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ProDiGe: Prioritization Of Disease Genes with
multitask machine learning from positive and
unlabeled examples
Fantine Mordelet1,2,3,4 and Jean-Philippe Vert1,2,3*

Abstract

Background: Elucidating the genetic basis of human diseases is a central goal of genetics and molecular biology.

While traditional linkage analysis and modern high-throughput techniques often provide long lists of tens or

hundreds of disease gene candidates, the identification of disease genes among the candidates remains time-

consuming and expensive. Efficient computational methods are therefore needed to prioritize genes within the list

of candidates, by exploiting the wealth of information available about the genes in various databases.

Results: We propose ProDiGe, a novel algorithm for Prioritization of Disease Genes. ProDiGe implements a novel

machine learning strategy based on learning from positive and unlabeled examples, which allows to integrate

various sources of information about the genes, to share information about known disease genes across diseases,

and to perform genome-wide searches for new disease genes. Experiments on real data show that ProDiGe

outperforms state-of-the-art methods for the prioritization of genes in human diseases.

Conclusions: ProDiGe implements a new machine learning paradigm for gene prioritization, which could help the

identification of new disease genes. It is freely available at http://cbio.ensmp.fr/prodige.

Background
During the last decades, considerable efforts have been

made to elucidate the genetic basis of rare and common

human diseases. The discovery of so-called disease

genes, whose disruption causes congenital or acquired

disease, is indeed important both towards diagnosis and

towards new therapies, through the elucidation of the

biological bases of diseases. Traditional approaches to

discover disease genes first identify chromosomal

regions likely to contain the gene of interest, e.g., by

linkage analysis or study of chromosomal aberrations in

DNA samples from large case-control populations. The

regions identified, however, often contain tens to hun-

dreds of candidate genes. Finding the causal gene(s)

among these candidates is then an expensive and time-

consuming process, which requires extensive laboratory

experiments. Progresses in sequencing, microarray or

proteomics technologies have also facilitated the

discovery of genes whose structure or activity are modi-

fied in disease samples, on a full genome scale. How-

ever, again, these approaches routinely identify long lists

of candidate disease genes among which only one or a

few are truly the causative agents of the disease process,

and further biological investigations are required to

identify them. In both cases, it is therefore important to

select the most promising genes to be further studied

among the candidates, i.e., to prioritize them from the

most likely to be a disease gene to the less likely.

Gene prioritization is typically based on prior informa-

tion we have about the genes, e.g., their biological func-

tions, patterns of expression in different conditions, or

interactions with other genes, and follows a “guilt-by-

association” strategy: the most promising candidates

genes are those which share similarity with the disease

of interest, or with other genes known to be associated

to the disease. The availability of complete genome

sequences and the wealth of large-scale biological data

sets now provide an unprecedented opportunity to

speed up the gene hunting process [1]. Integrating a

variety of heterogeneous information stored in various
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databases and in the literature to obtain a good final

ranking of hundreds of candidate genes is, however, a

difficult task for human experts. Unsurprisingly many

computational approaches have been proposed to per-

form this task automatically via statistical and data

mining approaches. While some previous works attempt

to identify promising candidate genes without prior

knowledge of any other disease gene, e.g., by matching

the functional annotations of candidate genes to the dis-

ease or phenotype under investigation [2-4], many suc-

cessful approaches assume that some disease genes are

already known and try to detect candidate genes which

share similarities with known disease genes for the phe-

notype under investigation [5-10] or for related pheno-

types [5,9,11-14]. These methods vary in the algorithm

they implement and in the data they use to perform

gene prioritization. For example, Endeavour and related

work [6,7,10] use state-of-the-art machine learning tech-

niques to integrate heterogeneous information and rank

the candidate genes by decreasing similarity to known

disease genes, while PRINCE [14] uses label propagation

over a protein-protein interaction (PPI) network and is

able to borrow information from known disease genes

of related diseases to find new disease genes. We refer

the reader to [15] for a recent review of gene prioritiza-

tion tools available on the web.

Here we propose ProDiGe, a new method for prioriti-

zation of disease genes based on the guilt-by-association

concept. ProDiGe assumes that a set of gene-disease

associations is already known to infer new ones, and

brings three main novelties compared to existing meth-

ods. First, ProDiGe implements a novel machine learn-

ing paradigm to score candidate genes. While existing

methods like those of [6,7,10] score independently the

different candidate genes in terms of similarity to

known disease genes, ProDiGe exploits the relative simi-

larity of both known and candidate disease genes to

jointly score and rank all candidates. This is done by

formulating the disease gene prioritization problem as

an instance of the problem known as learning from posi-

tive and unlabeled examples (PU learning) in the

machine learning community, which is known to be a

powerful paradigm when a set of candidates has to be

ranked in terms of similarity to a set of positive data

[16-18]. Second, in order to rank candidate genes for a

disease of interest, ProDiGe borrows information not

only from genes known to be associated to the disease,

but also from genes known to play a role in diseases or

phenotypes related to the disease of interest. This again

differs from [6,7,10] which treat diseases independently

from each other. It allows us, in particular, to rank

genes even for orphan diseases, with no known gene, by

relying only on known disease genes of related diseases.

In the machine learning jargon, we implement a multi-

task strategy to share information between different dis-

eases [19-21], and weight the sharing of information by

the phenotypic similarity of diseases. Third, ProDiGe

performs heterogeneous data integration to combine a

variety of information about the genes in the scoring

function, including sequence features, expression levels

in different conditions, PPI interactions or presence in

the scientific literature. We use the powerful framework

of kernel methods for data integration [22-24], akin to

the work of [6,7,10]. This differs from approaches like

that of [14], which are limited to scoring over a gene or

protein network.

We test ProDiGe on real data extracted from the

OMIM database [25]. It is able to rank the correct dis-

ease gene in the top 5% of the candidate genes for 69%

of the diseases with at least one other known causal

gene, and for 67% of the diseases when no other disease

genes is known, outperforming state-of-the-art methods

like Endeavour and PRINCE.

