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ABSTRACT 

Moments and moment invariants have become a powerful tool in pattern recognition and image analysis. Conventional 
methods to deal with color images are based on RGB decomposition or graying, which may lose some significant color 
information. In this paper, by using the algebra of quaternions, we introduce the quaternion Zernike moments (QZMs) to deal 
with the color images in a holistic manner. It is shown that the QZMs can be obtained from the conventional Zernike 
moments of each channel. We also provide the theoretical framework to construct a set of combined invariants with respect 
to rotation, scaling and translation (RST) transformation. Experimental results are provided to illustrate the efficiency of the 
proposed descriptors. 
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1. Introduction 

Moment invariants have been extensively used in pattern recognition [1], [2], scene matching [3] and object classification 
[4] owing to their image description capability and invariance property. However, they are mainly used to deal with the 
binary or gray-scale images. With the development of inexpensive digital camera, nowadays almost all images acquired are 
chromatic. Generally speaking, there are two approaches that are often used for color image processing. The first one consists 
of transforming the color image into gray-scale one, which may lose some significant color information. For example, if we 
use the average of three channels for graying the color image, it is impossible to identify the objects having the same shape 
but different color (red, green, blue). The second one decomposes the color image into three channels, and then calculates the 
moment invariants of these three channels separately [5]-[8]. Among the latter, Mindru et al. [5], [6] proposed the generalized 
color moments for color images, whose integral function is the product of the powers of the pixel coordinates and those of the 
intensities for one or more color channels. Based on these moments, they constructed a set of invariants to geometric 
transformation and photometric changes. Suk and Flusser [7] derived a set of affine geometric invariants for color images, 
which are based on the product of moments defined for different channels. Specially, they introduced the notion of common 
centroid for defining the central moments in order to achieve the translation invariance. Both methods are the generalization 
of conventional geometric moments, the difference between them is that the computation of Mindru’s moments may refer to 
two or three color channels, and that of Suk’s moments only relates to one channel. Since the kernel functions of geometric 
moments are not orthogonal, this may lead to information redundancy and low noise robustness.  

The orthogonal Zernike polynomials were first introduced by Zernike in 1934 [9], Teague used them to define the 
orthogonal Zernike moments [10]. Since then, the Zernike moments have been applied to a number of computer vision 
problems [1], [11]-[18] because they have overall better performance than other moments [19]-[21]. The purpose of this 
paper is to extend the conventional orthogonal Zernike moments to color image in a holistic manner. To that end, we will use 
the algebra of quaternions. 

In recent years, quaternions have been utilized more and more in color image processing. Let f(x, y) be an RGB image, it 
can be represented by encoding three channels as a pure quaternion as follows 

( , ) ( , ) ( , ) ( , )R G Bf x y f x y f x y f x y= + +i j k ,                                                                       (1) 

where fR (x, y), fG (x, y) and fB (x, y) represent respectively the red, green and blue channel of the color images, and i, j and k 
are the complex operators. The main advantage of the use of quaternion-type representation is that a color image can be 



  

treated as a vector field [22]. The algebra of quaternions has been exploited in color image processing by Ell and Sangwine 
[22]-[24]. In 1992, Ell [23] introduced the quaternion Fourier transforms (QFTs) in his Ph. D dissertation. Sangwine [24] 
then applied them to color image. Since then, the QFTs have been successfully employed in color image registration [25], 
[26], watermarking [27], [28], motion estimation [29] and texture analysis [30]. Recently, the use of quaternion-based 
moment functions to color image has been investigated [31], [32]. We have introduced the notion of the quaternion Zernike 
moments (QZMs) and derived a set of invariants with respect to image translation and rotation [31]. By using the quaternion 
algebra, Guo et al. proposed the quaternion Fourier-Mellin moments (QFMMs) to deal with the color images and constructed 
a set of invariants to rotation, scale and translation (RST) transformation [32]. However, in both methods, the rotation 
invariance was achieved by taking the modulus of the quaternion moments, this may lead to two disadvantages: 1) the 
modulus loses the phase information which may be useful in some applications; 2) the modulus only provides one real-valued 
invariant.  

