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Montréal, QC, Canada H2L 2W5

2 Centre de Recherche et d’Applications en Traitement de l’Image et du Signal (CREATIS), CNRS UMR 5515, Inserm U 630,
INSA de Lyon, 7 Avenue Jean Capelle, 69 621 Villeurbanne Cedex, France

Received 20 April 2006; Revised 20 September 2006; Accepted 20 September 2006

Recommended by Tan Lee

A new formulation for the estimation of the time-scaling factor between two ultrasound signals is presented. The estimator is
derived under the assumptions of a small time-scaling factor and signals with constant spectrum over its bandwidth. Under these
conditions, we show that the proposed approach leads to a simple analytic formulation of the time-scaling factor estimator. The
influences of an increase of the time-scaling factor and of signal-to-noise ratio (SNR) are studied. The mathematical developments
of the expected mean and bias of the estimator are presented. An iterative version is also proposed to reduce the bias. The variance
is calculated and compared to the Cramer-Rao lower bound (CRLB). The estimator characteristics are measured on flat-spectra
simulated signals and experimental ultrasound scanner signals and are compared to the theoretical mean and variance. Results
show that the estimator is unbiased and that variance tends towards the CRLB for SNR higher than 20 dB. This is in agreement
with typical ultrasound signals used in the medical field, as shown on typical examples. Effects of the signal spectrum shape and
of the bandwidth size are evaluated. Finally, the iterative version of the estimator improves the quality of the estimation for SNR
between 0 and 20 dB as well as the time-scaling factor estimation validity range (up to 15%).

Copyright © 2007 Jérémie Fromageau et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The interest of the time-scale variation between two signals
was shown in many applications. As an example, in radar or
sonar systems, the Doppler shift, between the received and
the transmitted signals, allows the estimation of the relative
velocity of a target [1]. In medical imaging, the Doppler shift
enables the estimation of blood flow velocity [2] or strain of
soft biological tissues by comparing a pair of ultrasonic sig-
nals acquired before and after tissue compression [3, 4], the
time-scaling factor then represents the tissue strain. In most
applications, this time-scaling factor is considered small. For
example, the target velocity is small compared to the wave
speed. Similarly, in tissue strain estimation, the compres-
sion applied to the tissue is assumed to be of small magni-
tude. Typically for practical applications in medical ultra-
sonic imaging, the small size of the regions of interest and
the high frame rate mean that the time stretch to estimate is
usually less than 0.01.

Few methods have been reported in the literature to esti-
mate time-scaling factors or Doppler shifts. They are based
on the location research of the ambiguity function maxi-
mum [1, 5–7], using other time-frequency representations
as Wigner distribution [8], or using an adaptive process [9].
In this paper, a time-scaling factor estimator is dependent
on of the ambiguity function with a constant delay. An an-
alytic formulation of the estimator is derived, it has the ad-
vantage to allow a direct estimation of the time-scaling fac-
tor between two signals without tracking the maximum of
the ambiguity function. A specific case is exemplified by sig-
nals whose spectra are constant over their bandwidth. Un-
der this assumption, we propose a fast method to estimate
small time-scaling factors. The estimation is deduced from
the calculation of the ambiguity function for the unique dou-
blet: the time delay and time-scaling factor are fixed to zero.
This method is particularly well adapted for our application
which aims at providing an image of the biological tissue de-
formation. The paper is organized as follows. In Section 2,
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the formulation of the estimator is derived and its theoreti-
cal performance, mean, and variance are calculated. The in-
fluence of the time-scaling factor amplitude is investigated.
Then, an iterative version of the estimation is also given.
Our variance estimator is compared to the Cramer-Rao lower
bound. In Section 3, the performance on simulated signals
is assessed and compared with theoretical results. The influ-
ence of the bandwidth, time-scaling factor amplitude, and
the spectrum shape are discussed. We show that the itera-
tive version of the estimator compensates the bias caused by
these parameters. Finally performances are evaluated on ex-
perimental signals.

2. TIME-SCALING FACTOR ESTIMATION

2.1. Estimation formulation

Let r̃(t) be an analytic signal as a function of time:

r̃(t) = r(t) + jř(t) = A(t)e2 jπ f0t, (1)

where r(t) is the real part of r̃(t), ř(t) = H{r(t)} is the imag-
inary part and the Hilbert transform of r(t), f0 is the central
frequency, and A(t) is the complex envelope.

Consider s̃(t) a pure time-scaled version of the signal r̃(t):

s̃(t) = r̃
(
(1 + ε)t

)
, (2)

where ε represents the varying part of the time-scaling fac-
tor and the quantity to be estimated. It will be called the
time-scaling factor in the following. Note that this formula-
tion implies that if there was a time delay, it would be pre-
viously compensated. In practice for medical applications,
there is no time delay and the beginning of the signal rep-
resents the region stuck to the ultrasound probe. When the
probe is pressed on a tissue, this region undergoes the same
movement that the probe undergoes, the beginning of the
signal corresponds to the same area and there is no delay be-
tween signals before and after compression.

Consider the complex function Rr̃ s̃(ϑ) defined as

Rr̃ s̃(ϑ) =

∫∞
−∞

r̃(t)s̃∗
(
t(1− ϑ)

)
dt

= 2
(
Rrs(ϑ) + jRřs(ϑ)

)
,

(3)

where the superscript ∗ denotes the complex conjugation
and ϑ the time-scaling factor variable. This relation is ob-
tained by resolving signals into their real and imaginary com-
ponents while using the Hilbert transform properties [10].
Note that the function Rr̃ s̃(ϑ) can be interpreted as an ambi-
guity function with a zero delay. It becomes maximal when
s̃(t(1 − ϑ)) = r̃(t), that is to say, ϑ = ε/(1 + ε). In that case,
Rr̃ s̃(ϑ) is the energy of the signal r(t), a real positive value,
and the imaginary part Rřs(ϑ) is a nearly linear function with
a zero crossing for this value of ϑ. To derive the estimator,
only the imaginary part is considered taking advantage of its
nearly linear behavior and its zero crossing.

