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Abstract

Background: The emergence of organismal complexity has been a difficult subject for researchers because it is

not readily amenable to investigation by experimental approaches. Complexity has a myriad of untested definitions

and our understanding of its evolution comes primarily from static snapshots gleaned from organisms ranked on

an intuitive scale. Fisher’s geometric model of adaptation, which defines complexity as the number of phenotypes

an organism exposes to natural selection, provides a theoretical framework to study complexity. Yet investigations

of this model reveal phenotypic complexity as costly and therefore unlikely to emerge.

Results: We have developed a computational approach to study the emergence of complexity by subjecting

neural networks to adaptive evolution in environments exacting different levels of demands. We monitored

complexity by a variety of metrics. Top down metrics derived from Fisher’s geometric model correlated better with

the environmental demands than bottom up ones such as network size. Phenotypic complexity was found to

increase towards an environment-dependent level through the emergence of restricted pleiotropy. Such

pleiotropy, which confined the action of mutations to only a subset of traits, better tuned phenotypes in

challenging environments. However, restricted pleiotropy also came at a cost in the form of a higher genetic load,

as it required the maintenance by natural selection of more independent traits. Consequently, networks of different

sizes converged in complexity when facing similar environment.

Conclusions: Phenotypic complexity evolved as a function of the demands of the selective pressures, rather than

the physical properties of the network architecture, such as functional size. Our results show that complexity may

be more predictable, and understandable, if analyzed from the perspective of the integrated task the organism

performs, rather than the physical architecture used to accomplish such tasks. Thus, top down metrics emphasizing

selection may be better for describing biological complexity than bottom up ones representing size and other

physical attributes.

Background

The evolution of the complexity of organisms has been a

challenge for Darwinian theories of evolution [1]. How

does evolution produce complex organs, when the func-

tioning of such organs requires the successful interaction

of many components? Despite the recent proliferation of

large nucleotide, proteomic, and metabolic databases, it

remains difficult to define the complexity of organisms

[2,3], and even more to understand the determinants

underlying the emergence of complexity.

Any attempt to understand the evolution of complex-

ity must rely on a meaningful definition of complexity

coupled to some quantitative methods of estimation.

Initial estimates of complexity have been based on the

number of nucleotides, genes or cell types in a genome,

but such bottom up estimates often fail to have useful

properties [4,5]. For instance, the multicellular green

algae Volvox carteri has the same number of genes as its

unicellular relative, Chlamydomonas reinhardtii [6],

even though the evolution of multicellularity is one of

the major transitions affecting organismal complexity.

To overcome possible problems associated with the pre-

viously mentioned bottom up metrics of complexity,

recent studies have shifted to a more top down

approach by incorporating population genetics [7],

quantitative genetics [8] and ecology [9] and quantifying* Correspondence: herve.lenagard@inserm.fr; olivier.tenaillon@inserm.fr
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complexity from the perspective of natural selection act-

ing on the organism as a whole [10-12].

The most integrated vision of complexity comes from

Fisher’s geometric model of adaptation [13]. Fitness in

the model is a function of the phenotype of the organ-

ism. Individual organisms are depicted as points in a

multidimensional space and each axis corresponds to an

independent phenotype under selection. The total num-

ber of independent phenotypes, i.e. the dimensionality

of the phenotypic space, is taken to represent phenoty-

pic complexity. This model has received much attention

in the last decade and has provided many qualitative

predictions [7,11,12,14-18] that have been validated

experimentally [12,19,20].

Using Fisher geometric model of adaptation, several

theoretical studies have also analyzed the consequences

of phenotypic complexity on evolution. All of them

found higher complexity to be costly. The cost results

from the difficulty of having to optimize many pheno-

types simultaneously and it is manifested by the decreas-

ing fraction of beneficial mutations as dimensionality

increases [11,13,15,21]. As a result, the rate of adapta-

tion decreases [7,11,21,22] and the drift load increases

[12,16,20,23-25]. Drift load represents the loss of fitness

due the effects of genetic drift on the fixation rate of

beneficial and deleterious mutations.

Although previous studies have used Fisher’s geome-

trical model to examine the effect of complexity on evo-

lution, none have allowed dimensionality to change as a

result of evolution and adaptation. To characterize both

the selective forces acting on the emergence of complex-

ity and the underlying mechanisms, we have designed an

evolutionary system in which complexity was free to

emerge depending on its costs and benefits. Although

experimental studies of complexity with real biological

organisms are possible [11,12], a systematic investigation

is still difficult. We chose therefore to use computational

models employing artificial neural networks evolving

asexually under a mutation-selection-drift process as an

alternative.

Methods

Models

Neural networks were chosen over other models [26,27]

because they offered more quantitative control over

environmental challenges and network size, which is

comparable to genome size. Neural networks can be

seen biologically as a transduction signal pathway with

no retroaction. In other words, depending on an initial

input value, analogous to a chemical concentration,

nodes are activated and provide a quantitative output

equivalent to the transcription level of a gene. As such

node-outputs/gene-expressions may affect the regulation

of nodes/gene downstream in the network, the response

to the initial chemical concentration is propagated

through the network to the final node/gene. This node/

gene is assumed to be directly linked to fitness such

that the quantitative value of its output/expression can

compared to some expected value to estimate fitness. In

other words, for a given concentration of a chemical, a

given expression level of the final gene is expected and

any deviation from that value will reduce the fitness of

the network. To go further, rather than evaluating the

fitness of a network base only on its response to a single

input value or concentration, we assess it on a linear

gradient of concentrations. For 100 different concentra-

tions spread between 0 and 1, we expect 100 different

levels of expression of the output node. This means that

fitness is defined as a goodness of fit between the output

of the networks and a reference function. By allowing

selection to operate through the fitness of the individual

networks, the population was allowed to evolve.

