standard errors of both parameters areunderestimated for NCA and NLMEM estimates.Evaluation of the Type I ErrorTable 2 provides type I errors of bioequivalen
e tests performed on the treatmente�e
ts of AUC, and Cmax for ea
h one-sided hypothesis and ea
h sampling design oftwo-period 
rossover trials. Mostly, for all tests and both parameters, type I errorsof both hypotheses are 
lose. Only the type I errors for Cmax and the Sh,h settingare somewhat di�erent. For Wald tests based on NCA estimates, and for Sl,l and Sh,lsettings, type I errors do not di�er from the nominal level of 5%. For Sh,h setting,the type I errors are mu
h too 
onservative for AUC, and are in�ated for Cmax. Forthe NLMEM-based Wald test, type I errors for Cmax using SE obtained by the deltamethod or simulations are identi
al. For AUC, type I errors of the NLMEM-basedWald test are 
lose to type I errors of the LRT. For the ri
h design (N = 40, n = 10),type I errors of both tests do not di�er from the nominal level of 5%. However, forea
h simulation setting, there is an in
rease of the type I error of both tests when thenumber of subje
ts and/or the number of samples de
reases.The left hand side of Figure 4 displays the global type I error for AUC (top) and
Cmax (bottom) versus the design for ea
h variability setting for the Wald test basedon NCA estimates. For both parameters, the global type I error lies in the 95%PI ofthe nominal level for all the designs of Sl,l and Sh,l settings. For the Sh,h setting, itis too 
onservative for AUC and in�ated for Cmax. The right hand side of Figure 4displays the global type I error of the NLMEM-based Wald test using the estimatedor empiri
al standard error, and the NLMEM-based LRT. For the Wald tests usingestimated SE and LRT, and for both parameters, the global type I error lies in the17



95%PI of the nominal level for the ri
h design. It in
reases when the number ofsubje
ts or the number of samples de
reases and is lower for Sl,l than for Sh,l.Forthe NLMEM-based Wald test using the empiri
al SE, it 
an be seen that for bothparameters the global type I errors almost never di�er from the nominal level of 5%showing the in�uen
e of the underestimation of the standard errors on the propertiesof the NLMEM-based Wald test.
4 APPLICATIONIn 2005, somatropins available in the United States (and their manufa
turers) in-
luded Nutropin® (Genente
h), Humatrope® (Lilly), Genotropin® (P�zer), Norditro-pin® (Novo), and Saizen® (Mer
k Serono). In 2006, the FDA approved a new somat-ropin 
alled Omnitropee® (Sandoz). For this approval, bioequivalen
e 
rossover trialswere performed. We analyse one of them with the standard NCA-based approa
h andthe proposed NLMEM-based approa
h. Then, we perfom the bioequivalen
e Waldtest using NCA and NLMEM estimates.4.1 Material and methodsA randomized, double-blind, single-dose, 3-way 
rossover study with three treat-ments, three periods, and six sequen
es was 
ondu
ted to 
ompare the pharma
oki-neti
 parameters of Omnitrope® powder for solution for inje
tion, Omnitrope® 3.3mg/mL solution for inje
tion, and Genotropin® powder for solution after a single sub-
utaneous dose of 5 mg. Thirty-six healthy 
au
asian adults were re
ruited and theyre
eived o
treotide for endogenous hGH suppression before ea
h treatment period.The three treatment periods were separated by a seven day wash-out period. Bloodsamples for pharma
okineti
 assessments were 
olle
ted after dose administration forea
h period at times 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, and 24 h. Con
entrations weremeasured by 
hemilumines
ent immunometri
 assay (Iranmanesh et al. 1994) with alimit of quanti�
ation (LOQ) of 0.2 ng/mL. Figure 5 (top) displays 
on
entrations18