The proposed approach for the time-scaling factor es-
timation is based on the function Rřs(ϑ) evaluated in the

vicinity of ϑ = 0, [11]. Replacing s(t) by r(t) in (2), we can
write

Rřs(0) =

∫∞
−∞

ř(t)r(t + εt)dt. (4)

Applying Parseval’s relation [12], (4) becomes

Rřs(0) =

∫∞
−∞

Ř( f ) ·
1

|1 + ε|
R∗

(
f

1 + ε

)
df , (5)

where R( f ) and Ř( f ) are, respectively, the Fourier transform
of r(t) and ř(t), and are linked together by the following re-
lation:

Ř( f ) = − j sign( f )R( f ), (6)

where sign(·) represents the sign function. Then, it follows
that

Rřs(0) =
− j

|1 + ε|

∫∞
−∞

sign( f ) · R( f ) · R∗
(

f

1 + ε

)
df

=
j

|1 + ε|

(∫ 0

−∞

R( f ) · R∗
(

f

1 + ε

)
df

−

∫∞
0
R( f ) · R∗

(
f

1 + ε

)
df

)
.

(7)

From here, some assumptions are made on signal char-
acteristics to derive the estimator. They are summarized as
follows.

Hypothesis 1. Signals are assumed to have a constant spec-
trum over the bandwidth B. This assumption is the most re-
strictive but allows a simple expression of the estimator and
gives a good approximation of the time-scaling factor for ex-
perimental signals even if they do not have such a spectrum,
as it will be shown in Section 3.

Hypothesis 2. The applied time-scaling factor is considered
to be very small, ε≪ 1, but can be negative or positive. Typ-
ically, one wishes is to estimate a time-scaling factor whose
absolute value is around 0.01. With this assumption, the esti-
mator could be linearized using the Taylor expansion. More-
over, the absolute value |1+ε| can be eliminated because 1+ε
is always positive.

The first hypothesis implies that the signal energy is uni-
formly distributed over the bandwidth. Thus R( f ) is written:

∣∣R( f )
∣∣ =

⎧⎪⎪⎨
⎪⎪⎩

√
Er
2B

e−2 jπ f t0 if f0 −
B

2
≤ | f | ≤ f0 +

B

2

0 otherwise,

(8)

where the term e−2 jπ f t0 is the phase term due to the group
delay t0 of the signal. For a time-limited signal between 0 and
T , the group delay is chosen as the half-duration, t0 = T/2.
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With this form of Fourier transform, (7) is modified as
follows:

Rřs(0) =
j

1 + ε

(∫ 0

−∞

R( f ) · R∗
(

f

1 + ε

)
df

−

∫∞
0
R( f ) · R∗

(
f

1 + ε

)
df

)

=
j
√
Er/2B

1 + ε

(∫ − f0+B/2

− f0−B/2
e− jπ f T · R∗

(
f

1 + ε

)
df

−

∫ f0+B/2

f0−B/2
e− jπ f T · R∗

(
f

1 + ε

)
df

)

=
j
(
Er/2B

)

1 + ε

(∫ − f1

− f2
e− jπ f Te jπ f T/(1+ε)df

−

∫ f2

f1
e− jπ f Te jπ f T/(1+ε)df

)
,

(9)

where, according to the ε sign,

f1 = max

(
f0 −

B

2
,
f0 − B/2

1 + ε

)
,

f2 = min

(
f0 + B/2

1 + ε
, f0 +

B

2

)
.

(10)

Because the signal s(t) is a time-scaled version of r(t), its
Fourier transform undergoes a frequency shift and the band-
width boundaries f1 and f2 change. Noting the energy of the
signal s(t), defined by Es = Er/(1 + ε), and using small time-
scaling factor assumption, (9) becomes

Rřs(0) =
jEs
2B

(∫ − f1

− f2
e− jπε f Tdf −

∫ f2

f1
e− jπε f Tdf

)

=
−Es

2πεBT

([
e− jπε f T

]− f1
− f2
−
[
e− jπε f T

] f2
f1

)

=
2Es
πεBT

(
sin

(
πε

(
f2 − f1

)
T

2

)
· sin

(
πε

(
f1 + f2

)
T

2

))
.

(11)

According to the sign of ε and to the possible values of f1
and f2, (9) can be written in a general way as

Rřs(0) =
2Es
πεBT

· sin

(
πTε

(
(2 + ε)B/2− |ε| f0

)

2(1 + ε)

)

· sin

(
πTε

(
(2 + ε) f0 − |ε|B/2

)

2(1 + ε)

)
.

(12)

With the second assumption that ε≪ 1, and after possi-
ble simplifications of negligible second-order terms in ε, the

relation is simplified as

Rřs(0) ≈
2Es
πεBT

· sin

(
πεBT

2

)
· sin

(
π f0εT

)

≈ Es sinc

(
πεBT

2

)
· sin

(
π f0εT

)
.

(13)

With the previous assumptions, this relation can be sim-
plified. As the half bandwidth is smaller than the central
frequency, (B/2)εT tends towards zero faster than the term
f0εT , the sinus function in the term sin(π(B/2)εT) is ex-
panded to the first-order term. Rřs(0) is expressed by

Rřs(0) ≈ Es sin
(
π f0εT

)
. (14)

The approximation resulting from the truncation of
higher-order terms of the Taylor expansion is the most re-
strictive one, but it makes it possible to find a simple inverse
relation with ε. This assumption will lead to a more effective
estimation for small bandwidth signals. The expression of the
time-scaling factor estimator is then deduced,

ε̂ =
1

π f0T
arcsin

(
Rřs(0)

Es

)
. (15)

Since Es and Rřs(0) are computed from the signals r(t)
and s(t), the time-scaling factor can be estimated directly
from these two signals. In practice this estimator was ded-
icated to discrete signals, but the derivation was calculated
with continuous signals for clarity of mathematical expres-
sions. Discrete estimator formulation is derived from (15),

ε̂ =
1

π f0N
arcsin

(∑N
n=1 ř[n] · s[n]∑N
n=1 s[n] · s[n]

)
. (16)

Performance of this initial estimator needs to be assessed
when signals are corrupted with noise. Preliminary investi-
gations deal with the estimation of any possible bias, which
requires knowing the mean of the time-scaling factor esti-
mate.