Results
Gene prioritization without sharing of information across

diseases

We first assess the ability of ProDiGe to retrieve new

disease genes for diseases with already a few known dis-

ease genes, without sharing information across different

diseases. As a gold standard we extracted all known dis-

ease-gene associations from the OMIM database [25],

and we borrowed from [7] nine sources of information

about the genes, including expression profiles in various

experiments, functional annotations, known protein-pro-

tein interactions (PPI), transcriptional motifs, protein

domain activity and literature data. Each source of infor-

mation was encoded in a kernel functions, which

assesses pairwise similarities between each pair of genes

according to each source of information. We compare

two ways to perform data integration: first by simply

averaging the nine kernel functions, and second by let-

ting ProDiGe optimize itself the relative contribution of

each source of information when the model is estimated,

through a multiple kernel learning (MKL) approach. We

compare both variants with the best model of [10],

namely, the MKL1Class model which differs from Pro-

DiGe in this case only in the machine learning paradigm

implemented: while ProDiGe learns a model from posi-

tive and unlabeled examples, MKL1class learns it only

from positive examples. Since [10] showed that

MKL1Class outperforms the original Endeavour algo-

rithm based on fusion of rankings [6] and may replace it

in the future, we take the performance of MKL1Class as

an optimistic surrogate of Endeavour’s performance. We

tested these three algorithm in a leave-one-out cross-

validation (LOOCV) setting. In short, for each disease,

each known disease gene was removed in turn, a model
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was trained on using the remaining disease genes as

positive examples, and all 19540 genes in our database

were ranked; we then recorded the rank of the positive

gene that was removed in this list. We focused on the

285 diseases in our dataset having at least 2 known dis-

ease genes, because all three methods require at least

one known disease gene for training, and for the pur-

pose of LOOCV we need in addition one known disease

gene removed from the training set.

Figure 1 presents the cumulative distribution function

(CDF) of the rank of the left-out positive gene, i.e., the

number of genes that were ranked in the top k genes of

the list as a function of k, for each method. Note that

the rank is always between 1 (best prediction) and

19540 - |P|, where |P| is the number of genes known to

be associated to the disease of interest. The right panel

zooms on the beginning of this curve which corresponds

to the distribution of small values of the rank. We see

clearly that both ProDiGe variants outperform

MKL1class in the sense that they consistently recover

the hidden positive gene at a better rank in the list. A

Wilcoxon signed rank test confirms these visual conclu-

sions at 5% level with P-values 6.1e-29 and 8.8e-28,

respectively, for the average and MKL variants of Pro-

DiGe. This illustrates the benefits of formulating the

gene ranking problem as a PU learning problem, and

not as a 1-class learning one, since apart from this for-

mulation both MKL1Class and ProDiGe1 use very simi-

lar learning engines, based on SVM and MKL.

Both ProDiGe1 variants recover roughly one third of

correct gene-disease associations in the top 20 genes

among almost 19540, i.e., in the top 0.1%. However, we

found no significant difference between the mean and

MKL variants of ProDiGe in this setting (P-value =

0.619). This means that in this case, assigning equal

weights to all data sources works as well as trying to

optimize these weights by MKL. Supported by this result

and by the fact that MKL is much more time-consum-

ing than a SVM with the mean kernel, we decided to

restrict our experiments to the mean kernel in the fol-

lowing experiments.

Gene prioritization with information sharing across

diseases

In a second run of experiments, we assess the performance

of ProDiGe when it is allowed to share informations across

diseases. We tested three variants of ProDiGe, as explained

in Material and Methods: ProDiGe2, which uniformly

shares information across all diseases without using parti-

cular informations about the diseases, ProDiGe3, which

weights the sharing of informations across diseases by a

phenotypic similarity between the diseases, and ProDiGe4,

a variant of ProDiGe3 which additionally controls the

sharing of information between diseases that would have

very similar phenotypic description but which remain dif-

ferent diseases. All variants are based on the same metho-

dological backbone, namely, the use of a multitask

learning strategy, and only differ in a function used to con-

trol the sharing of information. We limit ourselves to the

1873 diseases in the disease-gene association dataset

which were also in the phenotypic similarity matrix that

we used. This corresponds to a total of 2544 associations

between these diseases and 1698 genes. We compare these

variants to PRINCE [14], a method recently proposed to

rank genes by sharing information across diseases through

label propagation on a PPI network.
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Figure 1 Cumulative distribution function of the rank for local methods, in the LOOCV experiment. ProDiGe1-Mean and ProDiGe1-MKL

refer to the ProDiGe1 variant combined with the mean kernel or the MKL strategy to fuse heterogeneous gene information. Panel (A) Global

curve, Panel (B) Zoom on the beginning of the curve.
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Figure 2 shows the CDF curves for the four methods.

Comparing areas under the global curve, i.e., the average

rank of the left-out disease gene in LOOCV, the four

methods can be ranked in the following order: Pro-

DiGe4 (1682) > ProDiGe3 (1817) > ProDiGe2 (2246) >

PRINCE (3065). The fact that ProDiGe3 and ProDiGe4

outperform ProDiGe2 confirms the benefits of exploit-

ing prior knowledge we have about the disease pheno-

types to weight the sharing of information across

diseases, instead of following a generic strategy for mul-

titask learning. The fact that ProDiGe4 outperforms

ProDiGe3 is not surprising and illustrates the fact that

the diseases are not fully characterized by the phenoty-

pic description we use. Zooming to the beginning of the

curves (right picture), we see that the relative order

between the methods is conserved except for PRINCE

which outperforms ProDiGe2 in that case. In fact, Pro-

DiGe2 has a very low performance compared to all

other methods for low ranks, confirming that the gen-

eric multitask strategy should not be pursued in practice

if phenotypic information is available.

The fact that ProDiGe3 and ProDiGe4 outperform

PRINCE for all rank values confirm the competitive-

ness of our approach. On the other hand, the compari-

son with PRINCE is not completely fair since ProDiGe

exploits a variety of data sources about the genes,

while PRINCE only uses a PPI network. In order to

clarify whether the improvement of ProDiGe over

PRINCE is due to a larger amount of data used, to the

learning algorithm, or to both, we ran ProDiGe3 with

only the kernel derived from the PPI network which

we call ProDiGe-PPI in Figure 2. In that case, both

ProDiGe and PRINCE use exactly the same

information to rank genes. We see on the left picture

that this variant is overall comparable to PRINCE (no

significant difference between PRINCE and ProDiGe-

PPI with a Wilcoxon paired signed rank test), confirm-

ing that the main benefit of ProDiGe over PRINCE

comes from data integration. Interestingly though, at

the beginning of the curve (right picture), ProDiGe-

PPI is far above PRINCE, and even behaves compar-

ably to the best method ProDiGe4. Since ProDiGe-PPI

and PRINCE use exactly the same input data, this

means that the better performance of ProDiGe-PPI for

low ranks comes from the learning method based on

PU learning with SVM, as opposed to label propaga-

tion over the PPI network.