versus time for the three formulations. There are very few 
on
entrations below LOQfor the last sampling times.We analyse the data with NCA and NLMEM using the SAEM algorithm implementedin MONOLIX 2.4. For NCA analysis, we use the linear trapezoid rule to estimate
AUC0−tlast. To obtain the total AUC, we 
ompute the terminal slope by log-linearregression using 2 to 4 sampling times. As des
ribed in 2.1, the log-transformed indi-vidual AUC and Cmax are then analysed using a LMEM in
luding treatment, period,sequen
e, and subje
t e�e
ts. The referen
e 
lasses are the Genotropin® treatment,the �rst period, and the sequen
e Genotropin® - Omnitrope® powder - Omnitrope®solution for the treatment, period, and sequen
e 
ovariates, respe
tively.For NLMEM analysis, we use a one-
ompartment model with �rst-order absorptionwith a lag time (tlag) and �rst-order elimination to des
ribe the data. With thismodel, for sampling times before tlag, 
on
entrations are null. For sampling timesafter tlag, 
on
entrations are des
ribed by Equation 4 repla
ing t by t − tlag. To de-termine the stru
ture of the random e�e
ts matri
es and the residual error model,we analyse the Genotropin® data. Models are 
ompared using the Bayesian Infor-mation Criteria (BIC), the best statisti
al model 
orresponding to the smallest BIC(Bertrand et al. 2008). For the stru
ture of the BSV matrix, we test diagonal, blo
kdiagonal, and 
omplete matri
es. Regarding the error model, we test a homos
edasti
(b = 0) and a 
ombined error model. For the analysis of all data, the stru
ture ofthe WSV matrix is 
hosen to be identi
al to the stru
ture of the BSV matrix deter-mined during the analysis of the Genotropin® data. We add treatment, period, andsequen
e e�e
ts on the four PK parameters. The referen
e 
lasses are the same asfor NCA analysis. After �tting the data, the model is graphi
ally evaluated usingthe individual weighted residuals (IWRES) and the 90% predi
tion interval for ea
hformulation. For the model evaluation, from the �nal statisti
al model and its esti-mates, we simulate 200 datasets based on the stru
ture of the original data (dose,
ovariates). For ea
h formulation, we 
ompute the 5% and 95% per
entiles of thesimulated time-
ourse distribution to obtain the 90% predi
tion interval. The 
orre-19



spoding graph is 
alled a Visual Predi
tive Che
k.We perform bioequivalen
e Wald tests on AUC and Cmax using NCA and NLMEMestimates with a type I error of 5%. For NLMEM, we 
ompute the treatment e�e
ton Cmax using �xed e�e
ts estimates and its standard error by the delta method.4.2 ResultsFor the analysis of the Genotropin® data, the best statisti
al model in
lude BSVfor all PK parameters with a 
orrelation between the 
learan
e and the volume ofdistribution, and a 
ombined error model. Parameter estimates (ex
ept period andsequen
e e�e
ts) are displayed in Table 3 with their standard errors. Pre
ision ofestimation is judged satisfa
tory for all parameters. Con
entrations of somatropinversus time with their 90% predi
tion interval and the IWRES versus time are dis-played in Figure 5 for ea
h treatment group. These model evaluation plots are judgedsatisfa
tory.After estimating the parameters by NCA and NLMEM, we perform bioequivalen
eWald tests on AUC and Cmax for both formulations of Omnitrope®. The results ofthose tests are displayed in Table 4 with the ratios of AUC and Cmax, the 
orre-sponding 90% CI, and the p-values of the bioequivalen
e Wald tests. With a type Ierror of 5%, AUC and Cmax of Omnitrope® powder and solution are bioequivalentto those of Genotropin® using NCA and NLMEM bioequivalen
e analysis.
5 DISCUSSIONIn this study, we evaluate the type I error of NLMEM-based bioequivalen
e testsperformed on the treatment e�e
t estimates when treatment, period, and sequen
ee�e
ts but also within-subje
t variability are taken into a