2.2. Behavior of the estimator

2.2.1. Mean of the estimate

Assume that noisy signals x1(t) and x2(t) are modeled by
r(t) and s(t) corrupted by independent additive time-limited
and Gaussian noise with zero mean and variance σ2. Further-
more, the noises are stationary and ergodic. Their respective
expressions are

x1(t) = r(t) + n1(t),

x2(t) = s(t) + n2(t)
(17)

with

E
[
ni(t)

]
= 0,

E
[
ni(t)n j(t

′)
]
= σ2δi jδ(t − t′), δi j the Kronecker delta,

E
[
ňi(t)n j(t

′)
]
= 0, i, j = 1, 2.

(18)
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Note that for this problem, the delay is always 0, no time
shift is performed between the signals, and t = t′ for the
whole derivation. The time-scaling factor estimation is made
between the signals x1(t) and x2(t), and from (15) becomes

ε̂ =
1

π f0T
arcsin

(
Rx̌1x2 (0)

Ex2

)

=
1

π f0T
arcsin

(∫ (
ř(t) + ň1(t)

)(
s(t) + n2(t)

)
dt∫ (

s(t) + n2(t)
)(
s(t) + n2(t)

)
dt

)
.

(19)

The mean of the estimate is calculated in Appendix A.
The result of the mean calculation can be expressed as a func-
tion of the signal-to-noise ratio (SNR),

E[ε̂] =
1

π f0T
arcsin

(
SNR

SNR +1
sinc

(
πBεT

2

)
sin

(
π f0εT

))
,

(20)

where SNR = Es/Tσ2 is the ratio between the signal energy
and that of the noise during the observation time T . Thanks
to the previous assumptions made to establish (13), that is,
|ε≪ 1|, this relation can be expanded to give

E[ε̂] ≈
ε SNR

SNR +1
. (21)

This relation is valid for any SNR. The estimator is unbi-
ased for a high SNR. However, for a low SNR, a bias is present
and the mean of the estimate tends towards the zero-mean of
the noise,

lim
SNR→∞

E[ε̂] = E
[
ε̂∞

]
= ε,

lim
SNR→0

E[ε̂] = 0.
(22)

2.2.2. Variance

To continue with the estimator characterization, the theoret-
ical variance is estimated,

var(ε̂) = E
[(
ε̂ − E[ε̂]

)2]
= E

[
ε̂2
]
− E[ε̂]2. (23)

The mean of the estimator E[ε̂] was previously cal-
culated. The calculation of the variance is developed in
Appendix B. The result is

var(ε̂) =
((

(2 + ε) SNR +1
)
· (SNR +1)2

+ 4 SNR3 sinc2(πεBT/2) · sin2 (π f0εT
))

/(
T
(
π f0T

)2
(SNR +1)2

(
(SNR +1)2

− SNR2 sinc2(πεBT/2) · sin2 (π f0εT
)))

.

(24)

Note that although it does not appear explicitly, variance
has no dimension. Indeed, in expression (24), some con-
stants in the numerator and the denominator come from a

Dirac integration
∫ T

0 δ(t − t′)dt = 1, and have a time dimen-
sion (see Appendix B).

The expression of the variance is complex but its limits
can easily be determined,

lim
SNR→∞

var(ε̂) = 0,

lim
SNR→0

var(ε̂) =
1

T
(
π f0T

)2 .
(25)

For a high SNR, the estimator variance tends towards
zero. Noise becomes very small compared to the signal am-
plitude, and the estimation becomes perfectly deterministic.
For a low SNR, the variance tends towards a constant value
that depends on the signal length T . Signals are completely
dominated by noise, and variance is bounded by the a priori
parameter domain. This behavior was discussed for the time-
delay estimation by Weiss and Weinstein [13], especially the
fact that for a low SNR, the Cramer-Rao bound is not a sat-
isfactory lower bound.

2.2.3. Cramer-Rao bound

The Cramer-Rao lower bound is the common reference to
characterize estimation variance [14, 15]. The problem be-
comes to calculate the Cramer-Rao lower bound for a Gaus-
sian variable of which mean and standard deviation have
been calculated in the previous section:

E
[
Rx̌1x2 (0)

]
= Rřs(0),

E
[
Rx̌1x2 (0)2

]
− E

[
Rx̌1x2 (0)

]2
= σ2

R = (2 + ε)Esσ
2 + Tσ4.

(26)

This is a well-known problem to calculate the Cramer-
Rao bound for a Gaussian variable. This bound is given by
the inverse of the Fisher information matrix var(ε̂) ≥ J−1

and is defined as

J = −E

{
∂2 ln p

(
Rx̌1x2 (0) | ε

)

∂ε2

}
, (27)

where p(Rx̌1x2 (0) | ε) is the conditional probability density
function Rx̌1x2 (0). The log-likelihood function is

ln p
(
Rx̌1x2 (0) | ε

)
= −

1

2
ln

(
2πσ2

R −

(
Rx̌1x2 (0)− Rřs(0)

)2

2σ2
R

)
.

(28)

The detail of the CRB calculation is given in Appendix C.
Resolving (27) with this probability density function, the
CRB calculation leads to

var(ε̂) ≥

[
(2 + ε) SNR +1

]2

T SNR2 [(2 + ε) SNR +1
]
K2 − SNR2 /2

(29)
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with

K =
2

πε2BT
sin

(
πεBT

2

)
sin

(
πε f0T

)

−
B + 2 f0

2Bε
sin

(
πε

(
B

2
+ f0

)
T

)

+
B − 2 f0

2Bε
sin

(
πε

(
B

2
− f0

)
T

)
.