To better visualize the differences between the dif-

ferent variants of ProDiGe, the scatter plots in Figure

3 compare directly the ranks obtained by the different

variants for each of the 2544 left-out associations.

Note that smaller ranks are better than large ones,

since the goal is to be ranked as close as possible to

the top of the list. On the left panel, we compare Pro-

DiGe3 to ProDiGe4. We see that many points are

below the diagonal, meaning that adding a Dirac ker-

nel to the Phenotype kernel (ProDiGe4) generally

improves the performance as compared to using a

Phenotype kernel (ProDiGe3) alone. On the right

panel, the ProDiGe2 is compared to the ProDiGe3.

We see that the points are more concentrated above

the diagonal, but with large variability on both sides

of the diagonal. This indicates a clear advantage in

favor of the Phenotype kernel compared to the gen-

eric Multitask kernel, although the differences are

quite fluctuant.
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Figure 2 Cumulative distribution function of ranks in the LOOCV experiments, for global approaches. ProDiGe2, 3, 4 refer to the three

variants of ProDiGe which share information, while ProDiGe-PPI refers to ProDiGe3 trained only the PPI network data. Panel (A) Global curve.

Panel (B) Zoom on the beginning of the curve.
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Is sharing information across diseases beneficial?

In order to check whether sharing information across

diseases is beneficial, we restrict ourselves to diseases

with phenotypic informations and with at least two

known associated genes in the OMIM database. This

way, we are able to share information across diseases

and, at the same time, to run methods that do not share

information because we ensure that there is at least one

training gene in the LOOCV procedure. This leaves us

with 265 diseases, corresponding to 936 associations.

Figure 4 shows the CDF curves of the rank for the

various methods on these data, including the two

methods MKL1class and ProDiGe1 (with the mean ker-

nel for data integration), which do not share information

across diseases, and ProDiGe 2, 3, 4 and PRINCE, which

do share information. Interestingly, we observe different

retrieval behaviors on these curves, depending on the

part of the curve we are interested in. On the one hand,

if we look at the curves globally, ProDiGe 4 and 3 per-

form very well, having high area under the CDF curve, i.

e., a low average rank (respectively 1529 and 1770).

PRINCE and MKL1class have the worse average ranks

(respectively 3220 and 3351). A systematic test of differ-

ences between the methods, using a Wilcoxon paired
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signed rank test over the ranks for each pair of methods,

is summarized in Figure 5. In this picture, an arrow

indicates that a method is significantly better than

another at level 5%. This confirms that ProDiGe 4 is the

best method, significantly better than all other ones

except ProDiGe 1. Three variants of ProDiGe are signifi-

cantly better than PRINCE and MKL1Class.

On the other hand, in the context of gene prioritiza-

tion, it is useful to focus on the beginning of the curve

and not on the full CDF curves. Indeed, only the top of

the list is likely to deserve any serious biological investi-

gation. Therefore we present a zoom of the CDF curve

in panel (B) of Figure 4. We see there that the local

methods ProDiGe1 and MKL1class present a sharper

increase at the beginning of the curve than the global

methods, meaning that they yield more often truly dis-

ease genes near the very top of the list than other meth-

ods. Additionally, we observe that ProDiGe1 is in fact

the best method when we focus on the proportion of

disease genes correctly identified in up to the top 350

among 19540, i.e., in up to the top 1.8% of the list.

These results are further confirmed by the quantitative

values in Table 1, which show the recall (i.e., CDF

value) as a function of the rank. ProDiGe 1, which does

not share information across diseases, is the best when

we only focus at the very top of the list (up to the top

1.8%), while ProDiGe 4, which shares information, is

then the best method when we go deeper in the list.

At this point it is interesting to question what position

in the list we are interested in. In classical applications

where we start from a short list of, say, 100 candidates,

then being in the top 5% of the list means that the cor-

rect gene is ranked in the top 5 among the 100 candi-

dates, while the top 1% corresponds to the first of the

list (see the last 3 columns of Table 1). If we only focus

on the first gene of a short list of 100 candidates, then

ProDiGe1 is the best method, with almost half of the

genes (49.2%) found in the first position, followed by

ProDiGe4 (43.4%) and MKL1class (41.1%). As soon as

we accept to look further than the first place only, Pro-

DiGe 4 is the best method, with 68.9% of disease genes

in the top 5 of a list of 100 candidates, for example. On

the other hand, if we consider a scenario where we start

from no short list of candidates, and directly wish to

predict disease genes among the 19540 human genes,

then only the few top genes in the list are interesting

(see the first 2 columns of Table 1). In that case, the

methods that do not share information are clearly pre-

ferable, with 27.8% (resp 25.3%) of genes correctly found

in the top 10 among 19540 for ProDiGe 1 (resp.

MKL1class).

In summary, sharing information is not beneficial if

we are interested only in the very top of the list, typi-

cally the top 10 among 19540 candidates. This setting is

however very challenging, where even the best method

ProDiGe1 only finds 12.3% of all disease genes. As soon

as we are interested in more than the top 2% of the list,

which is a reasonable level when we start from a short

list of a few tens or hundreds of candidate genes, shar-

ing information across diseases becomes interesting. In

all cases, some variant of ProDiGe outperforms existing

methods. In particular ProDiGe4, which shares informa-

tion using phenotypic information across diseases while

keeping different diseases distinct, is the best way to

share information.

Predicting causal genes for orphan diseases

Finally, we investigate the capacity of the different gene

prioritization methods to identify disease genes for

Figure 5 Wilcoxon paired signed rank tests for significant rank

difference between all methods. ProDiGe1 and MKL1class are the

only local approaches, which do not share information across

diseases. The number in each ellipse is the average rank obtained

by the method in the LOOCV procedure. An arrow indicates that a

method is significantly better than another.