ount during the NLMEMestimation. This new approa
h is 
ompared to the standard non-
ompartmentalanalysis where bioequivalen
e Wald tests are performed on the treatment e�e
t esti-mated by linear mixed e�e
ts model taking into a

ount the same three 
ovariates,20



BSV (
orresponding to the random subje
t e�e
t) and WSV (i.e. residual error).Con
erning the NLMEM-based bioequivalen
e tests, we show how Wald tests 
an beperformed on a se
ondary parameter su
h as Cmax whi
h allows the extension of thestandard bioequivalen
e analysis based on NCA estimates to the NLMEM 
ontext.Furthermore, for a parameter of the PK model, we extend the likelihood ratio testfor bioequivalen
e.As Panhard et al (Panhard et al. 2007), and Dubois et al (Dubois et al. 2010), we simu-late under a one-
ompartment PK model and estimate the NLMEM parameters usingthe same model. So, we do not study the impa
t of having the in
orre
t model beingused in the bioequivalen
e NLMEM-based tests, and how would it 
ompare to theNCA approa
h in that 
ase. Nevertheless, when bioequivalen
e analysis is performed,there is already a

umulated information on the drug and the pharma
okineti
 modelis usually known. Furthermore, even if NCA is known as a "model-free" approa
h, itassumes linear terminal elimination and provides meaningless parameters when it isapplied to nonlinear pharma
okineti
s. So, the problem of estimating with a "wrong"model 
ould exist for NCA and NLMEM.The NLMEM-based bioequivalen
e analysis requires to estimate many parameters.So, a robust algorithm has to be used. The simulation study illustrates the a

ura
yof the SAEM algorithm, espe
ially in the 
ontext of bioequivalen
e analysis. Weshow that biases and RMSE obtained by the SAEM algorithm are satisfa
tory for allparameters although BSV and WSV are slightly underestimated for large variabilityand low number of patients. These results are similar to those obtained by Panhardand Samson (Panhard and Samson 2009). As expe
ted, biases and RMSE de
reasewhen the amount of information in
reases (by the in
rease of the number of patientsor periods). All �xed e�e
ts are 
orre
tly estimated with no bias, whi
h is of greatinterest for testing treatment e�e
t estimates. The good estimation of the �xed ef-fe
ts using the SAEM algorithm leads to a good estimation of the geometri
 meansof AUC and Cmax, as illustrated by our evaluation. At the opposite, this evaluationalso shows that geometri
 means estimated by NCA are biased for sparse design,21



espe
ially with high variability. Usually, NCA is used with ri
h designs where thereare about ten to twenty samples per subje
t. This method is not well suited for trialsperformed in patients where the number of samples is often limited. In 
omparisonto model-based approa
hes, the estimation of parameters through NCA has severaldrawba
ks. It is giving equal weight to all 
on
entrations without taking into a

ountthe measurement error. Furthermore, NCA is sensitive to missing data, espe
ially forthe determination of Cmax and the 
omputation of the terminal slope. Even withoutmissing data, the interpolation of the AUC between the last sampling time and in-�nity is very sensitive to the number of samples used to 
ompute the terminal slope.However, even with biased geometri
 mean, the treatment e�e
t estimated by NCAare not biased whi
h partly explains the good results for the type I error.When the number of samples per subje
t is large and the variability is not too high,tests based on individual NCA estimates remain a good approa
h sin
e they are sim-ple and showed satisfa
tory properties for both tested parameters. For Cmax and thesparse design, we expe
ted an in
rease of the type I error be
ause there is no samplingtime 
orresponding to the maximal 
on
entration whi
h is 
lose to 2 h. But even withpoor geometri
 mean estimates, the type I error is maintained at the nominal levelof 5%. It 
ould be explain by the good estimation of the treatment e�e
t estimatedespite the biased geometri
 mean. Though, for simulation with Sh,h, the global typeI error of AUC is very 
onservative (0.8%) whi
h shows the limits of NCA for datawith high residual error.The type I error of the NLMEM-based bioequivalen
e Wald test and LRT are rathersimilar but Wald tests are easier to perform. Indeed, the bioequivalen
e LRT requiresto estimate the parameters and log-likelihood of three statisti
al models. Further-more, there is 
urrently no methodology to perform a LRT on a se
ondary parameterif the model 
annot be reparameterized using this parameter (e.g. Cmax). For a Waldtest on Cmax, the delta method or simulations 
an be used to estimate its treatmente�e
t standard error. Based on our simulation study, for a one-
ompartment PKmodel, the use of simulations is not more e�
ient than the delta method. Indeed,22