(30)

This bound serves as a reference to assess the estimator
performances. The estimator is efficient if its variance tends
towards the CRLB.

2.2.4. Bias of the estimate

The bias is calculated as the expression b(ε) = E[ε̂] − ε, the
difference between the mean time-scaling factor estimated
between signals and the true one. This difference is mainly
due to the Taylor expansion performed in (14). To assess bias
value, (14) is inserted in (20), and the Rr̃ s̃(ε0) function is ex-
panded in a Taylor series up to the third-order term. This
order is chosen to be higher than the truncation order used
in the estimator derivation (15) for a better precision:

E[ε̂]

=
1

π f0T
arcsin

(
SNR

SNR +1
sinc

(
πBεT

2

)
sin

(
π f0εT

))

≈
1

π f0T
arcsin

(
SNR

SNR +1

·
2
((
π f0εT

)
−
(
π f0εT

)3
/6
)(
πBεT/2−(πBεT)3/

(
23 × 6

))

πBεT

)

≈
SNR

π f0T(SNR +1)

(
π f0Tε − f0

f 2
0 + B2/4

6
(πTε)3

+
1

6

(
π f0Tε − f0

f 2
0 + B2/4

6
(πTε)3

)3
)

≈ ε −
ε

SNR +1
−

SNR

SNR +1
·
B2

24
(πT)2ε3.

(31)

Thus the bias is given by

b(ε) = −
ε

SNR +1
−

SNR

SNR +1
·
B2

24
(πT)2ε3. (32)

This proves that a bias remains with this estimator. An
unknown error occurs, because it depends on the unknown
parameter ε. SNR and bandwidth also have an important in-
fluence on the bias. If signals are narrowband, the error can
be negligible. For example for a bandwidth of 10% of f0, a
time-scaling factor of 0.005 is estimated with a 0.1% bias at
30 dB SNR and with a 1% bias at 20 dB SNR. For more gen-
eral cases, the bias can become very high. A good technique
to improve the estimator characteristics in terms of SNR and
bandwidth dependency is to use an iterative process.

2.2.5. Iterative formulation

An iterative formulation of the estimator is proposed to ex-
amine improvement in terms of bias compensation. In the
iterative process, the time-scaling factor is estimated firstly,
resulting in an estimated value ε̂1. Then the ambiguity func-
tion (3) is calculated in the vicinity of ϑ = ε1 to estimate the
next iteration, and so on. The iterative formulation is then
written as

ε̂i+1 = ε̂i +
1

π f0T
arcsin

(
Rřs(ε̂i)

Es

)
, (33)

where ε̂i is the ith iteration and ε̂0 = 0. The effect of the iter-
ative process will be discussed in Section 3.

3. RESULTS

The estimation is first assessed on simulated signals. In prac-
tice, the estimator is dedicated to discrete signals; all esti-
mated results are then calculated with the discrete version of
the estimator described in (16). Two numerical signals are
synthesized, as described in (1) and (2). Furthermore flat
spectra are assigned to the signals to be coherent with the
assumption made for the derivation. Their parameters are in
their normalized form, and thus are dimensionless. The ref-
erence signal is defined from its Fourier transform as in (8):

∣∣R( f )
∣∣ =

⎧⎪⎨
⎪⎩

1 if f0 −
B

2
≤ | f | ≤ f0 +

B

2
,

0 otherwise,
(34)

where f0 is the central frequency and B is the bandwidth.
With the models of signals and (34), discrete simulated sig-
nals are written

r[n] = ifft
(
R( f )

)
,

s[n] = r
[
(1 + ε)n

]
,

(35)

where signals r[n] and s[n] differ by a pure time-scaling fac-
tor ε = −0.005. s[n] is calculated from r[n] using a lowpass
interpolation. In practice, real signal r[n] is acquired and its
Fourier transform calculated. In the Fourier representation,
(6) is used. Then the inverse Fourier transform is applied to
obtain the imaginary part of the signal, ř[n]. Parameters are
the signal length N = 2000, and the sampling period Fs = 1.
The central frequency is f0 = 2 · 10−2, the bandwidth of
the signal is B ≈ 1.5 · 10−2, and the fractional bandwidth is
B/ f0 ≈ 0.77. Additive Gaussian and uncorrelated noises are
added to r[n] and s[n]. The SNR varies over−20 to 50 dB. In
order to perform a statistical study, a set of 1000 independent
signals is simulated for each SNR, and mean and variance of
the estimation result are calculated.

Figure 1 compares theoretical and simulated means of
the time-scaling factor estimates as a function of the SNR.
The time-scaling factor estimation was performed with a
single iteration. The theoretical mean is calculated using
the continuous-time equation (20). Note that the single-
iteration estimate curve is very close to the theoretical one for
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Theoretical means of the time-scaling factor estimate

Estimated means of the time-scaling factor estimate

The expected time-scaling factor

Figure 1: Theoretical and estimated means of the time-scaling fac-
tor estimate. The expected time-scaling factor to estimate is plotted
for each SNR. Estimated means are calculated with 1 iteration. The
estimated mean is calculated on a set of 1000 independent signals
with a real time-scaling factor of −5 · 10−3.

any SNR, which proves that the estimator has similar charac-
teristics in discrete-time representation and in continuous-
time representation. The numerical values show that the al-
gorithm estimator makes it possible to find the expected
time-scaling factor, −0.005 for this case, with a relative error
smaller than 1% when the SNR is greater than 20 dB. Note
that in medical applications, it is very common to deal with
signals with an SNR higher than 20 dB.