We used as the reference function Legendre polyno-

mials. These functions were chosen because they could

be readily ranked in term of complexity by the Order of

the Legendre Polynomial (OLP). Higher OLP’s both

require more parameters and have a higher Kolmogorov

complexity [28] (it requires a longer source code to be

implemented, the size of the code increasing linearly

with the OLP). Biologically, this means that a high OLP

environment will select for networks whose response to

a linear gradient of concentration is complex. For

instance, if the expression of the key gene determines

the state of the cell depending on a threshold level, as

observed during development, an OLP of p selects for

networks performing p transitions from one state to

another along the full gradient. We note that while the

reference function, and hence the environmental chal-

lenge could also be described as having either high or

low complexity, we have chosen to restrict our use of

the term complexity to describe only networks. Environ-

mental challenges will be described as having different

levels of demands: the higher the OLP, the more diffi-

cult is the environmental challenge (Figure 1)

The evolution of complexity in our networks was

monitored and compared to standard bottom up metrics

such as network size with three additional metrics:

Information Complexity (IC), Principal Component Phe-

notypic Complexity (PCPC), and Effective Phenotypic

Complexity (EPC) (see detailed methods). IC measures

the information content of the environment that is

stored in a network by selection [10]. IC is based on a

summation of the intensity of the selective constraints

acting on each mutable component of the network. As

such, IC estimation uses both bottom up (network size)

and top down (selection) factors, it represents the func-

tional size of the network and is a hybrid metric. Both

PCPC and EPC are based on Fisher’s geometric model

Le Nagard et al. BMC Evolutionary Biology 2011, 11:326

http://www.biomedcentral.com/1471-2148/11/326

Page 2 of 15



of adaptation [13] (Figure 2A), which represents com-

plexity as the dimensionality of the phenotypic space

(the number of independent phenotypes under selec-

tion). PCPC directly measures Fisher’s dimensionality

from a principal component analysis based on the

effects of randomly drawn mutation on the network fit-

ness (Figure 2B) and is comparable to the dimensional-

ity of the mutational variance-covariance M-matrix used

in multivariate quantitative genetics [8]. EPC indirectly

measures Fisher’s dimensionality from the drift load [12]

(Figure 2C). Drift load results from the impact of

genetic drift on the fixation of deleterious and beneficial

mutations. As the efficiency of selection depends on

population size and the ratio of beneficial to deleterious

mutations depends on dimensionality, dimensionality

can be inferred from the intensity of drift load for differ-

ent population size. Because EPC is easier to measure, it

is one of the few indexes that have been measured in a

real biological organism [12]. Because both PCPC and

EPC respond only to selection, they are top down

metrics.

Detailed methods

Networks

Neural networks consisted of single input and output

cells connected by a series of neurons, or nodes (Figure

1). Network size was determined by varying the number

of nodes. The input cell and nodes were connected

sequentially and all nodes received out outputs from all

lower nodes. The value of the output corresponds to the

output of the last node. The output Oj of node j was

determined as

Oj = 1 − e−x2
(1)

(different activation function provided similar results

but with much lower efficiency of adaptation (data not

shown)), where

x =

⎛

⎝

j−1
∑

i=0

wijOi + bj

⎞

⎠ (2)

Oi were the outputs of the preceding nodes in the net-

work, wij the weight of the connection between node i

and j (or connection weights), bj a weight associated to

node j (or node weight), and O0 the input cell value. Oj

equaled zero when its inputs were zero and close to one

with strong positive or negative inputs.

For each input value, the network provides an output

value that can be compared to a reference. Rather than

using the response to a single input value to define the

fitness of the network, we used the response to 100 dif-

ferent input values. Fitness was hence determined by

testing the response of each network to a gradient of

values g(i) that increased linearly from -1 to +1 and i =

1 to 100 (g(i) = -1+2 × i/100). For each value g(i), the

network was evaluated by letting O0 = g(i) and measur-

ing the response N(g(i)) in the output cell. Fitness was

Figure 1 Model of neural networks and environmental challenge. All networks were evolved under an asexual mutation-selection-drift

process. Fitness of an individual network was obtained by providing an input gradient and retrieving from the network a response that was

then matched to a response function or environmental challenge. Networks varied in their number of nodes and connections and the weight of

each connection and nodes could be mutated to generate heritable variation. Response functions were described by Legendre Polynomials. A

higher Order of the Legendre Polynomial reflected a more intense environmental challenge. Populations of networks with identical size were

adapted independently to each of the environmental challenges.
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measured over all values of i as

Fitness = e
−K∗

(

100
∑

i=1

N(g(i))−R(g(i))

)2

/ (100∗Var(F)) (3)

where K was a constant set to 5 and R(g(i)) the target

value that N(g(i)) is supposed to match. The division by

the variance of R(g(i)), Var(F,) normalized fitness to

have comparable values for different forms of R.

Function R was a Legendre Polynomials (Figure 1).

These are polynomials that define an orthogonal base

for continuous functions defined between -1 and 1. In

that interval, any function can be decomposed in a

linear combination of Legendre polynomial of various

orders. These polynomials are defined by the recursive

functions

(n + 1) Pn+1 (x) = (2n + 1) x Pn (x) − n Pn−1 (x)

P0 (x) = 1

P1 (x) = x

(4)

For our purposes, we normalized them to be bounded

by 0.1 and 0.9 in interval [-1,1].