for ea
h simulation setting, standard errors estimated by delta method or simulationsare really 
lose and the results of the type I error are similar for both estimations.However, the use of the delta method 
an be tri
ky sin
e the analyti
al expression of
Cmax is not always available for 
omplex or nonlinear PK models.For NLMEM-based Wald tests and LRT, we found an in�ation of the type I errorwhen the 
onditions move away from asymptoti
, i.e. for small sample size and/ordata with high variability. The use of NLMEM-based bioequivalen
e analysis in its
urrent proposed form would be questionable for regulatory agen
ies in these 
asesdue to 
on
erns about potential type I error in�ation. For NLMEM-based Wald tests,the underestimation of the standard errors are responsible of the in�ation of the typeI error. Indeed, there is no in�ation when the empiri
al standard error is used insteadof the estimated. The empiri
al standard error 
an be used in pra
ti
e but not easilybe
ause of the 
omputing time. It requires �rst to estimate the parameters usingthe data of the 
lini
al trial of interest, then to simulate trials with the same designas the original dataset and �nally to re-estimate the parameters for ea
h simulatedtrial. This approa
h also assumes that the underlying stru
tural model is 
orre
twhi
h is usually the 
ase when bioequivalen
e analysis is performed, as previouslymentionned. In our simulation, the number of subje
ts is more in�uential on thein�ation of the type I error than the number of samples. Indeed, there is a slightin�ation of the type I error for the sparse design (N = 40, n = 3) 
ompared to theri
h (N = 40, n = 10, same N) whereas the in�ation is higher for the original design(N = 12, n = 10) also 
ompared to the ri
h (same n). For NLMEM-based Wald test,this is explained by the slighter underestimation of the standard errors for the sparsedesign. The in�ation of the type I error for NLMEM-based Wald tests and LRT isnot spe
i�
 to bioequivalen
e tests. It is due to the asymptoti
 properties of thesetests and was also demonstrated for 
omparison tests by Panhard et al (Panhard andMentré 2005) and Wälhby et al (Wählby et al. 2001). Similarly, the underestimationof the standard errors was also related to the in�ation of the type I error for 
ompar-ison NLMEM-based Wald tests (Bertrand et al. 2009). A good 
ontrol of the type23