In Figure 2, similar curves are plotted for the theoreti-
cal and the estimated variances. Theoretical variance is cal-
culated using (24). Once again, the similar behavior be-
tween continuous-time algorithm and discrete-time one can
be pointed out. The Cramer-Rao bound is also plotted as
a reference. For SNR higher to 12 dB, Figure 2 proves that
the estimator is efficient and achieves the same performances
that the CRLB performs. Note that for low SNR, due to the
fact that the estimation becomes biased in this region, esti-
mator variance is smaller than the CRLB. For SNR smaller to
0 dB, the variance tends towards a constant value related to
the signal length (25). This corresponds to the variance of a
uniformly distributed random variable. Such a performance
level can always be achieved, regardless of signal observa-
tions, and is found when signals are completely dominated
by noise.

With the iterative version of the estimator, the case of sig-
nals with a 10 dB SNR and an increasing time-scaling factor
is plotted in Figure 3. With this mild conditions, after 2 itera-
tions, the difference between the estimated time-scaling fac-
tor and the expected one is not easy to discern. The relative
error for a time-scaling factor to estimate at 0.02 is smaller
than 10−6%. For higher time-scaling factors, more iterations
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Figure 2: One iteration estimated variance of the time-scaling fac-
tor estimation according to the SNR, it is compared to theoretical
variance and CRLB. The estimated variance is calculated on a set
of 1000 independent signals with an applied time-scaling factor of
−5 · 10−3.
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Figure 3: Comparison of the estimated time-scaling factor for n =
1 iteration, n = 2 iterations, and the true time-scaling factor ε as a
function of the applied time-scaling factor. Simulated signals have a
flat spectrum with B/ f0 ≈ 0.77 and a 10 dB SNR.

may be required. For example, with similar signals, a time-
scaling factor of 0.1 is estimated with a relative error smaller
than 10−6% after 16 iterations.

On a second stage, the estimator is assessed on simulated
signals with a Gaussian spectrum to visualize the influence
of flat-spectrum hypothesis in the mathematical derivation.
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Figure 4: Influence of the spectrum shape on estimation. (a) Fourier transform of signals with a flat spectrum and Gaussian spectrum.
(b) Mean time-scaling factor estimated from signals with a flat spectrum and from signal with a Gaussian spectrum. Except the shape, all
spectrum characteristics (central frequency, bandwidth) are similar. The shape change does not make difference on the estimated time-
scaling factor.

Signal parameters are identical to the previous example, es-
pecially, central frequency and bandwidth are kept to f0 =
2 · 10−2 and B ≈ 1.5 · 10−2, although the spectra shape
changes, see Figure 4(a). The estimation with such a simu-
lation shows no significant difference with the previous case
of flat-spectrum signals, see Figure 4(b). Mean time-scaling
factor calculated with Gaussian spectrum signals fits to the
one obtained with flat spectrum signals. This means that al-
though Hypothesis 1 may appear restrictive, it does not affect
the estimation.

As mentioned previously, the most restrictive assump-
tion was performed between (13) and (14), to have a simple
inverse relation between ε and Rr̂s(0). For this purpose, the
bandwidth-dependent term is considered small compared
to the f0 dependent term. This assumption is true for nar-
rowband signals, but is not as well valid when B is of the
same order as that of f0. The influence of the bandwidth
size is represented on Figure 5 where the estimation rela-
tive error is plotted as a function of the ratio B/ f0. A the-
oretical relative error was calculated by including the non-
simplified theoretical version (20) with an SNR of 50 dB to
avoid bias due to the noise. As expected, error increases with
higher bandwidth size, leading to an error of 6% for the
limit case when B = 1.8 f0. In practice, ultrasound signals
we used have a bandwidth ratio of about 0.7. The estimated
bias is also calculated on similar signals for one and two it-
erations. Figure 5 shows that the single iteration estimation
has a behavior similar to the theory with an error increasing
with bandwidth size, however the iterative estimation version
compensates this error.
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Figure 5: Influence of the bandwidth size. Estimation relative error
percentage as a function of the ratio B/ f0. Theoretical bias, single
iteration estimation, and two iterations estimation are plotted. With
only one iteration, a large bandwidth can jeopardize the estimation,
but the iterative estimator version can compensate this error.

Finally, the estimator is applied to typical clinically ac-
quired ultrasound signals. The central frequency of these
signals was f0 = 5.6 MHz, the sampling frequency was
Fs = 250 MHz, and the SNR was measured at about 20 dB.
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Figure 6: (a) Experimental signal spectrum; for comparison, the Gaussian spectra used in simulation is plotted behind. (b) Time-scaling
factor estimated from ultrasound scanner signals. The second signal was artificially stretched from −15% to 15%. The time-scaling factors
were calculated with n = 10 iterations and n = 20 iterations. For comparison, the applied time-scaling factor is also plotted.
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Figure 7: Application of the estimator on image of a sponge phantom within which is embedded a hard inclusion. (a) Ultrasound image
of the phantom, (b) corresponding time-scaling factor distribution. The time-scaling factor in the inclusion is smaller, showing a harder
elasticity in dark.

A signal spectrum is plotted with the Gaussian spectrum
used for simulation, see Figure 6(a). They were voluntarily
chosen similar in bandwidth and central frequency. Signals
were artificially stretched from −15% to 15%, to cover a
large range of scaling factors. For the high time-scaling fac-
tor to estimate, a high number of iterations can be necessary
to converge through the expected mean value. Figure 6(b)
shows the different estimates for n = 10 iterations and
n = 20 iterations compared to the true time-scaling fac-
tor. It demonstrates the estimator ability to assess high time-
scaling factors, as long as the number of iterations is well
adapted. In practice, this estimator is used to provide an

image of tissue strain. Time-scaling factors are calculated on
small windows of the whole signal. The calculation window
is moved along the signal and the time-scaling factor that has
been estimated on a window serves as an initial value for the
estimation on the next window. Distance between two con-
secutive windows is small enough to have a small difference
of the time-scaling factor estimated on each of them (0.005 is
a typical value) and one iteration is generally sufficient. As an
example, an ultrasound image and the corresponding time-
scaling factor distribution are plotted in Figure 7. In this
case, the time-scaling factor describes the tissue deformation.
The time-scaling factor distribution (Figure 7(b)) is obtained
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comparing two ultrasound images. One of the image was ac-
quired for a rest state of the phantom (Figure 7(b)), and the
second image was acquired after a slight compression. A dark
spheric inclusion can be observed in the time-scaling fac-
tor map, whereas it is not visible on the ultrasound scanner
image. The dark inclusion represents a region harder than
the surrounding tissues because deformation in this area is
smaller. Note that the whole image was calculated with a sin-
gle iteration.