In this paper, we propose a new approach to construct a set of QZM invariants with respect to RST transformation. The 
remaining of this paper is organized as follows. In Section 2, we first recall some preliminaries about the quaternions, and 
then present the definition of the QZMs. In Section 3, we derive a set the moment invariants with respect to RST 
transformation. Experimental results are provided in Section 4 to illustrate the performance of the proposed descriptors. 
Section 5 concludes the paper. 

2. Quaternion moments 

2.1. Quaternion number 

Quaternions, a generalization of the complex numbers, were introduced by the mathematician Hamilton in 1843 [33]. A 
quaternion consists of one real part and three imaginary parts as follows 

q = a + bi + cj + dk.                                                                                                           (2) 
where a, b, c and d are real numbers, and i, j and k are three imaginary units obeying the following rules 

2 2 2 1= = = −i j k ,                                                                                                              (3) 

, ,− − −ij = ji = k jk = kj = i ki = ik = j .                                                                             (4) 

The conjugate and modulus of a quaternion are respectively defined by 
q* = a – bi – cj – dk,                                                                                                           (5) 

2 2 2 2q a b c d= + + + .                                                                                                     (6) 

2.2. Quaternion Zernike moments 

Let f(r, θ) be an RGB image defined in polar coordinates, we define the right-side QZMs of order n with repetition m as 
[31] 
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where µ  is a unit pure quaternion chosen as ( ) / 3= + +µ i j k  in this paper, R n,m (r) is the real-valued radial polynomial 
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Since the radial Zernike polynomials are orthogonal, the color image f(r, θ) can be approximatively reconstructed from a 
finite number M of QZMs as follows 
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Because the Zernike moments are defined in polar coordinates (r, θ) with |r| ≤ 1, the computation of Zernike moments 
requires a linear transformation of the image coordinates to a suitable domain inside a unit circle. Here we use the mapping 
transformation proposed by Chong et al. [34]. Based on this transformation, we have the following discrete approximation of 
(7): 
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where N is the number of pixels along each axis of the image,  the mapping transformation to the interior of the unit circle is 
given by 
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It can be seen from (4) that the multiplication of quaternions is not commutative, so we also define the left-side QZMs of 
order n with repetition m as 
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The corresponding inverse transform is 
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2.3. Relationship between the quaternion Zernike moments and the conventional Zernike moments for single channel of the 
RGB image 

Substituting (1) into (7) and using (3) and (4), we obtain 
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where 
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Here Zn, m(fR), Zn, m(fG) and Zn, m(fB) are respectively the conventional Zernike moments for the red channel, green channel and 
blue channel, Re(x) represents the real part of conventional complex number x, and Im(x) the imaginary part, that is, Re(a + 
bi) = a, Im(a + bi) = b. 

Equation (14) shows that the QZMs can be obtained from the conventional Zernike moments for single channel. Similarly, 
we have the following relationship for the left-side QZMs 
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Comparing (14), (15) with (16), (17), we have 
*

, ,( ) ( ( ))L R
n m n mZ f Z f−= − .                                                                                                    (18) 

3. RST invariants of quaternion Zernike moments 

In our previous work [31], we have derived the translation and rotation invariants of QZMs. The rotation invariance was 
achieved by taking the modulus of QZMs, which leads to some drawbacks as noted in the Introduction. Here, we propose a 
new approach to construct the rotation invariants. We will also discuss the way to derive the scaling invariants. Before that, 
we give a brief description of translation invariants proposed in [31]. 

3.1. Translation invariants [31] 

Suk and Flusser [7] have defined the common centroid (xc, yc) of all three channels as follows 
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where m0, 0(fR), m1, 0(fR) and m0, 1(fR) are respectively the zero-order and first-order geometric moment for R channel, m0, 0(fG), 
m1, 0(fG) and m0, 1(fG) for G channel, and m0, 0(fB), m1, 0(fB) and m0, 1(fB) for B channel. 

Let the origin of the coordinate system be located at (xc, yc), the central QZMs, which are invariant to image translation, 
can be obtained as follows 

1 2

, ,

0 0

1
( ) ( ) ( , )R m

n m n m

n
Z f R r f r e rd dr

π
θθ θ

π
+= ∫ ∫
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where ( , )r θ  is the image pixel coordinate representation in polar form with the mapping transformation (11) by locating the 

origin at (xc, yc).  