Table 1 Recall of different methods at different rank

levels, for diseases with at least one known disease

gene.

top 1 top 10 top 1% top 5% top 10%

MKL1class 11.5 25.3 41.1 52.8 59.9

ProDiGe1 12.3 27.8 49.2 61.9 71.2

ProDiGe2 0.1 0.7 17.8 51.2 66.9

ProDiGe3 1.9 11.4 38.6 64.0 74.2

ProDiGe4 3.1 14.6 43.4 68.9 78.4

PRINCE 1.5 6.8 37.3 57.1 65.4

The recall at rank level k is the percentage of disease genes that were

correctly ranked in the top k candidate genes in the LOOCV procedure, where

the number of candidate genes is near 19540. Top 1 and top 10 (first two

columns) correspond respectively to the recall at the first and first ten genes

among 19540, while top X% (last three columns) refer to the recall at the first

X% genes among 19540.
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orphan diseases, i.e., diseases with no known causative

gene yet. ProDiGe1 and MKL1class, which treat diseases

independently from each other and require known dis-

ease genes to find new ones, can not be used in this set-

ting. Methods that share information across diseases, i.

e., ProDiGe2, 3, 4 and PRINCE, can be tested in this

context, since they may be able to discover causative

genes for a given orphan diseases by learning from cau-

sative genes of other diseases. In fact, ProDiGe3 and

ProDiGe4 boil down to the same method in this con-

text, because the contribution of the Dirac kernel in (6)

vanishes when no known disease gene for a disease of

interest is available during training. We summarize

them by the acronym ProDiGe3-4 below.

To simulate this setting, we start from the 1608 dis-

eases with only one known disease gene in OMIM and

phenotypic information, resulting in 1608 disease-gene

associations involving 1182 genes. For each disease in

turn, the associated gene is removed from the training

set, a scoring function is learned from the associations

involving other diseases, and the removed causal gene is

ranked for the disease of interest. We compute the rank

of the true disease gene, and repeat this operation for

each disease in turn. Figure 6 and Table 2 show the per-

formance of the different global methods in this setting.

Interestingly, they are very similar to the results

obtained in the multitask setting (Figure 2 and Table 1),

both in relative order of the methods and in their abso-

lute performance. Overall, ProDiGe3-4 performs best,

retrieving the true causal gene in the top 10 genes of

the list 13.1% of times, and in the top 5% of candidate

genes 66.9% of times. This is only slightly worse than

the performance reached for diseases with known

disease genes (respectively 14.6% and 68.9%), highlight-

ing the promising ability of global approaches to deor-

phanize diseases.

Validation on selected diseases

To further validate ProDiGe, we used the whole training

set to prioritize the unlabeled genes for a few particular

diseases with ProDiGe4. We completed the training set

with a list of genes collected through the use of Ingenu-

ity Pathways Analysis (IPA, Ingenuity® Systems). In

Table 3, we report the results of this validation for a

first set of diseases having a training set of positive

genes of reasonable size (more than 11 genes). These

diseases are in the same order: prostate cancer [MIM

176807], colorectal cancer [MIM 114500], diabetes mel-

litus [MIM 125853], Alzheimer [MIM 104300], gastric

cancer [MIM 137215], leukemia acute myeloid [MIM

601626], breast cancer [MIM 114480], schizophrenia

[MIM 181500]. The columns report successively the dis-

ease name, the MIM id of the disease, the size of the

training set, the size of the intersection between the

training set and the Ingenuity list, the estimated preci-

sion and recall of the top 100 genes in the prioritized
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Figure 6 Cumulative distribution function of ranks for prioritization of causal genes for orphan diseases. Panel (A) Global curve. Panel

(B) Zoom on the beginning of the curve.

Table 2 Recall of different methods at different rank

levels, for orphan diseases

top 1 top 10 top 1% top 5% top 10%

ProDiGe2 0.1 1.4 16.8 50.4 68.1

ProDiGe3-4 1.9 13.1 42.7 66.9 76.1

PRINCE 0.5 4.8 36.9 52.9 60.6

In this case, since the disease has no known causal genes, only the causal

genes of other diseases intervene in the learning, meaning that ProDiGe3 and

4 are equivalent approaches.
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list and the p-value of a hypergeometric test. The preci-

sion is estimated as the fraction of the top 100 genes

that are also in the IPA list while recall is the fraction of

the IPA list that intersects the top 100 genes of the

prioritized list. Of course, the true precision value is

unknown and the value we report underestimates the

true value. The hypergeometric test allows to test for

the enrichment of the top 100 genes of our prioritized

list in genes known to be associated to the disease,

which were not in the training set (namely genes pre-

viously extracted from IPA). We can see that precision

is good, except for schizophrenia, gastric cancer and leu-

kemia. Recall on the other hand is not very high but the

values are limited by the large size of IPA lists. All tests

are significant at 5% level.

We then did the same for 8 diseases with only 2

known genes in our training set: glaucoma [MIM

606657], Creutzfeld-Jacob [MIM 123400], hyperpar-

athyroidism [MIM 145000], psoriasis [MIM 177900],

glioblastoma [MIM 137800], cystic fibrosis [MIM

219700], pancreatic carcinoma [MIM 260350], thalasse-

mia [MIM 604131]. Results are given in Table 4. As

expected, precision is much smaller for these diseases.

However, we see that sharing information across dis-

eases still allows to retrieve new disease genes for dis-

eases where the training set is very small.

Further validation include Table 5 which reports the

top ten genes of the prioritized list for prostate cancer,

colorectal cancer, diabetes mellitus, Alzheimer, gastric

cancer, leukemia acute myeloid, breast cancer, schizo-

phrenia. These lists were analyzed with GeneValoriza-

tion [26], a text-mining tool for automatic bibliography

search.

Discussion
A particularity of ProDiGe is the possibility to encode

prior knowledge on disease relatedness through the dis-

ease kernel. While a Dirac kernel prevents sharing of

information across diseases, we tested different variants

to share information including a generic multitask ker-

nel and kernels taking into account the phenotypic simi-

larity between diseases. We demonstrated the relevance

of using the phenotypic similarity, compared to the gen-

eric multitask kernel, and have enhanced it by the addi-

tion of a Dirac kernel. Given the influence of the disease

kernel on the final performance of the method, we

believe that there is still much room for improvement in

the design of the prior, using the general ProDiGe fra-

mework. We note in particular that if other descriptors

were available for phenotypes, one could also integrate

these data and the prior they induce on task relatedness

in the disease kernel.