4. CONCLUSION

In this paper, we describe a simple method to estimate small
time-scaling factors between two signals. The time-scaling
factor estimation is given by an analytic expression, which
provides a fast estimation. The function Rr̃ s̃(ε0) is intro-
duced, it can be considered as a complex ambiguity function
with a zero-time delay. Our estimator uses only one value
of the imaginary part of Rr̃ s̃(ε0), corresponding to the zero-
time scale ε0 = 0. The influence of SNR, applied time-scaling
factor amplitude, bandwidth, and spectrum shape are stud-
ied and show how the bias increases depending on these pa-
rameters. A reduced bias version is proposed to improve the
estimation using an iterative process. Theoretical character-
istics of the estimator, mean, and variance are calculated and
serve to assess estimator performance. The estimation vari-
ance is compared to the Cramer-Rao bound, and shows its
efficiency. Application of the estimator on simulated signals
with a single iteration demonstrates that mean and variance
estimates are reliable for time-scaling factors smaller than
0.01 with an SNR higher than 20 dB. These amplitudes may
appear small but are typical of applications such as strain es-
timation in medical imaging. Furthermore, the iterative ver-
sion allows for the estimation of time-scaling factor up to
0.15, or on signals with smaller SNR.

APPENDICES

A. MEAN OF THE ESTIMATE

The theoretical mean of the estimator is developed from (19),

E[ε̂] = E

[
1

π f0T
arcsin

(
Rx̌1x2 (0)

Ex2

)]

=
1

π f0T
E

[
arcsin

(∫ (
ř(t) + ň1(t)

)(
s(t) + n2(t)

)
dt∫ (

s(t) + n2(t)
)(
s(t) + n2(t)

)
dt

)]
.

(A.1)

This relation is nonlinear; to go further, the process of the
mean calculation is linearized. For this purpose, two random
variables are introduced. The numerator is decomposed in a
term with a zero variance (deterministic) and in a term with
a zero mean,

Rx̌1x2 (0) = E
[
Rx̌1x2 (0)

]
+ ηR, (A.2)

where ηR is a zero-mean random variable with variance
Var(ηR) = Var(Rx̌1x2 (0)). First, the deterministic part, termed

E[Rx̌1x2 (0)], is calculated:

E
[
Rx̌1x2 (0)

]
= E

[∫ (
ř(t) + ň1(t)

)(
s(t) + n2(t)

)
dt

]

=

∫
E
[
ř(t)s(t)

]
dt +

∫
E
[
ř(t)n2(t)

]
dt

+

∫
E
[
ň1(t)s(t)

]
dt +

∫
E
[
ň1(t)n2(t)

]
dt,

(A.3)

where r(t) and s(t) are deterministic signals. Since noises are
zero mean and circular (18), the mean of the numerator is

E
[
Rx̌1x2 (0)

]
= Rřs(0). (A.4)

In the same way, a random variable is introduced in the
denominator, which can be decomposed to

Ex2 = E
[
Ex2

]
+ ηE, (A.5)

where ηE is a zero-mean random variable with variance
Var(ηE) = Var(Ex2 ). Again the deterministic part Ex2 is cal-
culated,

E
[
Ex2

]
= E

[∫ (
s(t) + n2(t)

)(
s(t) + n2(t)

)
dt

]

=

∫
s(t)s(t)dt + 2

∫
E
[
s(t)n2(t)

]
dt

+

∫
E
[
n2(t)n2(t)

]
dt

= Es + Tσ2.

(A.6)

Thus, the estimator can be linearized near the point
E[Rx̌1x2 (0)]/E[Ex2 ] using the Taylor series expansion of the
function arcsin,

ε̂=
1

π f0T
arcsin

(
Rx̌1x2 (0)

Ex2

)

=
1

π f0T
arcsin

(
Rřs(0)

Es + Tσ2

)
+

ηR

π f0T
√
E
[
Ex2

]2
− E

[
Rx̌1x2 (0)

]2

−
ηEE

[
Rx̌1x2 (0)

]

π f0TE
[
Ex2

]√
E
[
Ex2

]2
− E

[
Rx̌1x2 (0)

]2
.

(A.7)

As ηR and ηE are zero mean, the mean of the estimate ε̂ is

E[ε̂] =
1

π f0T
arcsin

(
Rřs(0)

Es + Tσ2

)
. (A.8)

By inserting (13), and the definition of the SNR in (A.8),
the mean of the time-scaling factor estimate can be expressed
as a function of the SNR,

E[ε̂] =
1

π f0T
arcsin

(
sinc(πBεT/2) sin

(
π f0εT

)

1 + 1/ SNR

)
. (A.9)
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B. VARIANCE OF THE ESTIMATE

To calculate the variance, the Taylor expansion used to lin-
earize the estimator (A.7) is inserted to the definition of the
variance. The variance is

E
[(
ε̂ − E[ε̂]

)2]

=
1(

π f0T
)2 E

[(
ηR√

E
[
Ex2

]2
− E

[
Rx̌1x2 (0)

]2

−
ηEE

[
Rx̌1x2 (0)

]

E
[
Ex2

]√
E
[
Ex2

]2
− E

[
Rx̌1x2 (0)

]2

)2]

=
1(

π f0T
)2 E

[(
ηRE

[
Ex2

]
− ηEE

[
Rx̌1x2 (0)

]

E
[
Ex2

]√
E
[
Ex2

]2
− E

[
Rx̌1x2 (0)

]2

)2]

=
1(

π f0T
)2

Var
(
ηR

)
E
[
Ex2

]2
+ Var

(
ηE
)
E
[
Rx̌1x2 (0)

]2

E
[
Ex2

]2
(
E
[
Ex2

]2
− E

[
Rx̌1x2 (0)

]2
) .