Legendre polynomials of high order require many

parameters to be defined and as such have a higher

complexity than simple ones (in terms of Kolmogorov

Figure 2 A geometrical model of adaptation and the derived estimates of complexity. A) A geometric model of adaptation is used as a

reference to characterize complexity. In this model, an organism is defined by a number of idealized independent phenotypes (here 3). The

number of phenotypes is what we will call phenotypic complexity. The model assumes the existence of an optimal combination of phenotype

having maximal fitness. The more organisms are distant from that optimal combination, the lower is their fitness. B) To estimate phenotypic

complexity, one can analyze a set of fitness-linked-phenotypes in a collection of mutants and perform a principal component analysis (PCA). The

distribution of variance explained by the different axes of the PCA is directly linked to phenotypic complexity. For instance, if there is indeed a

single phenotype (case 1), a single axis will explain all variance, while if complexity is indeed 2 or 3, 2 or 3 axis will be necessary to explain the

phenotypic variance of mutants. C) Mathematical derivation from the geometric model have proved the existence of some fitness equilibrium

and that the fitness at these equilibrium is a direct function of the effective population size and the phenotypic complexity. Hence if we record

the average fitness of populations of different population size at equilibrium, we can estimate phenotypic complexity.
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complexity [28], they require more operation to be

encoded by a computer program). We therefore chose

the Order of the Legendre Polynomial to reflect the

demand of the network environment.

Network evolution

Populations of networks were initially monomorphic,

starting with a network having random weights

(sampled in a uniform distribution between -0.5 and

0.5). The population of 500 networks was then sub-

mitted to a model of asexual evolution with discrete

generations. Each generation, a network had a 1% prob-

ability of mutating one of its weights. The quantitative

value of the mutated weight was then shifted by a ran-

dom normal deviate of mean 0 and standard error 0.1.

Using classical Wright-Fisher population genetics form-

alism, networks contributed to the next generation of

networks according to their respective fitness.

The above evolutionary process represents our pri-

mary process of adaptation, however two other slightly

modified evolutionary processes were used. We call the

first modified process the “intense selection” evolution-

ary process. For that process, a smaller population size

was used (50), but every 100 000 generations, the inten-

sity of selection was increased, by increasing constant K,

to set fitness back to 3%. This promoted an intense

selective pressure that allowed the emergence of very

high fitness clones that would have otherwise required

very high population size (and massive amount of com-

puter time) to emerge, as mutation of effects smaller

than the inverse of population size behave as neutral

mutations. Using this protocol fitness as high as 0.99999

were sometimes reached, while a population size of

about 105 would be required for this level of fitness to

be reached. The final evolutionary process we used can

be called “adaptive dynamics” [29] since it is similar to

the one used in this field. For that process, populations

were always monomorphic except when a single mutant

appeared. Then based on the mutant fitness fi relative to

the resident fitness f0, the mutant either immediately

invaded the population and became the new resident or

disappeared. The probability of invasion P(f0®fi),

depended on the evolving population size N and, using

Sella and Hirsh formalism [30], was computed as:

P(f0 → fi) =

1 − (
f0

fi
)

2

1 − (
f0

f1
)

2N
(5)

This protocol provided an exact solution for popula-

tions having a small mutation rate by population size

product. This evolutionary process allowed a faster com-

puting than the process simulating a whole population;

it limited the effects of high mutation rate by population

size product that may lead to confusing effects and pro-

vided a direct access to the whole line of descent of the

final clones. It allowed to follow of the coupled changes

in fitness and complexity through the adaptive walk.

Similar levels of complexity were reached under all of

these evolutionary algorithms. Our results are therefore

robust and are not resulting from some specific selec-

tion favoring genetic robustness due to a high mutation

supply.

In the first dataset (Figure 3, 4, 5), we used our pri-

mary method to generate the evolutionary process. Net-

works evolved for 10 millions of generations or until

they reached fitness of 0.99, with a population size of

500. EPC was then computed following the method

described bellow. If in the process of computing the

EPC a better fitness was found the best fitness network

was stored and readapted for 10 million generation and

computation of EPC started completely. In the second

dataset (Figure 6), the “intense selection” evolutionary

process was used for 10 millions of generations. The

“adaptive dynamics” evolutionary process was used to

follow the changes in complexity along the adaptive

walk either starting from random networks or starting

from networks previously adapted to an OLP of 8 and

then shifted to an OLP of 4 (Figure 7).

Network complexity

Principal component phenotypic complexity

For a given network, the different outputs of 1,000

mutations having more than 1% effect on fitness were

recorded (using all mutations provided similar esti-

mates, but due to the existence of fully neutral muta-

tions resulted in a higher estimation variance and in

the failure to estimate PCPC for some networks). For

each mutation and for each of the P = 100 fitness

linked phenotype (i = 1, 2,..., 100), the deviation

between the mutant and wild type output N(g(i)) was

recorded. A principal component analysis (PCA) was

then performed in R, with a correlation approach. The

eigen values, li, representing the variation explained by

each of the P axes of the PCA were then used to esti-

mate the number of effective dimensions, or PCPC.

Because log(li) values tended to follow some uniform

distribution, as in many system biology models [31], it

was not easy to identify clear thresholds between axes

contributing to the observed variance and those that

did not. However, one could compute the number of

effective dimension n or PCPC that would produce a

variance among the contribution of all the P axes simi-

lar to the one observed (var(li)), assuming that the n

first axes contribute equally to the observed variance

and the remaining P-n have no contribution. Hence, as

previously shown [11],
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PCPC = n = P /
(

1 + CV(λ i)
2
)

(6)

CV(li) being the coefficient of variation of li.