  

3.2. Rotation invariants 

Let f ′  be the rotated version of f, i.e., ( , ) ( , )f r f rθ θ α′ = − , where α denotes the rotation angle, then we have 
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Equation (22) shows that the modulus of ,
R
n mZ  is invariant to rotation, which is the method proposed in [31] to achieve the 

rotation invariance. However, such a process loses the phase information which may be useful in some applications. 

Moreover, ,
R
n mZ  provides only one real-valued invariant. To surmount these shortcomings, we propose here a new way to 

construct a set of quaternion-valued rotation invariants. 
By proceeding in a similar way as for (21), we can obtain the following relationship for the left-side QZMs 
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Theorem 1. Let 
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Then, , ( )m
n k fφ  is invariant to image rotation for any integer m and non-negative integer n and k. 

Proof. Let f ′  be the rotated image of f with rotation angle α, using (21) and (22), we have 
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The proof has been completed.                                                                                                                                                      

Based on Theorem 1, when k = n, we have 
2
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n n n mf Z fφ = − . It means that the rotation invariants constructed by 

taking the modulus of , ( )R
n mZ f  correspond to a special case of Theorem 1. Note that each invariant , ( )m

n k fφ  is a quaternion 

number, which includes four real-valued invariants (one real part and three imaginary parts) except , ( )m
n n fφ . 

3.3. Scaling invariants and combined RST invariants 

In this subsection, we first derive a set of invariants with respect to image scale. Equation (8) shows that the radial 
polynomial R n,m (r) is symmetric with m, that is,  R n,-m (r) = R n,m (r). So, the case m ≥ 0 is considered. Letting n = m+2l and 
using (8), (7) can be rewritten as 
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where 
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From (25), 2 , ( )R
m l m fψ +  can also be expressed as a series of QZMs 
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where ,( )m m
l i jD d= , with 0 ≤ j ≤ i ≤ l, is the inverse matrix of ,( )m m
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Let f ′′  and f be two images having the same content but scale (λ), that is, ( , ) ( / , )f r f rθ λ θ′′ = , using (25) and (28), the 

QZMs of the transformed image can be obtained as 
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Theorem 2. Let 
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with 0,0( )R
f Z fΓ = . Then 2 , ( )R

m l mL f+  is invariant to scaling for any non-negative integer m and l. 

The proof is given in Appendix A. 
Corollary 1. Let f ′  be a rotated version of f with rotation angle α. It holds for any non-negative integers n and m that 

, ,( ) ( ) .R R m
n m n mL f L f e α′ = −µ−µ−µ−µ                                                                                                    (32) 

The proof of Corollary 1 is very similar to (21) and is thus omitted. 
Then, using Corollary 1, we have 
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Then, , ( )m
n k fϕ  is invariant to both image rotation and scaling for any non-negative integer n, k and m. 

The proof of Corollary 2 is very similar to that of Theorem 1 and is also omitted. 
Combining (20) and (33), the RST invariants of QZMs (QZMIs) can be obtained as follows 
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Remark 1. By using the symmetric property of R n,m (r) with m, it can be easily proven that Corollary 3 is also true for m < 0. 

4. Experimental results 

In this section, several experiments are carried out to test the invariance property of the proposed descriptors to various 
geometric transformations, and their robustness to different kinds of noises. Note that the Zernike moments are calculated 
with the modified Kintner’s method [36] and images are mapped inside the unit circle before the moment computation. 



  

A. Test of color image reconstruction capability 

For this experiment, the standard Lena and Pepper images of size 256 × 256 were used. The reconstructed images using 

(9) with different values of M are shown in Fig. 1. Let f(x, y) be the original image and ˆ ( , )f x y  be the reconstructed image, 

then the following normalized mean square error ε2 [17] is used to measure the accuracy of the reconstructed images 
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The reconstruction errors are also given in Fig. 1. The results show that the reconstructed images are very close to the original 
image. 

B. Test of invariance to RST transformations 

For the experiments presented in this subsection as well as in the subsection a), a set of thirteen images (Fig. 2) with size 
96 × 72 has been chosen from the public Amsterdam Library of Object Images (ALOI) database [37]. In order to contain the 
entire transformed image after transformation, the actual size of all the original images is 152 × 128 by adding some 
background pixels. 