(B.10)

It is necessary to calculate Var(ηR) and Var(ηE). The second-
order moments of R2

x̌1x2
(0) and Ex2 are developed.

Firstly, the second-order moment of the numerator is cal-
culated,

R2
x̌1x2

(0) =

(∫ (
ř(t) + ň1(t)

)(
s(t) + n2(t)

)
dt

)2

= R2
řs(0) +

∫∫ (
ř(t)n2(t)ř(t′)n2(t′)

)
dt dt′

+

∫∫ (
ň1(t)s(t)ň1(t′)s(t′)

)
dt dt′

+

∫∫ (
ň1(t)n2(t)ň1(t′)n2(t′)

)
dt dt′

+ 2

∫∫ (
ř(t)s(t)ř(t′)n2(t′)

)
dt dt′

+ 2

∫∫ (
ř(t)s(t)ň1(t′)s(t′)

)
dt dt′

+ 2

∫∫ (
ř(t)s(t)ň1(t′)n2(t′)

)
dt dt′

+ 2

∫∫ (
ř(t)n2(t)ň1(t′)s(t′)

)
dt dt′

+ 2

∫∫ (
ř(t)n2(t)ň1(t′)n2(t′)

)
dt dt′

+ 2

∫∫
ň1(t)s(t)ň1(t′)n2(t′)dt dt′,

(B.11)

and its mean is the second-order moment. r̃(t) and s̃(t) are
deterministic signals. All odd moments of the noise are zero.
As signals have a finite-time length T , the integration over
the time interval can be limited between 0 and T , and using

properties of signals and noise,

∫ T

0
ř(t)ř(t)dt = Er = (1 + ε)Es,

∫ T

0
s(t)s(t)dt = Es,

E

[∫∫ T

0
ř(t)ni(t)ř(t′)n j(t

′)
)
dt dt′

]

= Erσ
2δi j

∫∫ T

0
δ(t − t′)dt dt′ = TErσ

2δi j ,

(B.12)

where δ(t − t′) is the delta function. Note that this last rela-
tion has the dimension of a square energy; a time component

equal to
∫ T

0 δ(t−t′)dt = 1 is present even if it does not appear
explicitly. Finally, the second-order moment of the numera-
tor is

E
[
R2
x̌1x2

(0)
]
= R2

řs(0) + (2 + ε)Esσ
2 + Tσ4. (B.13)

Then Var(ηR) is

Var
(
ηR

)
= Var

(
Rx̌1x2 (0)

)

= E
[
R2
x̌1x2

(0)
]
− R2

řs(0)

= (2 + ε)Esσ
2 + Tσ4.

(B.14)

Secondly, a similar development is performed for the denom-
inator,

E2
x2
=

(∫ (
s(t) + n2(t)

)(
s(t) + n2(t)

)
dt

)2

=

[
E2
s + 4

∫∫
s(t)n2(t)s(t′)n2(t′)dt dt′

+

∫∫
n2(t)n2(t)n2(t′)n2(t′)dt dt′

+ 4

∫∫
s(t)s(t)s(t′)n2(t′)dt dt′

+ 2

∫∫
s(t)s(t)n2(t′)n2(t′)dt dt′

+ 4

∫∫
s(t)n2(t)n2(t′)n2(t′)dt dt′

]
.

(B.15)

Using signal and noise properties, (B.12), and

E

[∫ T

0
ni(t)n j(t)

)
dt

]
= Tσ2δi j , (B.16)

the second-order moment of Ex2 can be written:

E
[
E2
x2

]
= E2

s + Esσ
2(4 + 2T) + T2σ4

=
(
Es + Tσ2

)2
+ 4Esσ

2.

(B.17)
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Then Var(ηE) is

Var
(
ηE
)
= E

[
E2
x2

]
−
(
Es + Tσ2

)2
= 4Esσ

2. (B.18)

Obtaining the variance expression of ηR and ηE and the
relation (B.10), the variance of the estimate is

var(ε̂) =

(
(2 + ε)Esσ2 + Tσ4

)
·
(
Es + Tσ2

)2
+ 4Esσ2R2

řs(0)
(
π f0T

)2(
Es + Tσ2

)2((
Es + Tσ2

)2
− R2

řs(0)
) .

(B.19)

Knowing the SNR definition and Rřs(0) theoretical ex-
pression (13), the variance is finally

var(ε̂) =
((

(2 + ε) SNR +1
)
· (SNR +1)2

+ 4 SNR3 sinc2(πεBT/2) · sin2 (π f0εT
))

/(
T
(
π f0T

)2
(SNR +1)2

(
(SNR +1)2

− SNR2 sinc2(πεBT/2) · sin2 (π f0εT
)))

.

(B.20)

C. CRAMER-RAO BOUND

Consider Rx̌1x2 (0) to be a Gaussian variable with its mean
E{Rx̌1x2 (0)} = Ršr(0) and its variance var(Rx̌1x2 (0)) = (2 +
ε)Esσ2 + Tσ4 = σ2

R.
Its probability function is

P
(
Rx̌1x2 (0) | ε

)
=

1√
2πσ2

R

e−(Rx̌1x2 (0)−Rřs(0))2/2σ2
R . (C.21)

The Cramer-Rao lower bound is given knowing the Fish-
er information matrix:

J = −E

{
∂2 ln p

(
Rx̌1x2 (0) | ε

)

∂ε2

}
. (C.22)

The density probability of the function Rx̌1x2 (0) being
Gaussian, the log-likelihood function is

ln p
(
Rx̌1x2 (0) | ε

)
= −

1

2
ln
(
2πσ2

R

)
−

(
Rx̌1x2 (0)− Rřs(0)

)2

2σ2
R

.