PCPC can be used to estimate the number of effective

dimensions in Fisher’s geometric model even when indi-

viduals sharing the same fitness are not equidistant

from the optimal phenotypic combination (they define

circular fitness isoclines in two dimensions) [11]. The

resulting estimate of PCPC corresponds to the number

of dimension of Fisher’s geometric model with equidi-

stant fitness isoclines that would have a distribution of

mutation fitness effects similar to the one observed in

the original phenotypic space in which fitness isoclines

may be ellipsoidals [11].

Effective Phenotypic Complexity

In Fisher geometric model of adaptation, population

evolves towards equilibrium fitness values defined by

population size and the dimension of the phenotypic

space or EPC. The best network at the end of adapta-

tion was then used to initiate new populations of

reduced size (6, 10, 30, 60 and 100), which were evolved

for 10 millions of generation to be sure that equilibrium

would be reached. Fitness was recorded over the last 5

million generations and the observed decay of fitness

with population size was fitted by the theoretical predic-

tion to estimate EPC [12] (Figure 4A).

f (N) ∝ (1 −
1

2N − 1
)EPC (7)

Indeed EPC is a composite index which corresponds

to the ratio of dimensionality and an epistasis parameter

named Q in reference [12]. For the sake of simplicity we

assumed Q = 1 (we found evidence that Q < 2, but we

could not find any evidence for a change in Q among

networks (data not shown)). As we are not focusing on

absolute values of EPC, this does not affect our results.

Informational Complexity

The quantity of information stored in a genome and

transmitted to the next generation has been used as a

measure of organismal complexity [10]. If more informa-

tion is necessary to build up an organism, the organism

is more complex. However, genome size alone may not

be adequate because some parts may not encode any

information. To account for the information content of a

Figure 3 Fitness reached by networks as a function of genome size and environmental challenge. Boxplot of fitness reached at the end

of adaptation. Network size, 19, 14, 9, 6, 4, is presented with a gray level, lighter gray representing larger network sizes. Larger Network size

facilitates adaptation to higher fitness. To uncover the difference between highly adapted networks, the scale used is -log(1-Fitness).
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Figure 4 Estimates of networks complexity as a function of both network size and environmental challenge. A) Average Effective

Phenotypic Complexity (EPC) estimated for different network sizes and environmental challenges (OLP). Network sizes of 4, 6, 9, 14 and 19

nodes are represented as decreasing shades of gray. Error bars are 95% confidence intervals. B) and C) same as A but for the metrics Principal

Component Phenotypic Complexity (PCPC) and Informational Complexity (IC). D) Networks adapted to an OLP of 2 and having similar fitness

and PCPC are presented with their respective value of PCPC and IC. On the networks graphed, the width of a connection reflects the impact of

the underlying weight on fitness. A large width reflects a weight that impaired fitness largely when mutated. Large differences in the internal

structuring of networks affected their IC but not their phenotypic complexity that remained more linked to the function performed.

Figure 5 Restricted pleiotropy and complexity. A) Matrix illustrating pleiotropic effect of mutating weights of connections and nodes on

network phenotype. The pleiotropic effect of a mutation was measured through the mean and variance of its effects on networks phenotypes.

An average pleiotropy was computed for each connection and node weights in the network (generating matrix A) and averaged over all

weights to compute the network pleiotropy. B) Correlation between the estimates of PCPC of phenotypic complexity and network pleiotropy for

all networks. In red, a power law fit to the data.
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locus, its effects on fitness must be assessed. If all alleles

at a locus had the same fitness, then there is no con-

straint on that locus: all alleles are equally probable and

the information content is null. If all alleles but one are

lethal then the information content is maximal, as the

non-lethal allele will always be found at that locus.

Because our loci are quantitative (the real value of a con-

nection or node weight), we estimated the quantity of

information (IC) by sampling the fitness effects of an

observed weight. For each weight, we estimated the fit-

ness for 600 interspersed values of the weight around its

observed value (in a [-3, + 3] interval). To calculate the

IC, we calculated the probability to observe each of these

possible values in a population at equilibrium (because

hitchhiking in adapting populations will affect the results

[32]). Published measures of IC have used an infinite

population size with mutation rate μ to get the equili-

brium frequencies [32], but the resolution is not trivial.

Hence rather than studying the equilibrium probability of

each weight value in an infinite population size with a

given mutation rate, we studied the probability to observe

a given weight value in a finite population of size N with

a very small mutation rate. The two approaches focus on

different noise parameters in the transmission of infor-

mation. The first one focuses on mutation rate, and the

other one on genetic drift, but both have very similar

behavior. The benefit of the drift approach is that it

allows the exact computation of the of the frequency of

an allele in an equilibrium population [30], as long as we

know the fitness values associated with each allele.