I error for a bioequivalen
e test with sparse sampling should be therefore possibleby in
reasing the number of patients. Furthermore, di�erent approa
hes 
ould beexplored to 
orre
t the type I error in�ation of NLMEM-based bioequivalen
e tests.For NLMEM-based Wald tests, the underestimation of BSV and WSV 
ould explainthe underestimation of the standard errors. Even though maximum likelihood es-timation is the standard approa
h in NLMEM, the varian
e 
omponents are oftenunderestimated for small sample size and high variability. In linear mixed e�e
ts mod-els, the REML estimation is widely implemented, but in NLMEM it has been barelystudied, although the REML pro
edure may improve the estimation of varian
e 
om-ponents in NLMEM. Meza et al (Meza et al. 2007) developped a REML estimationpro
edure for the standard SAEM algorithm. They showed that the SAEM-REMLalgorithm redu
es bias and RMSE of the varian
e parameter estimates in a simu-lation study on a simple NLMEM. Further work is needed to propose the REMLestimation pro
edure for the extended SAEM algorithm developed for 
rossover trialanalysis.By improving the estimation of varian
e parameters, the REML estimationpro
edure should improve the bioequivalen
e Wald test. As explained in se
tion 2.1and 3.2, for bioequivalen
e Wald tests based on NCA estimates, the LMEM param-eters are estimated by REML and both test statisti
s follow a Student t-distributionwith degrees of freedom depending on the number of subje
ts. So, we perform theNLMEM-based bioequivalen
e Wald tests assuming a Student t-distribution under
H0 with the same number of degrees of freedom as the NCA-based bioequivalen
eWald tests (unshown results). For all simulation settings, the type error de
reases
ompared to the NLMEM-based Wald test with a Gaussian distribution but thereis still a slight in�ation of the type I error while the use of empiri
al SE 
orre
ts it.To our knowledge, there is no theoriti
al development or evaluation of the degrees offreedom in the 
ontext of NLMEM. The distribution we use is more or less empiri
al,and further work is needed.Other approa
hes 
ould be studied su
h as the 
orre
tion of the nominal level usingpermutation tests or bootstrap methods to estimate the 90% CI. However, perform-24



ing a permutation test may not be suitable for bioequivalen
e, and boostrap methodshave not yet been properly studied in NLMEM. In NLMEM 
ontext, the paired boot-strap is usually used but without taking into a

ount the di�erent levels of variabilityof the NLMEM. Furthermore, there is no theoriti
al or simulation result to justifyits appli
ation. To our knowledge, only two published studies adress the issue ofbootstrap in NLMEM (Das and Krishen 1999; O
aña et al. 2005). O
aña et al (Dasand Krishen 1999) proposed a bootstrap approa
h resampling the random e�e
ts andresidual errors. They evaluated it by simulation but they performed it using two-stage�tting pro
edure (Steimer et al. 1984) where "population" mean parameters are es-timated from individual parameters obtained after separate �tting of ea
h subje
tdata. Further simulations studies are needed to really understand bootstrap methodsproperties in NLMEM. So, we would favor a 
orre
tion of the tests by degrees offreedom, whi
h is also a less 
omputer intensive method.The analysis of the 
rossover trial of three somatropin formulations shows the abilityto perform a NLMEM-based bioequivalen
e analysis using the SAEM algorithm on areal data set. Even with forty �xed e�e
ts and ten varian
e parameters in the statis-ti
al model, the SAEM algorithm 
onverges. Furthermore, the SAEM algorithm 
anhandle data below the limit of quanti�
ation 
ontrary to NCA. The PK parameter es-timates for Genotropin® are similar to those found by Stanhope et al (Stanhope et al.2010). We perform NLMEM-based bioequivalen
e Wald tests and not LRT be
auseresults on Wald tests and LRT are similar in the simulation study, and we would liketo perform tests on the treatment e�e
ts of AUC and Cmax, whi
h is not possible byLRT. The results of the bioequivalen
e analysis based on NCA and NLMEM are sim-ilar. In both 
ases, we assess the bioequivalen
e of both Omnitropee® formulations.Bioequivalen
e tests based on NLMEM allow one to de
rease the number of sam-ples per subje
t, whi
h is of great interest for trials performed in patients. However,
aution is needed for small sample size and data with high variability. With sparsesampling, the 
hoi
e of design is important notably to improve the properties of tests.For instan
e, Bertrand et al (Bertrand et al. 2009) showed that, for the same number25



of samples, some designs have better power than others for dete
tion of a pharma
o-geneti
 e�e
t in a one-period trial. Design optimisation algorithms for models withdis
rete 
ovariates and di�erent periods of treatment 
ould be used for 
rossoverstudies. They are now available in the version 3.2 of PFIM software (Bazzoli et al.2010).
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APPENDIX: DELTA METHOD FOR CMAXFor a one-
ompartment model with �rst-order absorption and �rst-order elimation
Cmax is a fun
tion of the three PK parameters:

Cmax =
FD

V
exp

(
CL log(ka)− log(CL/V )

V ka − CL

) (5)So, βT
Cmax

is a fun
tion h of λka , λV/F , λCL/F , βT
ka , βT

V/F , and βT
CL/F :

βT
Cmax

=h(λka, λV/F , λCL/F , β
T
ka , β

T
V/F , β

T
CL/F )

=− βT
V/F − A2

λCL/F exp(βT
CL/F )

A1

+
λCL/F√
A6

log

(
λkaλV/F
λCL/F

) (6)The ve
tor of partial derivatives of h is:
∇h =

(
1

λka

(
A4

A3
− A5

A6

)
, 1
λV/F

(
A4

A3
− A5

A6

)
, 1
λCL/F

(
−A4

A3
+ A5

A6

)
, A4

A3
, A4

A3
− 1, −A4

A3

)
′ (7)where

A1 =λkaλV/F exp(βT
ka + βT

V/F )− λCL/F exp(βT
CL/F )

A2 = log

(
λkaλV/F
λCL/F

)
+ βT

ka + βT
V/F − βT

CL/F

A3 =
(
−A1λCL/F exp(βT

CL/F )
)2

A4 =A3 + A2 λka λV/F λCL/F exp(βT
ka + βT

V/F + βT
CL/F )

A5 =λkaλV/FλCL/F log(λkaλV/F/λCL/F ) + λCL/F (λCL/F − λkaλV/F )

A6 =
(
λkaλV/F − λCL/F

)2

(8)
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Table 1: Bias (×100) and root mean square error (RMSE ×100) of estimates ofreferen
e e�e
ts and of standard deviations for BSV, WSV, and residual error.Period λka λV/F λCL/F ωka ωV/F ωCL/F γka γV/F γCL/F b

N = 40, n = 10
Sl,l 2 bias 0 0 0 -0.2 -0.1 -0.2 -0.1 0 -0.1 0RMSE 9.2 1.3 0.2 1.3 0.3 1.1 0.6 0.1 0.3 0.44 bias -1.1 -0.2 0 -0.2 -0.1 -0.2 -0.1 0 0 0RMSE 8.7 1.3 0.2 1.1 0.3 1 0.4 0.1 0.2 0.3
Sh,l 2 bias -1.8 -0.5 0 2.7 3.6 -1.2 -0.1 -0.1 -0.2 0.1RMSE 18.5 5.8 0.5 8.6 8.9 6 1.3 0.7 0.7 0.44 bias 0.2 0.2 0 -0.4 -0.4 -1.2 -0.1 -0.1 -0.1 0.1RMSE 17.9 5.7 0.5 6.1 5.8 5.8 0.7 0.4 0.4 0.3

N = 40, n = 3
Sl,l 2 bias 0.3 -0.1 0 -0.2 -0.1 -0.2 0 0 -0.1 -0.4RMSE 11 1.7 0.2 1.6 0.4 1.1 0.9 0.3 0.5 1.54 bias -0.8 0 0 -0.3 -0.1 -0.2 -0.1 0 0 -0.2RMSE 9.5 1.6 0.2 1.2 0.3 1 0.6 0.2 0.3 0.9
Sh,l 2 bias 6.9 1.6 -0.1 2.1 -3.2 -4.2 0 -0.3 -0.3 0.3RMSE 22.8 5.8 0.4 8.9 6.3 6.8 1.9 0.9 1 2.54 bias 6.5 1.8 -0.1 2.1 -3.6 -4.2 -0.1 -0.3 -0.2 0.6RMSE 21.4 5.9 0.4 8.6 6.2 6.5 1.3 0.6 0.6 1.7NOTE: Bias and RMSE are estimated from 1000 
rossover trials simulated under H0;80%with two or four periods, for the ri
h (N = 40, n = 10) and sparse (N = 40, n = 3) designs,and two variability settings (Sl,l and Sh,l).
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Table 2: Type I error (×100) of bioequivalen
e tests performed on the treatment e�e
t of AUC and Cmax for ea
h unilateral hypothesis,
H0;80% and H0;125%.