A important question in practice is to choose between

the two variants. We have seen that ProDiGe1 has

higher recall in the top 1 or 2% of the list, while Pro-

DiGe4 is better after. Hence a first criterion to chose

among them is the rank level that we are ready to inves-

tigate. In addition, one could think that ProDiGe1,

Table 3 Prioritization with ProDiGe4 for 8 diseases with a large training set of known genes

Disease name MIM Id Training set Training ∩ IPA Precision (%) Recall (%) P-value

Prostate cancer 176807 12 12 41 7.5 5.3e-40

Colorectal cancer 114500 17 17 51 5.7 7.3e-44

Diabetes mellitus 125853 26 22 21 1.4 2.1e-06

Alzheimer 104300 11 10 23 2.3 3.8e-11

Gastric cancer 137215 12 12 16 7.1 9.3e-16

Leukemia acute myeloid 601626 17 16 13 10.0 2.8e-15

Breast cancer 114480 19 16 33 3.7 6.4e-22

Schizophrenia 181500 17 11 6 3.2 4.5e-05

The results were validated by comparing our top 100 genes with a list of genes related to the disease, extracted from Ingenuity database.

Table 4 Prioritization with ProDiGe4 for 8 diseases with only 2 known genes

Disease name MIM Id Training ∩ IPA Precision (%) Recall (%) P-value

Glaucoma 606657 2 8 12.5 2.0e-11

Creutzfeld-Jacob 123400 2 2 40.0 1.3e-06

Hyperparathyroidism 145000 2 3 18.7 1.1e-06

Psoriasis 177900 2 4 6.0 1.8e-05

Glioblastoma 137800 2 16 10.7 8.4e-19

Cystic fibrosis 219700 2 5 10.6 9.3e-08

Pancreatic carcinoma 260350 1 8 9.6 2.3e-10

Thalassemia 604131 0 2 25.0 2.6e-06

The results were validated by comparing our top 100 genes with a list of genes related to the disease, extracted from Ingenuity database.
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which can not be used for orphan disease, is more gen-

erally handicapped compared to ProDiGe4 when the

number of known disease genes is small, while it is in a

better situation when many genes are already known.

Indeed, if enough causal genes are known for a given

disease, there is intuitively no need to borrow informa-

tion from other diseases, which may mislead the predic-

tion. This dependency of the relative performance of a

local and a global approach on the number of training

samples has previously been observed in other contexts

[21] where a global approach was shown to bring tangi-

ble improvements over a local one when the number of

positive examples was low. We have however checked

for the presence of such an effect, and found that it

could not be brought to light, as illustrated in Figure 7

which plots the mean and standard deviation of the

rank of the left-out gene in LOOCV as a function of the

number of known genes of the disease during training.

We observe no trend indicating that the performance

increases with the number of training genes, and no dif-

ferent behaviour between the local and multitask

approaches, as long as at least one disease gene is

known. This surprising finding, which is coherent with

the observation that there is no big difference in perfor-

mance for orphan and non-orphan diseases, suggests

that the number of known disease genes in not a rele-

vant criterion to choose between the local and multitask

version of ProDiGe. Instead, we suggest in practice to

use the local version ProDiGe 1 if we are interested only

in genes ranked in the very top of the candidate gene

lists (below the top 1%), and ProDiGe 4 as soon as we

can afford going deeper in the list.

Conclusions
We have introduced ProDiGe, a new set of methods for

disease gene prioritization. ProDiGe integrates heteroge-

neous information about the genes in a unified PU

learning strategy, and is able to share information across

different diseases if wanted. We have proposed in parti-

cular two flavours for disease gene ranking: ProDiGe1,

which learns new causal genes for each disease sepa-

rately, based on already known causal genes for each

disease, and ProDiGe4, which additionally transfers

information about known disease genes across different

diseases, weighting information sharing by disease phe-

notypic similarity. We have demonstrated the efficiency

of both variants on real data from the OMIM database

where they outperform Endeavour and PRINCE, two

state-of-the-art gene prioritization methods.

Table 5 The top ten genes for 8 diseases with a

reasonable training set

Prostate cancer Gastric cancer

CDKN2A(1029) 210 1 EGFR(1956) 853 1

AKT1(207) 1058 1 AKT1(207) 272 0

IGF1R(3480) 152 1 EXT1(2131) 4 0

MSX1(4487) 5 0 FAS(355) 180 0

PAX3(5077) 2 0 LRP5(4041) 8 0

CCND1(595) 372 1 MSX1(4487) 3 0

BRAF(673) 22 1 CCND1(595) 250 1

TP53(7157) 1378 1 BRAF(673) 32 1

WFS1(7466) 0 0 TP53(7157) 1593 1

WT1(7490) 37 1 WFS1(7466) 0 0

Colorectal cancer Leukemia acute myeloid

CDKN2A(1029) 415 1 AKT1(207) 233 0

EXT1(2131) 14 0 FAS(355) 136 0

IGF1R(3480) 86 1 KRAS(3845) 457 1

SMAD4(4089) 211 1 LYN(4067) 26 0

MLH1(4292) 4064 1 MYC(4609) 381 0

PDGFRA(5156) 19 1 RAF1(5894) 30 1

PDGFRB(5159) 45 1 STAT3(6774) 95 0

BRAF(673) 430 1 STK11(6794) 2 0

WFS1(7466) 0 1 BTK(695) 6 0

WT1(7490) 15 0 TP53(7157) 474 1

Diabetes mellitus Breast cancer

COL1A1(1277) 4 0 CDKN2A(1029) 572 1

COL2A1(1280) 6 0 COL2A1(1280) 9 0

CYP3A5(1577) 5 0 COL3A1(1281) 1 0

EXT1(2131) 20 1 EXT1(2131) 22 0

GHR(2690) 49 0 LRP5(4041) 51 0

ABCC6(368) 43 0 MSX1(4487) 10 0

LEP(3952) 754 1 PAX3(5077) 6 0

LRP5(4041) 58 0 PITX2(5308) 310 1

CACNA1S(779) 4 0 BRAF(673) 37 1

ADIPOQ(9370) 1635 1 WFS1(7466) 4 0

Alzheimer Schizophrenia

COL2A1(1280) 0 0 COL1A1(1277) 0 0

CYP1B1(1545) 0 0 COL2A1(1280) 0 0

EXT1(2131) 4 1 ATN1(1822) 40 0

ALDH3A2(224) 4 0 EXT1(2131) 20 0

APOE(348) 4143 1 FGFR3(2261) 78 0

ABCC6(368) 10 0 GJB1(2705) 0 0

LRP5(4041) 3 0 ABCC6(368) 7 0

MAOA(4128) 5 1 LRP5(4041) 4 0

PSEN2(5664) 635 1 PARK2(5071) 1 0

WFS1(7466) 1 0 WFS1(7466) 5 0

These diseases are in order: prostate cancer [MIM 176807], colorectal cancer

[MIM 114500], diabetes mellitus [MIM 125853], Alzheimer [MIM 104300],

gastric cancer [MIM 137215], leukemia acute myeloid [MIM 601626], breast

cancer [MIM 114480], schizophrenia [MIM 181500]. Using GeneValorization, we

counted the number of publication hits in NCBI which are found to be

relevant to a query disease and a query gene. At last, the third column

indicates whether the gene belongs to the list extracted from the Ingenuity

Pathways Analysis tool.
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Except for the work of [27], the PU learning point of