Figure 6 Optimization of phenotypic complexity (PCPC). A) Evolution of fitness against PCPC for 50 19-nodes networks evolved on OLP 4

during the adaptive process. Gray line represents the fitness versus PCPC trajectory of the population and black dots the position of the most

common genotype in the population each 104 generations. High PCPC was required to reach high fitness. B) Same as in A except that the

average pleiotropy of networks was plotted instead of their PCPC. C) Final fitness reached under an “intense selection” adaptation process after

106 generations in two environments (OLP 3, light gray and OLP 8, dark gray) for networks of varying sizes as a function of evolved complexity

PCPC. For each OLP a different range of optimal PCPC evolved and maximized fitness. D) Distribution of PCPC estimated on 100 random

networks and 100 networks adapted to an OLP of 8 (top panel). Distribution of the PCPC estimated on networks, derived from the previous

ones, after adaptation to OLP 4. PCPC converged, either up or down, towards an intermediate and optimal value.
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For a given weight, j, the fraction of populations evol-

ving with size N having the ith value for that weight and

the associated fitness fj,i is just:

p(j, i) =
fj,i

2N−2

600
∑

k=1

fj,k
2N−2

(8)

the entropy for that weight is then

H(j) = −

600
∑

k=1

p
(

j, i
)

Log600

(

p
(

j, i
))

(9)

and the information content

IC(j) = 1 − H
(

j
)

(10)

The information content of a network was hence

defined as the sum over all the w weights

IC =

w
∑

j=1

⎛

⎜

⎜

⎜

⎝

1 +

600
∑

i=1

⎛

⎜

⎜

⎜

⎝

fj,i
2N−2

600
∑

k=1

fj,k
2N−2

Log600

⎛

⎜

⎜

⎜

⎝

fj,i
2N−2

600
∑

k=1

fj,k
2N−2

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

(11)

The larger the N, the higher the information content,

as any slightly deleterious mutation is easily filtered by

Figure 7 Distribution of changes in complexity (PCPC) fixed during the adaptive process A) 12 populations of size 100 were adapted

to an OLP of 4 in three independent replica from 4 networks previously adapted to an OLP of 8 for 10 million generations. The

populations were evolved under an “adaptive dynamics” process of adaptation (low mutation rate such that populations were always

monomorphic unless a single mutant occurred and got either lost of fixed). The changes in PCPC of all the fixed mutations were then recorded.

We focused on changes occurring while fitness of the network population changed from 10% to 60%, to avoid any effect due to the

stabilization of the changes in PCPC in early and late phases of adaptation. The red dotted line represents the mean change in PCPC. B) Same as

in A with a population size of 10 000. C) Same as in A on 5 networks (in 5 replicates each) adapting from an OLP of 4 to an OLP of 8 with a

population of 100. Changes in PCPC were recorded while fitness changed from 5% to 30%. D) Same as in C with a population size of 10 000.
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natural selection. To be able to uncover the differences

among networks and to be able to compute the solu-

tions we chose an N of 100.

Network Pleiotropy

To estimate pleiotropy, we used a method similar to the

one used to estimate PCPC. We sampled one hundred

mutations per mutable entity, wi, of the network and

averaged their effect, to obtain μ̄i,p (average squared

deviation from the non-mutated network output) on

each of the P = 100 network outputs or fitness-linked

phenotype. We then estimated how many effective phe-

notypes were affected by a given weight, wi by studying

the coefficient of variation of these μ̄i,p .

Pleio (wi) = P /
(

1 + CV
(

μ̄i,p

)2
)

(9a)

Similarly to PCPC, a pleiotropy of 3 meant that the

mutation had a distribution of effects on traits equiva-

lent to a mutation that would affect 3 traits identically

and none of the other traits (Figure 5A). The network

pleiotropy was then computed as the average pleiotropy

across all mutable entities. As there are 100 fitness-

linked phenotypes, our measure of pleiotropy ranges

from 1 to 100.

Network Modularity

To estimate modularity, we used the bipartite leading

eigen vector approach [33] with an implementation

kindly provided by J. Zhang. This method required a

boolean matrix of connectivity in which nodes are either

connected to a phenotype or not. Similarly to the analy-

sis of pleiotropy, to generate such a matrix from our

networks, for each weight an average effect on each phe-

notype was computed based on 1,000 mutations on that

weight. A weight was connected to a phenotype if muta-

tions shifted the phenotype value by at least 0.002 (sev-

eral threshold were used and gave similar results). Such

a shift generates a fitness loss that is perceivable by nat-

ural selection with our evolving population of 500. The

value of modularity Q was retained for each network.

However because absolute values of Q are also depen-

dent on the connectivity of the matrix, similarly to

Wang et al (2010) a normalized modularity was com-

puted by comparing the observed Q with that of

matrices in which the phenotype affected by each weight

were randomly chosen, and normalizing by the variance

of Q among the random matrices (to generate a Z-

score).

Results

Networks were evolved under an asexual mutation-

selection-drift process and selected to match OLP’s of

the order of 2, 3, 4, 5, 6, 7 and 8. We examined network

sizes of 4, 6, 9, 14 and 19 nodes. For each combination

of network size and OLP, thirty to eighty populations

were started from a random network and evolved until

they either reached fitness of 0.99 or evolved for at least

10 million generations at a population size of 500. Popu-

lations of networks with an absolute fitness of less than

a threshold of 15% were not retained, as they do not

match properly the imposed challenge (other threshold

values were used and provided similar results). With

low OLP’s, all networks evolved to high fitness values

and matched accurately their reference function. With

increasing OLP’s, fewer networks reached a fitness

greater than 15%, and those that did, especially the

smaller ones, attained a lower fitness. For instance, at an

OLP of 8, only 29% of the networks with 4 nodes

exceeded 15% while 82% of the networks with 19 nodes

did; of these, average fitness was 74% in the 4-node net-

works and 96% in the 19-node ones. Hence, increased

network size facilitates adaptation to increased environ-

mental challenge (Figure 3).