To test the invariance of the proposed QZMIs with respect to RST transformations, obj1 (Fig. 2(a)) was undergone 
different geometric transformations (Fig. 3). The proposed QZMIs defined in (34) of order from 1 to 4 were calculated for 
each image (the invariant of order zero is used to achieve the scale invariance in all the methods based on Zernike moments). 
Table 1 shows the modulus of invariant values and that of σ/µ, where µ denotes the mean of invariants and σ the standard 
deviation. It can be seen from this table that excellent results have been obtained whatever the geometric transformations 
(σ/µ ≤ 1.369%). 

C. Color object recognition 

To further assess the performance of the proposed QZMIs to RST transformation and their robustness against noise, three 
object recognition procedures were conducted.  
a) Performance comparison of QZMIs and Zernike moment invariants based on RGB decomposition and graying in terms 

of recognition efficiency 
By proceeding in a similar way as that described in section 3 for color image, we can also derive the Zernike moment 

invariants with respect to RST transformation for single channel of the RGB image and the gray-scale image obtained with 
image graying. In both cases, the conventional Zernike moments are concerned. So, for image graying, a set of Zernike 
moment invariants denoted by GZMIs are extracted from the graying image of the RGB image; for RGB decomposition, 
those invariants for three channels are grouped in a whole set (denoted hereafter by DZMIs). In order to compare the 
proposed QZMIs with GZMIs and DZMIs in terms of recognition efficiency, we use almost the same number of invariants in 
the experiment: The GZMIs include 19 non-zero real-valued invariants with order from 2 to 6 (the invariants of order one 
equal zero for gray-scale image when the central moments are concerned, but this is not the case for both DZMIs and 
QZMIs). The DZMIs contain 18 real-valued invariants with order from 1 to 3. QZMIs include 20 real-valued numbers with 
order from 1 to 4. 

We used thirteen images shown in Fig. 2 as the training set. To obtain the testing set, each image was translated with ∆x = 
8, ∆y = 5 (other translation can also be chosen), rotated with angle α ∈ {0, 30,…, 300, 330}, and scaled with scaling factor λ 
∈ {0.5, 0.75,…,1.75, 2.0}, forming a set of 1092 images, and a bilinear interpolation was used when required. This was 
followed by adding a white Gaussian noise with different standard deviations and a salt-and-pepper noise with different noise 
densities. Fig. 4 shows some examples of the transformed and corrupted images.  

These three moment invariant sets are normalized according to the method presented by Suk and Flusser [7] 
1/

( )
r

p p pI sign I I= , p = 1, 2,…, n.                                                                                (36) 

where r is the number of moments in one term and n is the size of moment invariant set. Then, the minimum-Euclidean-
distance is used as the classifier. 

The recognition results of three different invariant descriptors for both noise-free and noisy cases are shown in Table 2. 
The results show that: (1) the recognition results are quite good (100%) for each method in noise-free case; (2) the 
recognition rates decrease with the noise level going up. However, the proposed QZMIs perform much better than other types 
of invariants whatever the noise and the noise level. Although some images are highly corrupted, the recognition rates of 



  

QZMIs are still better than 92%. However, this is not the case for the other two methods; (3) the worst is GZMIs. The reason 
is that graying loses some color information, which may be important in object recognition. 
b) Performance comparison  of the new rotation invariants and the Zernike moment rotation invariants presented in [31] 

To compare the new rotation invariants defined in (23) (denoted by QZMRIs) and the rotation invariants presented in our 
previous work [31] (denoted by QZMRIsICPR), fourteen images with size 128 × 128 (Fig. 5) selected from the public 
Columbia Object Image Library (COIL-100) database [38] were used as the training set. The actual size of all the original 
images is 204 × 204. Then, each image was rotated with angle varying from 0° to 350° every 5°, forming a testing set of 1008 
images. Moreover, these testing images were corrupted by a white Gaussian noise and a salt-and-pepper noise, respectively. 
A set of 20 QZMRIsICPR, whose order from 0 to 7, were used for object recognition. We used two sets of QZMRIs. The first 
one (denoted by QZMRIs21) includes 21 real-valued invariants of order from 0 to 4. The second one (denoted by QZMRIs56) 
uses the same order as that of QZMRIsICPR, thus includes 56 real-valued invariants. The same recognition procedure used in 
subsection a) is adopted.  