view on this long-studied gene prioritization problem is

novel. Classical one-class approaches which learn a scor-

ing function to rank candidate genes using known dis-

ease genes only are prone to over-fitting in large

dimensions when the training set if small, which results

in poor performance. We observed that our PU learning

strategy, augmented by a multitask point of view to

share information across diseases, was useful to obtain

better results in the disease gene identification task. In

fact, learning from positive and unlabeled examples is a

common situation in bioinformatics, and PU learning

methods combined or not with multitask kernels have a

good potential for solving many problems such as path-

way completion, prioritization of cancer patients with a

higher risk of relapse, or prediction of protein-protein

or protein-ligand interactions.

Methods
The gene prioritization problem

Let us first formally define the disease gene prioritiza-

tion problem we aim to solve. We start from a list of N

human genes G = {G1, . . . , GN} , which typically can be

the full human genome or a subset of interest where

disease genes are suspected. A multitude of data sources

to characterize these genes are given, including for

instance expression profiles, functional annotation,

sequence properties, regulatory information, interac-

tions, literature data, etc... We assume that for each data

source, each gene G ∈ G is represented by a finite- or

infinite-dimensional vector F(G), which defines an inner

product K(G,G’) = F(G)⊤F(G’) between any two genes

G and G’. K is called a kernel in the machine learning

community [28]. Intuitively, K(G,G’) may be thought of

as a measure of similarity between genes G and G’

according to the representation defined by F. Since sev-

eral representations are available, we assume that L fea-

ture vector mappings F1,...,FL are available,

corresponding to L kernels for genes K1,K2,...,KL. Finally,

we suppose given a collection of M disorders or disease

phenotypes D = {D1, . . . , DM} . For each disorder Di, the

learner is given a set of genes Pi ⊂ G , which contains

known causal genes for this phenotype, and a set of can-

didate genes Ui ⊂ G where we want to find new disease

genes for Di. Typically Ui can be the complement set of

Pi in G if no further information about the disease is

available, or could be a smaller subset if a short list of

candidate genes is given for the disease Di. For each dis-

ease Di, our goal is to retrieve more causal genes for Di

in Ui. In practice, we aim at ranking the elements of Ui

from the most likely disease gene to the less likely, and

we assess the quality of a ranking by its capacity to rank

the true disease genes at or near the top of the list.

Gene prioritization for a single disease and a single data

source

Let us first describe our gene prioritization approach

ProDiGe for a single disease (M = 1) and a single data

source (L = 1). In that case, we are given a single list of

disease genes P ⊂ G , and must rank the candidate

genes in U ⊂ G using the kernel K. As explained in the

Introduction, most existing approaches define a scoring

function s : U ® ℝ, using only positive examples in P,

to quantify how similar a gene G in U is to the known

disease genes in P. Here we propose to learn the scoring

function s(.) both from P and U, by formulating the pro-

blem as an instance of PU learning.

Intuitively, the motivation behind PU learning is to

exploit the information provided by the distribution of

unlabeled examples to improve the scoring function, as

illustrated in Figure 8. Here we initially have a set of

positive examples (genes known to be related to a given

disease for instance) which are represented on the graph

by blue crosses, and we want to retrieve more of them.

Traditional approaches which define a scoring function

from P usually try to estimate the support of the

Figure 7 Effect of the number of related genes on the performance. This figure shows the performance of each method, measured as the

mean rank of the positive genes, as a function of the number of known causal genes for the disease considered.
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positive class distribution to define an area of “similar

genes”, which could be in that case delimited by the

dashed line. Now suppose that we additionally observe a

set of unlabeled examples (candidate genes), represented

by U letters. Green Us are positive unlabeled and red

ones are negative unlabeled, but this information is not

available. Then, we can have the feeling that the bound-

ary should rather be set in the low density area as repre-

sented by the solid line, which better captures reality

than the dashed line. Consequently, using the distribu-

tion of U in addition to the positive examples can help

us better characterize the area of positive examples.

This is particularly true in high dimension with few

examples, where density estimation from a few positive

examples is known to be very challenging.

In practice, a simple and efficient strategy to solve a

PU learning problem is to assign negative labels to ele-

ments in U, and train a binary classifier to discriminate

P from U, allowing errors in the training labels. Assum-

ing that the binary classifier assigns a score to each

point during training (which is the case of, e.g., logistic

regression or SVM), the score of an element in U is

then just the scored assigned to it by the classifier after

training. This approach is easy to implement and it has

been shown that building a classifier that discriminates

the positive from the unlabeled set is a good proxy to

building a classifier that discriminates the positive from

the negative set. When the binary classifier used is a

SVM, this approach leads to the biased SVM of [16],

which was recently combined with bagging to reach fas-

ter training time and equal performance [18]. In prac-

tice, the biased SVM over-weights positive examples

during training to account for the fact that they repre-

sent high-confidence examples whereas the “negative”

examples are known to contain false negatives, namely,

those we hope to discover. Here we use the variant of

[18], which adds a bootstrap procedure to biased SVM.

The additional bagging-like feature takes advantage of

the contaminated nature of the unlabeled set, allowing

to reach the same performances while increasing both

speed and scalability to large datasets. The algorithm

takes as input a positive and an unlabeled set of exam-

ples, and a parameter B specifying the number of boot-

strap iterations. It discriminates the positive set from

random subsamples of the unlabeled set and aggregates

the successive classifiers into a single one (bootstrap

aggregating). The output is a score function s such that

for any example G, s(G) reflects our confidence that G

is a positive example. We then rank elements in U by

decreasing score. For more details on the method, we

refer the reader to [18]. In practice, we implement the

SVM with the libsvm implementation [29]. After obser-

ving in preliminary experiments that the regularization

parameter C of the SVM did not dramatically affect the

final performance, we set it constant to the default value

C = 1 for all results shown below. The number of boot-

strap iterations was set to B = 30.