PCPC, EPC and IC were all found to correlate posi-

tively with the size of the network and the environmen-

tal demand (OLP) (Figures 4A, B, C). All three metrics

increased close to linearly with OLP when networks

were able to evolve high fitness. However, the similarity

between the three metrics weakened with a more

detailed comparison.

Despite the fact that they are measured with radically

different methods, the two estimates of phenotypic com-

plexity PCPC and EPC correlated strongly (r = 0.69). IC

correlated to the other two metrics, but to a lesser

degree (r = 0.50 with PCPC and r = 0.34 with EPC).

Network size was able to explain 85%, 20% and 8% of

the variance of IC, PCPC and EPC, while OLP explained

2%, 40%, and 57% of the variance, respectively (Figure

4). Moreover, the impact of network size on PCPC and

EPC was partly driven by the inability of small networks

to reach high fitness and high complexity in high OLP.

Thus, while EPC/PCPC were much more influenced by

the OLP, IC and its hybrid features was much more sen-

sitive to bottom up properties of network such as net-

work size.

Although network size did correlate with all three

metrics of complexity, its inability to explain the var-

iance in PCPC and EC revealed its limitations in influ-

encing the evolution of complexity. This effect was

further illustrated when networks were challenged with

the simplest demand of OLP equal 2 (Figures 4A, B).

Increasing network from 4 to 19, which corresponds to

a 15-fold increase in the number of evolvable weights

(see Methods), had not effect on EC and PCPC (p =

0.22) (Figure 4D). Consistent with earlier measurements,

Le Nagard et al. BMC Evolutionary Biology 2011, 11:326

http://www.biomedcentral.com/1471-2148/11/326

Page 10 of 15



network size also explained up to 88% of the variance of

IC in these conditions.

To elucidate how connections within a network

evolved, we examined the effects of changing randomly

the connection and node weights on each of the 100

traits used to estimate the network fitness (see Meth-

ods). A change in a weight is equivalent to a mutation

and its effects were quantified as a pleiotropic coeffi-

cient, based on the coefficient of variation of the magni-

tude change at each trait (Figure 5A). A mutation

affecting equivalently all traits is universally pleiotropic

with a coefficient of 100. A smaller coefficient indicated

a mutation with restricted pleiotropy. The average pleio-

tropy of networks correlated negatively and strongly

with metrics of complexity (Figure 5B) and restricted

pleiotropy was associated with increased complexity.

Thus, mutations in the simplest networks were maxi-

mally pleiotropic and affected most traits, while the

ones in complex networks exhibited restricted pleiotropy

by affecting differing subsets of traits. This negative cor-

relation was highly significant across network sizes or

OLP. The correlation was maximal for PCPC (overall

correlation of -0.75 with a power law) but was still

strong for EPC (r = -0.57) and IC (r = -0.56). Indeed

such a link between phenotypic complexity and pleio-

tropy is fully compatible with the principal component

analysis vision of complexity. For many independent

axes to emerge, mutations must affect differentially the

different traits, such that no absolute correlation exists

among them.

The negative correlation between pleiotropy and our

three metrics of complexity indicated that complexity

evolved by incorporating mutations with restricted

effects on the response of the networks. To determine

whether the restriction also created structuring in which

particular group of weights interacted preferentially with

different subsets of phenotypes, we searched for modu-

larity by applying the bipartite leading eigen vector

approach to the matrix of connections from weight to

phenotypes [33]. In this matrix, a weight was connected

to a phenotype only if the average effect of mutations

on that weight affected the phenotype value by 0.002

units, which corresponds approximately to an effect on

fitness detectable by natural selection with the popula-

tion size of 500. The modularity statistic Q correlated

negatively with pleiotropy (r = -0.44) and positively with

PCPC (r = 0.28), but the correlations were not very

strong. This may be due to the dependency of Q to the

density of the matrix used to compute it. We therefore

computed a modified value of Q, which corresponds to

the normalized difference between the observed value of

Q and that of random matrices sharing the same con-

nectivity (see Methods) or Z-scores. The presence of

modularity was pervasive: 1296 out of 1368 networks

had a higher than expected modularity at the 5% level.

So restricted pleiotropy emerged partly due to the emer-

gence of modularity. However, some further analysis of

modularity, pleiotropy and complexity will have to be

performed with greater care, as the statistical properties

of these Z-score and of the basal level of the Q statistic

remain to be uncovered.

Previous theoretical studies, analyzing the conse-

quences of phenotypic complexity on evolution, have

indicated that high complexity generates some costs

such as an increased drift load [12,16,20,23-25]. As drift

load is also the basis of our metric EPC, the evolution

of higher EPC with increasing environmental demands

(Figure 4) reveals directly the existence of some cost.

Because complexity emerged in our networks despite

the presence of a drift load, some associated benefits

must have outweighed its cost. To unravel these bene-

fits, we monitored the emergence of phenotypic com-

plexity to determine if it conferred better adaptation

and higher fitness. First, we analyzed the networks

reported in Figure 6A and 6 found that complexity mea-

sured by PCPC both increased during the early phases

of adaptation and correlated positively with fitness.

Similarly, the level of pleiotropy decreased during adap-

tation (Figure 6B). Second, we generated and analyzed

another dataset in which the selective pressure was kept

intense such that very high fitness could be reached

independently of the evolving population size (see Meth-

ods). The final fitness reached in this “intense selection”

dataset again correlated positively with PCPC for each

of the environmental challenges (Figure 6C) and the

PCPC values reached were similar to the one observed

previously. Third, we examined an additional dataset in

which complexity emerged while being forced to remain

below a threshold. Mutations producing networks with

a PCPC higher than the threshold value were rejected.