N = 40, n = 10 N = 12, n = 10 N = 24, n = 5 N = 40, n = 3NCA NLMEM NCA NLMEM NCA NLMEM NCA NLMEMWald LRT Wald LRT Wald LRT Wald LRT
Sll AUC H0;80% 4.0 5.3 5.3 5.2 9.3 8.1 4.3 7.0 6.8 5.9 4.8 4.8

H0;125% 5.1 5.2 5.2 5.2 9.3 7.6 3.8 5.8 5.6 5.1 5.6 5.2
Cmax H0;80% 6.6 4.6 (4.7) 5.1 7.3 5.3 5.2 6.8 8.5

H0;125% 6.3 6.8 5.6 8.0 5.2 8.0 5.5 6.9 (6.8)
Sh,l AUC H0;80% 5.4 4.8 5.3 4.4 11.0 10.0 5.2 9 8.2 4.5 6.4 6.0

H0;125% 6.1 6.6 6.0 4.7 10.7 8.9 3.9 6.7 6.8 5.1 8.6 7.2
Cmax H0;80% 5.1 4.9 5.3 9.1 (9.0) 6.0 6.3 (6.2) 7.2 6.9

H0;125% 5.4 5.3 5.1 8.9 6.1 7.0 6.2 6.9
Sh,h AUC H0;80% 0.8 6.0 8.3

H0;125% 0.4 5.8 5.9
Cmax H0;80% 7.0 5.8 (5.3)

H0;125% 9.3 10.3 (9.9)NOTE: The Wald tests based on NCA and NLMEM estimates are performed on the treatment e�e
t of AUC and Cmax. The NLMEM-basedlikelihood ratio test (LRT) is performed on CL/F (i.e. AUC) only. The type I error is estimated from 1000 two-period 
rossover trials simulatedunder H0;80% or H0;125% for di�erent sampling designs (N : number of subje
ts, n: number of samples per subje
t and period) and three variabilitysettings (Sl,l, Sh,l, and Sh,h). For NLMEM-based bioequivalen
e Wald tests performed on the treatment e�e
t of Cmax, type I errors are estimatedusing the delta method or simulations. The values of both type I errors are reported only if they are not equal; in that 
ase, the type I error of

Cmax from simulations is in bra
kets.
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Table 3: Pharma
okineti
 parameter estimates of somatropin (standard errors) fromthe three-way 
rossover study on somatropin (period and sequen
e e�e
ts are notreported).
tlag (h) ka (h−1) V/F (L) CL/F (L/h) corrCL/F,V/F

λ 0.46 (0.08) 0.32 (0.05) 25.83 (6.24) 8.66 (0.86)
βT
powder -0.25 (0.08) -0.24 (0.1) -0.14 (0.12) 0.01 (0.03)

βT
solution -0.04 (0.06) -0.11 (0.11) 0.01 (0.13) 0.05 (0.03)

ω 0.38 (0.06) 0.15 (0.08) 0.39 (0.04) 0.23 (0.01) 0.95
γ 0.12 (0.06) 0.27 (0.08) 0.36 (0.04) 0.10 (0.01) 0.67
a (ng/mL) 0.12 (0.02)
b 0.14 (0.004)NOTE: The referen
e formulation is the Genotropin®. Treatment e�e
ts are estimated forOmnitrope® powder (βT

powder) and Omnitrope® solution (βT
solution)
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Table 4: Bioequivalen
e Wald tests using NCA and NLMEM estimates for the three-way 
rossover study on somatropin.NCA NLMEMFormulation Ratio 90% CI p Ratio 90% CI p
AUC

powder 0.99 [0.94; 1.03℄ 7 10−11 0.99 [0.95; 1.04℄ 3 10−17solution 0.95 [0.90; 0.99℄ 3 10−8 0.95 [0.92; 1.00℄ 5 10−12