Gene prioritization for a single disease and multiple data

sources

When several data sources are available to characterize

genes, e.g., gene expression profiles and sequence fea-

tures, we extend our PU learning method to learn

simultaneously from multiple heterogeneous sources of

data through kernel data fusion [24]. Formally, each

data source is encoded in a kernel function, resulting in

L ≥ 1 kernels K1,..., KL. We investigate the following two

strategies to fuse the L data sources.

First, we simply define a new kernel which integrates

the information contained in all kernels as the mean of

the L kernels, i.e., we define:

Kint =
1

L

L
∑

i=1

Ki. (1)

In other words, the kernel similarity Kint(G,G’)

between two genes is defined as the mean similarity

between the two genes over the different data sources.

This simple approach is widely used and often leads to

very good performance with SVM to learn classification

models from heterogeneous information [22,30,31]. In

our setting, we simply use the integrated kernel (1) each

Figure 8 An intuitive example of how the unlabeled examples

could be helpful. This figure illustrates the potential benefits of

using unlabeled examples when the ranking function is run. When

only positive examples are used (blue crosses), a machine learning

method may define a region surrounding them as the region of

positive examples (in dotted lines). Using in addition unlabeled

examples may suggest a different region, such as a frontier

between positive and negative examples in a region with few

points.
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time a SVM is trained in the PU learning algorithm

described in the previous section, to estimate a prioriti-

zation score from multiple data sources.

Alternatively, we test a method for multiple kernel

learning (MKL) proposed by [24,32], which amounts to

building a weighted convex combination of kernels of

the form

KMKL =
1

L

L
∑

i=1

βiKi, (2)

where the non-negative weights bi are automatically

optimized during the learning phase of a SVM. By

weighting differently the various information sources,

the MKL formulation can potentially discard irrelevant

sources or give more importance to gene descriptors

with more predictive power. Again, combining MKL

with our PU learning strategy described in the previous

section is straightforward: we simply use the MKL for-

mulation of SVM instead of the classical SVM each

time a SVM is trained.

Gene prioritization for multiple diseases and multiple

data sources

When multiple diseases are considered, a first option is

to treat the diseases independently from each other, and

apply the gene prioritization strategy presented in the

two previous sections to each disease in turn. However,

it is known that disease genes share some common

characteristics [27,33,34], and that similar diseases are

often caused by similar genes [5,9,11-14]. This suggests

that, instead of treating each disease separately, it may

be beneficial to consider them jointly and share infor-

mation of known disease genes across diseases. By

mutualizing information across diseases, one may in

particular attempt to prioritize genes for orphan dis-

eases, with no known causal gene. This is an important

property since these diseases are obviously those for

which predictions are the most needed.

We propose to jointly solve the gene prioritization

problem for different diseases by formulating it as a

multitask learning problem, and we adapt the multitask

learning strategy of [19] to our PU learning framework.

In this setting, instead of just learning a scoring function

over individual genes G ∈ G to rank candidates for a

disease, we learn a scoring function over disease-gene

pairs of the form (D, G) ∈ D × G . In order to learn this

scoring function, instead of starting from a set of posi-

tive examples P ⊂ G made of known disease genes for a

particular disease, we start from a set of positive pairs

(Dd(i), Gg(i))i=1,...,T ⊂ D × G obtained by combining the

pairs where gene Gg(i) is known to be a disease gene for

disease Dd(i). T is then the total number of known

disease-gene pairs. Given the training set of disease-gene

pairs, we then learn a scoring function s over D × G

using our general PU learning algorithm described ear-

lier in the context of a single disease, where the kernel

function between two disease-gene pairs (D, G) and (D’,

G’) is of the form:

Kpair((D, G), (D′, G′))

= Kdisease(D, D′) × Kgene(G, G′).
(3)

In this equation, Kgene is a kernel between genes, typi-

cally equal to one of the kernels described earlier in the

context of gene prioritization for a single disease. Kdisease

is a kernel between diseases, which allows sharing of

information across diseases, as in classical multitask

learning with kernels [19-21]. More precisely, we con-

sider the following variants for Kpair, which give rise to

various gene prioritization methods:

• The Dirac kernel is defined as

KDirac(D, D′) =

(

1 if D = D′,

0 otherwise.
(4)

Plugging the Dirac kernel into (3), we see that the

pairwise kernel between two disease-gene pairs for

different diseases is 0. One can then show that there

is no sharing of information across diseases, and that

learning over pairs in this context boils down to

treating each disease independently from the others

[19-21]. This is thus our baseline strategy, which

treats each disease in turn, and does not provide a

solution for orphan diseases. We call this method

ProDiGe1 below.

• The multitask kernel is defined by

Kmultitask(D, D′) = 1 + KDirac(D, D′). (5)

This kernel, which was proposed by [19], allows a

basic sharing of information across diseases. In addi-

tion to the genes known to be causal for a disease of

interest through the Dirac kernel, the addition of a

constant in (5) allows all other known disease genes

for other diseases to play the role of positive training

examples, although to a lesser extent than the dis-

ease genes for the disease of interest. Here we do

not use any specific knowledge about the different

diseases and their similarity, and simply try to cap-

ture properties that may be shared by disease genes

in general. This corresponds to a low information

prior because a disease equally exploits knowledge
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about all other diseases. We call this variant Pro-

DiGe2 below.

• The phenotype kernel is an attempt to capture

phenotypic similarities between diseases to control

the sharing of information across diseases. Indeed,

many previous works have used as prior knowledge

the fact that similar phenotypes are likely to be

caused by similar genes [5,9,11-14,35]. This suggests

that, instead of sharing information uniformly across

diseases as the multitask kernel (5) does, it may be

beneficial to do it in a more principled way. In parti-

cular, the more similar two diseases are, the more

they should share information. In practice, this is

obtained by defining a kernel Kphenotype between dis-

eases that measures their phenotypic similarity, and

plugging it into the general pairwise kernel (3). Here

we propose to use the phenotypic similarity measure

for diseases based on text mining proposed by [36].

Since this measure is derived as a correlation mea-

sure, the matrix whose entries contain the pairwise

similarity measures is eligible for kernel learning.

We call the resulting gene prioritization method

ProDiGe3 below.