Once again the maximal fitness reached was very

strongly positively correlated with the maximal PCPC

allowed (data not shown). Those three approaches

revealed that low complexity organisms are unable to

reach very high fitness while organisms above a given

complexity manage to (Figure 6A, C). For instance, in

Figure 6A a network could reach a fitness higher than

40% only if its PCPC was higher than 2.2 and its pleio-

tropy lower than 45. Thus, when facing a demanding

environment, networks could achieve a high fitness only

if restricted pleiotropy emerged through the decoupling

of mutation effects and allowed fine-tuning of its

outputs.

However, an ever-increasing complexity, which could

in theory lead to an ever-increasing fitness, was not

observed (Figure 6C). This suggests that the cost of

increasing complexity may have been substantial. While

the emergence of high complexity was observed for
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networks adapted to high OLP, such high levels were

never observed for lower OLP despite the permanent

selective pressure we maintained in our “intense selec-

tion” dataset (Figure 6C). This outcome suggests that

the failure to evolve high complexity result from the

cost of high complexity and not from (i) a weakening

selective pressure as fitness increases, or (ii) a muta-

tional pressure due to an increased probability to

decrease complexity by mutation. Indeed, both alterna-

tives would generate a dependency of the complexity

reached with the intensity of selection and/or the popu-

lation size, but neither were observed (data not shown).

Moreover, we looked at the distribution of changes of

PCPC caused by random mutations and did not found

any consistent pattern: networks had sometimes an

excess of mutations increasing PCPC, sometimes a lack.

This further discredits the role of biased mutational

pressure in setting the complexity equilibriums. Finally,

to test for the presence of a cost of complexity, we

evolved networks to very high levels of complexity by

selection in a very demanding environment (OLP = 8)

and then switched them to a lower OLP (equal to 4). In

all cases, we observed a gradual decrease in PCPC

towards the average value reached by random network

adapted to OLP = 4 (Figure 6D). Hence an optimal level

of complexity was favored and resulted most likely from

a balance between the benefits and the costs of

complexity.

Discussion

By evolving adaptive networks with different physical

properties under different environmental conditions, we

have been able to identify the determinants controlling

the evolution of complexity. The three different mea-

sures of complexity we used correlated positively with

one another, yet our analysis reveals that they captured

different facets of complexity. We found that while IC

captured the physical architecture used to accomplish a

given task, PCPC and EPC were most useful in describ-

ing the integrated task the organism performs.

The measure of informational complexity or IC, being

still connected to the physical constituents of the net-

works, was found to be mostly driven by network size

and not to correlate well with the environmental chal-

lenge. For large networks, IC responded more to the

environmental challenge (Figure 4C), presumably

because inactivating unnecessary parts of the network

was an achievable solution for large networks facing

simple challenges. However, as soon as the intensity of

the challenge increased the whole network was recruited

and IC saturated. Overall, for all environments, the size

of the networks was the principal determinant of IC.

The latter outcome demonstrates dramatically that the

same ecological problem can be solved by a variety of

genetic solutions in these networks and raises the possi-

bility that the more physical aspects of complexity may

be more subject to the vagarities of historical contingen-

cies [34]. This may be the reason why bottom up

approaches of complexity do not match adequately our

intuitive perception of complexity which is based on the

observation of organisms phenotypes. For instance, the

recent analysis of the genomes of C. reinhardtii and V.

carteri [6] supports well the qualitative outcome of our

study. While C. reinhardtii is a single-celled algae, V.

carteri is multicellular, the two have similar genome size

and number of genes. Thus, two organisms straddling

the boundary of a major biological transition are able to

manifest marked differences in phenotypic complexity

while evolving minimal changes in their informational

content.

The estimates of phenotypic complexity, PCPC and

EPC strongly correlated with each other, which is

remarkable because it indicates that mathematical deri-

vations from an idealized model of adaptation such as

Fisher’s quantifies complexity in a manner similar to a

statistical model of principal components. Although this

may seem intuitive as both estimates are supposed to

measure phenotypic complexity as defined in Fisher’s

geometric model, nothing suggested initially that such a

model should apply to our networks. The high correla-

tion we observed relies on the robustness of the estima-

tors of complexity derived from Fisher’s geometric

model that we used. Other measures of dimensionality

based on the distribution of mutation effects in Fisher’s

geometric model have been proposed [11], but they are

dependent on assumptions of made on how mutations

affect phenotypes [18,35] and have failed to be informa-

tive in our system (data not shown). Contrary to these

estimators, EPC is independent of the mutation process

[12] and is therefore more robust. PCPC which uses

mutations to sample the phenotypic space directly, is

also more informative in our case, simply because all

phenotypes influencing fitness are known and the effect

of thousands of mutations on all these phenotypes can

be measured in artificial systems. As a consequence,

PCPC relies on the full information of mutational effects

on phenotypes and not only on summary statistics such

as the mean and variance of mutation effects on fitness

that are informative on the dimensionality of the space

in Fisher’s geometrical model only under restrictive con-

ditions. (The correlation between PCPC and EPC sug-

gests therefore that while Fisher’s Model provides a

relevant description of the behavior of the networks, the

restrictive conditions required for the distribution of

mutational effect on fitness to be informative on dimen-

sionality are not met in these networks.)