(C.23)

So the first and second derivates are

∂ ln p

∂ε

= −
1

σR

∂σR
∂ε

+ σR

((
Rx̌1x2 (0)− Rřs(0)

)(
∂Rřs(0)/∂ε

)

σ3
R

+

(
∂σR/∂ε

)(
Rx̌1x2 (0)− Rřs(0)

)2

σ3
R

)
,

∂2 ln p

∂ε2

= −
σR(∂2σR/∂ε2)−

(
∂σR/∂ε

)2

σR

+ σ3
R

((
Rx̌1x2 (0)− Rřs(0)

)(
∂σR/∂ε

)(
∂Rřs(0)/∂ε

)

σ6
R

−
σR
(
∂Rřs(0)/∂ε

)2
+ σR

(
Rx̌1x2 (0)− Rřs(0)

)
∂2Rřs(0)/∂ε2

σ6
R

+

(
∂2σR/∂ε2

)(
Rx̌1x2 (0)− Rřs(0)

)2

σ6
R

−
2
(
∂σR/∂ε

)(
Rx̌1x2 (0)− Rřs(0)

)
∂Rřs(0)/∂ε

σ6
R

)

− 3σ2
R

(
∂σR/∂ε

)(σR
(
Rx̌1x2 (0)− Rřs(0)

)(
∂Rřs(0)/∂ε

)

σ6
R

+

(
∂σR/∂ε

)(
Rx̌1x2 (0)− Rřs(0)

)

σ6
R

)
.

(C.24)

Considering the mean, all variables are deterministic ex-
cept Rx̌1x2 (0), and E{Rx̌1x2 (0)− Rřs(0)} = 0. Then it leads to

E

{
∂2 ln p

∂ε2

}
= −

σR
(
∂2σR/∂ε2

)
−
(
∂σR/∂ε

)2
+
(
∂Rřs(0)/∂ε

)2

σ2
R

.

(C.25)

With the expression of Rřs(0) in (13), and the definition
of σR in (26), the different derivatives are

∂Rřs(0)

∂ε
= −

2Es
πε2BT

sin

(
πεBT

2

)
sin

(
πε f0T

)

+
Es
ε

cos

(
πεBT

2

)
sin

(
πε f0T

)

+
2Es f0
εB

sin

(
πεBT

2

)
cos

(
πε f0T

)∂σR
∂ε

=
Esσ2

2σR

∂2σR
∂ε2

= −

(
Esσ2

)2

4σ3
R

.

(C.26)
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Then (C.25) becomes

E

{
∂2 ln p

∂ε2

}
= −

(
− E2

s σ
4/2 +

(
E2
s σ

2
R/ε

2
)

×
(
(2/πεBT) sin(πεBT/2) sin

(
πε f0T

)

− cos(πεBT/2) sin
(
πε f0T

)

−
(
2 f0/B

)
sin(πεBT/2) cos

(
πε f0T

))2

/(
(2 + ε)Esσ

2 + Tσ4
)2
)
.

(C.27)

The CR bound is finally written as a function of the SNR,

CR=
[
(2 + ε) SNR +1

]2

/(
T SNR2 [(2 + ε) SNR +1

]((
2/πε2BT

)
sin(πεBT/2)

× sin
(
πε f0T

)
− (1/ε) cos(πεBT/2)

)
sin

(
πε f0T

)

−
(
2 f0/Bε

)
sin(πεBT/2) cos

(
πε f0T

))2
−SNR2 /2

)

=
[
(2 + ε) SNR +1

]2

/(
T SNR2 [(2 + ε) SNR +1

]((
2/πε2BT

)
sin(πεBT/2)

×sin
(
πε f0T

)
−
((
B + 2 f0

)
/2Bε

)
sin

(
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(
B/2 + f0

)
T
)

+
((
B − 2 f0

)
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)
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(
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)
.

(C.28)
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in Compiègne and a Ph.D. degree in ultra-
sound imaging in the CREATIS laboratory
in Lyon in 2000. In 2001, she completed a
postdoctoral training period at the experi-
mental echocardiography directed by A. F.
W. van der Steen in Rotterdam, the Nether-
lands. She is now a CNRS Researcher at the CREATIS laboratory
and her research focuses on elastography and ultrasound signal and
image processing.

Didier Vray was born in Saint-Etienne,
France, in 1959. He received his B.S.E. de-
gree in electrical engineering from Saint-
Etienne University in 1981 and M.S. de-
gree in applied computer sciences from the
Institut National des Sciences Appliquées
(INSA), Lyon, France, in 1984. He received
the Ph.D. degree from INSA-Lyon, in 1989,
for a work in acoustics and signal pro-
cessing. He is currently a Professor of sig-
nal processing and computer sciences at INSA-Lyon. Since he
joined the research laboratory CREATIS, his main research inter-
ests include ultrasound medical imaging, elastography, and high-
frequency imaging.

Philippe Delachartre received in 1990 his
M.S. degree and in 1994 a Ph.D. de-
gree, both in signal and image process-
ing in acoustics from the National Institute
for Applied Sciences of Lyon (INSA-Lyon,
France). Since 1995, he worked as an As-
sociate Professor at the Electrical Engineer-
ing Department of the INSA-Lyon and Re-
searcher at the Center for Research and Ap-
plications in Image and Signal Processing
(CREATIS). His research interests include the image formation
modeling and the parametric imaging applied to the field of medi-
cal ultrasound imaging.


	Introduction
	Time-scaling factor estimation
	Estimation formulation
	Behavior of the estimator
	Mean of the estimate
	Variance
	Cramer-Rao bound
	Bias of the estimate
	Iterative formulation


	Results
	Conclusion
	Appendices
	Mean of the estimate
	Variance of the estimate
	Cramer-Rao bound
	REFERENCES