• The phenotype+Dirac kernel. Finally, we propose a

slight variant to the phenotype kernel by adding to it

the Dirac kernel:

KP+D(D, D′) =

Kphenotype(D, D′) + KDirac(D, D′).
(6)

The motivation for this kernel is that, since the

description of disease phenotypes we use to build

Kphenotype is incomplete and does not fully character-

ize the disease, it may occur that two different dis-

eases, with different disease genes, have similar or

even identical phenotypic description. In this case,

the addition of the Dirac kernel in (6) allows to still

distinguish different diseases, and give more impor-

tance to the genes associated to the disease of inter-

est than to the genes associated to different diseases

with similar phenotypes. We call ProDiGe4 the

resulting gene prioritization method.

In summary, each of the four kernels for diseases pre-

sented above can be plugged into (3) to define a kernel

for disease-gene pairs. Then, the PU learning strategy

presented in the context of a single disease can be

applied to learn a scoring function over D × G . Finally,

the ranking of candidate genes in Ui for a particular dis-

ease Di is obtained by decreasing score s(Di, G) for G Î

Ui. We thus obtain four variants summarized in Table 6.

When heterogeneous sources of information for genes

are available, the two strategies proposed in the case of

a single disease can be easily combined with each of the

four ProDiGe variants, since each particular gene kernel

translates into a particular disease-gene kernel through

(3). In the experiments below, we only implement the

MKL approach for ProDiGe1 to compare it to the mean

kernel strategy. For other variants of ProDiGe, we

restrict ourselves to the simplest strategy where the dif-

ferent information sources are fused through kernel

averaging.

Experimental setting

We assess the performance of various gene prioritization

methods by leave-one-out cross-validation (LOOCV) on

the dataset of known disease-gene association extracted

from the OMIM database. Given the list of all disease-

gene associations (Dd(i), Gg(i))i = 1,...,T in OMIM, we

remove each pair (Dd(i), Gg(i)) in turn from the training

set, train the scoring function from the T - 1 remaining

positive pairs, rank all genes G not associated to Dd(i) in

the training set by decreasing score s(Dd(i), G), and

check how well Gg(i) is ranked in the list. Note that in

this setting, we implicitly assume that the candidate

genes for a disease are all genes not known to be asso-

ciated to the disease, i.e., Ui = G\Pi . In the LOOCV set-

ting, each time a pair (Dd(i), Gg(i)) is removed from the

training set, the ranking is then performed on Ud(i) ∪

{Gg(i)}. We monitor the success of the prioritization by

the rank of Gg(i) among candidate genes in Ud(i). Since

we are doing a LOOCV procedure, the rank of the left-

out sample is directly related to the classical area under

the Receiver Operating Characteristics curve (AUC), via

the formula rank = (|U|+1) × (1- AUC). Therefore, an

easy way to visualize the performance of a gene prioriti-

zation method is to plot the empirical cumulative

Table 6 Summary of ProDiGe variants

Name Disease kernel Sharing of disease gene information across diseases

Prodige1 KDirac No sharing.

Prodige2 1 + KDirac Uniform sharing.

Prodige3 Kphenotype Sharing weighted by phenotypic similarity.

Prodige4 KDirac + Kphenotype Sharing weighted by phenotypic similarity and disease identity.

We propose four variants, which differ in the way they share information across diseases, as summarized in the third column of the table. The second column

shows the kernel for diseases used by each variant to achieve the sharing of information.
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distribution function (CDF) of the ranks obtained for all

associations in the training set in the LOOCV proce-

dure. For a given value of the rank k, the CDF at level k

is defined as the proportion of associations Dd(i), Gg(i)

for which gene Gg(i) ranked among the top k in the

prioritization list for disease Dd(i), which can also be

called the recall as a function of k.

Other gene prioritization methods

We compare ProDiGe to two state-of-the-art gene

prioritization methods. First we consider the 1-SVM L2-

MKL from [10], which extends and outperforms the

Endeavour method [10], and which we denote

MKL1class below. This method performs one-class

SVM [37] while optimizing the linear combination of

gene kernels with a MKL approach in the same time.

We downloaded a Matlab implementation of all func-

tions from the supplementary information website of

[10]. We used as input the same 9 kernels as for Pro-

DiGe, and we set the regularization parameter of the

algorithm ν = 0.5, as done by [10]. Second, we compare

ProDiGe to the PRINCE method introduced by [14],

which is designed to share information across the dis-

eases. Prior information consists in gene labels that are

a function of their relatedness to the query disease.

They are higher for genes known to be directly related

to the query disease, high but at a lesser extent for

genes related to a disease which is very similar to the

query, smaller for genes related to a disease that bears

little similarity to the query and zero for genes not

related to any disease. PRINCE propagates these labels

on a PPI network and produces gene scores that vary

smoothly over the network. We used the same PPI net-

work for PRINCE as the one used by ProDiGe.

Data

The first type of data required by ProDiGe is the

description of the set G of human genes. We borrowed

the dataset of [7], based on Ensembl v39 and which

contains multiple data sources. We removed genes

whose ID had a “retired” status in Ensembl v59, leaving

us with 19540 genes. These genes are described by

microarray expression profiles from [38] and [39] (MA1,

MA2), expressed sequence tag data (EST), functional

annotation (GO), pathway membership (KEGG), pro-

tein-protein interactions from the Human Protein Refer-

ence Database (PPI), transcriptional motifs (MOTIF),

protein domain activity from InterPro (IPR) and litera-

ture data (TEXT). For PPI data which consists in a

graph of interactions, a diffusion kernel with parameter

1 was computed to obtain a kernel for genes [40]. All

other data sources provide a vectorial representation of

a gene. The inner product between these vectors defines

the kernel we create from each data source. All kernels

are normalized to unit diagonal to ensure that kernel

values are comparable between different data sources,

using the formula:

K̃(G, G′) ←
K(G, G′)

√

K(G, G) × K(G′, G′)
. (7)

Second, to define the phenotype kernel between dis-

eases we borrow the phenotypic similarity measure of

[36]. The measure they propose is obtained by auto-

matic text mining. A disease is described in the OMIM

database by a text record [25]. In particular, its descrip-

tion contains terms from the Mesh (medical subject

headings) vocabulary [36]. assess the similarity between

two diseases by comparing the Mesh terms content of

their respective record in OMIM. We downloaded the

similarity matrix for 5080 diseases from the MimMiner

webpage.

Finally, we collected disease-gene associations from

the OMIM database [25], downloaded on August 8th,

2010. We obtained 3222 disease-gene associations invol-

ving 2606 disorders and 2182 genes.
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