Cmax
powder 0.95 [0.88; 1.03℄ 3 10−4 0.94 [0.84; 1.04℄ 0.008solution 0.93 [0.86; 1.01℄ 0.001 0.92 [0.83; 1.02℄ 0.015NOTE: p is the p-value of the bioequivalen
e Wald test. The referen
e formulation is theGenotropin®. The ratios 
orrespond to Omnitrope® powder versus Genotropin® and toOmnitrope® solution versus Genotropin®.
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Legend to �guresFigure 1. Boxplots of the estimates of the 
learan
e referen
e e�e
t (λCL/F ), 
or-responding 
ovariate e�e
ts (βT
CL/F , βP

CL/F and βS
CL/F ), and standard deviation ofthe between-subje
t (ωCL/F ) and within-subje
t (γCL/F ) variability for the hypothe-sis H0;80%. Parameters are estimated from the 1000 
rossover trials simulated under

H0;80% with two or four periods, for the ri
h (N = 40, n = 10) and sparse (N = 40,
n = 3) designs, and two variability settings, Sl,l (top) and Sh,l (bottom). For four-period 
rossover trials, only the period e�e
t estimates β̂P

2,CL/F are displayed. Thehorizontal lines 
orrespond to the true simulated values.Figure 2. Boxplots of the geometri
 mean estimates of AUC (top) and Cmax (bottom)estimated by NCA (left) or NLMEM (right), for ea
h simulation setting of two-period
rossover trials, the hypothesis H0;80%, and the referen
e treatment. The horizontallines 
orrespond to the geometri
 means 
omputed from the NLMEM simulated pa-rameters.Figure 3.Boxplots of the treatment e�e
t on AUC (�rst row) and Cmax (third row) andtheir standard errors (se
ond and fourth rows) estimated by NCA (left) or NLMEM(right), for ea
h simulation setting of two-period 
rossover trials and the hypothesis
H0;80%. For NCA, βT

AUC , β̂T
Cmax

, se(βT
AUC) and se(βT

Cmax
) are obtained from LMEManalysis. For NLMEM, the estimates of βT

AUC and se(βT
AUC) are dire
tly obtainedfrom β̂T

CL/F and se(βT
CL/F ). The treatment e�e
t β̂T

Cmax
is 
omputed from λ̂ and β̂T ,and se(βT

Cmax
) is estimated by the delta method. The horizontal lines 
orrespond tothe true simulated values of the treatment e�e
ts. The 
ross symbols 
orrespond tothe empiri
al standard errors of the treatment e�e
t 
omputed for ea
h simulationsetting.Figure 4. Gobal type I error of the bioequivalen
e tests performed on the treat-ment e�e
t of AUC (top) and Cmax (bottom) from NCA (right) and NLMEM (left)estimates. The Wald tests based on NCA and NLMEM estimates are performedon both parameters, the likelihood ratio test (LRT) is performed only on AUC.For NLMEM-based bioequivalen
e Wald tests, se(βT

Cmax
) are estimated by the delta38



method. NLMEM-based bioequivalen
e Wald tests are performed with the estimatedor empiri
al standard error. The type I error is estimated from 1000 bioequivalen
etrials simulated under H0;80% and H0;125% for di�erent sampling designs (N : numberof subje
ts, n: number of samples per subje
t) and di�erent variability settings Sl,l,
Sh,l, and Sh,h. The horizontal dashed lines represent the nominal level at 5% and its95% predi
tion interval ([3.7%; 6.4%]).Figure 5. Observed 
on
entrations of somatropin versus time with their 90% predi
-tion interval (top), and individual weighted residuals (IWRES) versus time (bot-tom) for ea
h treatment, Genotropin® (left), Omnitrope® powder (middle), andOmnitrope® solution (right).
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