Both PCPC and EPC responded consistently to the

demands of the environment. Because the environment
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is perceived by the networks through the fitness conse-

quences of natural selection, our results shift the evolu-

tionary focus of complexity from bottom up or physical

measures of complexity (genome size, number of cell

types, network size) to top down or more ecological

ones in which complexity is linked to the ecological

niche. Physical measures of complexity alone are not

adequate to capture complexity of the task performed

because their mapping to phenotype was modulated as

we found by pleiotropy.

Pleiotropy has been defined a century ago [36], yet,

some large scale estimates of pleiotropy within an

organism have only been provided recently [37]. Consis-

tently with the results of our toy model, analysis of

mouse QTL [38], or yeast, nematode and mouse knock

outs [39] have suggested that pleiotropy was very

restricted [37]. Mutations affected a fraction of the phe-

notypes measured and not all as considered classically

for a long time in Fisher’s geometric model. Moreover,

similarly to what we found, some extensive modularity

may contribute to the emergence of restricted pleiotropy

[39]. While our results are compatible with these obser-

vations, they extend them by suggesting a more intimate

connection between pleiotropy and phenotypic

complexity.

The link between restricted pleiotropy and the emer-

gence of phenotypic complexity provides both a

mechanistic interpretation of complexity and a selective

hypothesis underlying its evolution. Previous analyses of

phenotypic complexity have mostly focused on the con-

sequences of complexity on evolution, rather than on

the selective forces acting on it. As such it appeared

costly to have a high complexity due to a limited num-

ber of beneficial mutations [11,13,15,21], a limited rate

of adaptation [7,11,21,22], or a higher drift load

[12,16,20,23-25]. However, these models assumed that

all organisms independently of their complexities could

potentially reach the same maximal fitness. Here, we

suggest that if strong correlations between mutations

effects exist within an organism, this organism has low

complexity because it can only explore a fraction of the

phenotypic space [11]. Hence, it could not reach a high

fitness when placed in a challenging environment. The

way to reach a higher fitness is then to decouple muta-

tion effects such that mutations affect a subset of phe-

notypes and not all. As a result the accessible

phenotypic space becomes larger and its number of

dimensions, i.e. the phenotypic complexity of the organ-

ism is increased.

Phenotypic complexity and restricted pleiotropy

appeared to be under stabilizing selection due to a bal-

ance between their benefits and costs. Increasing com-

plexity allows the organisms to wonder in a larger

phenotypic space and closer to the optimal combination

of phenotypes, but it also leads to a higher drift load

[12]. The effects of drift limit the ability of the popula-

tion to stay close to the optimal combination because it

is harder to optimize more independent traits simulta-

neously. Both the costs and the benefits of complexity

appear to be indirect (second order selection [40]) and

weak: (i) if selection for complexity was direct, there

would be a correlation between the effect of mutations

on fitness and the ones on complexity, but no such cor-

relation was found (data not shown), (ii) if selection for

complexity was strong, changes in complexity fixed in

the adaptive process should be mostly positive when

selection favored an overall increase in complexity and

negative in the opposite case. Yet, in both cases, the dis-

tribution of changes fixed was only slightly off-centered

(Figure 7), with almost as many changes towards

increased complexity than towards decreased complex-

ity. Interestingly, in a Fisher’s geometric model with

fixed complexity, restricted pleiotropy was found to alle-

viate the costs of complexity in terms of adaptation rate

[39]. Yet in the model developed here, we suggest that

restricted pleiotropy emerges to expand the range of

accessible combinations of phenotypes. Hence the bene-

fit of restricted pleiotropy we monitored is linked to a

change of the maximum fitness reached (despite a

higher drift load) and presumably not to a change of the

rate of adaptation. Whether networks with higher com-

plexity tend to adapt faster or slower in our system and

whether this effect could promote the evolution of com-

plexity remain to be tested.

Finally, restrictive pleiotropy’s link to complexity is

consistent with Ohno’s hypothesis for the evolution of

complexity via gene duplication [41]. Much as how

restrictive pleiotropy can decouple two phenotypes in

our model, gene duplication allows the two gene copies

to evolve freely. Sub-functionalization following a gene

duplication (in which the two derived copies of a gene

are required to replace the function of the ancestral

gene) provides a perfect example of a mechanism by

which pleiotropy can be reduced. Moreover, as the

selection acting on complexity appears to be indirect in

our system (Figure 7), our results are compatible with

the idea that chance or genetic drift may play a role in

the emergence of complexity [42]: some slightly deleter-

ious changes in complexity may be required to facilitate

the acquisition of subsequent beneficial mutations. This

is equivalent to the idea that sub-functionalization may

initially result from non-selective forces, but may in the

longer term be recruited by natural selection to fine

tune the adaptation and therefore support long term

incremental evolution of complexity. Such a perspective

will be subject to further studies.
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Conclusions

Using a model of adaptive neural networks, we have

shown that phenotypic complexity evolved as a function

of the demands of the selective pressures, rather than

the physical properties of the network architecture, such

as functional size. The phenotypic complexity we

observed resulted from a selective balance between the

costs associated with the optimization of many indepen-

dent traits and the benefit provided by the exploration

of a larger phenotypic space. Our model suggests hence

both a selective process for the emergence of phenotypic

complexity and a mechanistic model allowing its evolu-

tion: the emergence of restricted pleiotropy. Our results

therefore show that complexity may be more predict-

able, and understandable, if analyzed from the perspec-

tive of the integrated task the organism performs, rather

than the physical architecture used to accomplish such

tasks. Thus, top down metrics emphasizing selection

may be better for describing biological complexity than

bottom up ones representing size and other physical

attributes.
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