Table 3 shows the recognition rates of these methods. It can be seen that the proposed new invariant descriptors have 
always better performance than QZMRIsICPR. The reason is that the new method can get more real-valued invariants than our 
previous method when the same order of moments is used. When the number of moment invariants used in both methods are 
nearly the same, the new descriptors require lower order of moments, thus they are less sensitive to noise. 

c) Performance comparison of the QZMIs and the existing moment invariants 
In order to compare our QZMIs with the geometric/photometric invariants (GPIs) reported in [5] which are invariant to 

affine geometric deformations and diagonal photometric transformations invariants, the affine color moment invariants 
(ACMIs) proposed in [7] and QFMM invariants (QFMMIs) presented in [32], the nearly same number of invariants is used in 
all the methods: The 21 GPIs are the invariants described in Table 1 of Ref. [5]; The 21 ACMIs are the invariants used in [7]; 
The 24 QFMMIs are the invariants shown in (15) of Ref. [32] with order from 0 to 4 except the invariant of order 2 with 
repetition 0 which is used to achieve the scaling invariance. Our 20 QZMIs are the same as those used in subsection a). 

We also used the fourteen images shown in Fig. 5 as the training set. To obtain the testing set, each image was 
transformed with the same transformations as those presented in subsection a) except for the translation (the actual translation 
is ∆x = -11, ∆y = 9), forming a set of 1176 images. Then, to test the robustness against noise, these testing images were added 
a white Gaussian noise and a salt-and-pepper noise, respectively. The minimum-Euclidean-distance is used as classifier after 
the normalization with (36) for the four types of invariants. 

The recognition results using different moment invariants are summarized in Table 4. It can be observed from this table 
that: (1) the invariants based on quaternion moments (QZMIs and QFMMIs) are more robust against noise than those based 
on conventional moments (GPIs and ACMIs); (2) the invariants based on orthogonal Zernike moments (QZMIs) are better 
than those based on non-orthogonal moments (QFMMIs) in noisy case. It is in accordance with that reported in [19], where 
the authors pointed out that the orthogonal Zernike moments have on overall better performance than non-orthogonal ones.  

D. Template matching 

The objective of the last experiment is to verify the performance of our descriptors for real outdoor scene images after 
RST transformation. The template matching test was performed. For that purpose, two pictures (Fig. 6) were taken by digital 
camera (Panasonic DMC-FZ50) with different focus and varying position through a rotation of the camera. Then, nine 
circular areas with radius r = 11 in Fig. 6(a) were extracted as templates (numbered from 1 to 9). The scale factor between 
two images is obtained with the automatic scale selection [39]. Then, the scaled template was shifted across the other image 
(Fig. 6(b)) and in each position the normalized invariants were calculated and compared with the invariants of the original 
templates. For more detail about the matching procedure, we refer to [40]. The ‘matched position’ we consider corresponds to 
the location where the Euclidean distance d(f, g) reaches its minimum value, with f representing the template of the original 
image and g the template of the transformed image. The matching results obtained by different moment invariants are shown 
in Fig. 6(c), (d), (e) and (f). It can be observed form these figures that our QZMIs can match correctly for eight templates 
with a reasonable error (within one pixel), but the number of correctly matched templates is only three for GPIs (number 2, 5 
and 9) and for ACMIs (number 3, 4 and 9),  five for QFMMIs (number 4, 6, 7, 8 and 9). These results further validate the 
effectiveness of the proposed QZMIs.  

5. Conclusion 

In this paper, we have extended the conventional Zernike moment defined in gray-scale image to color image using the 
algebra of quaternions. The moment invariants with respect to RST transformations have been constructed. The advantages 
of the proposed QZMs and QZMIs over the existing descriptors are as follows: (1) the proposed QZMs are based on the 



  

orthogonal Zernike polynomials, thus they are more robust to noise; (2) the quaternion-type representation, treating a color 
image as a vector field, is used in the definition of moments; (3) the constructed QZMIs are quaternion-valued invariants 
instead of real-valued invariants, thus they provide more real-valued invariants.  The results obtained from both simulation 
and real data show that the proposed descriptors are more robust to noise and have more discriminative power than the 
existing methods. 
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Appendix A 

Proof of Theorem 2. Equation (31) can be written in matrix form as 

, ,

2, 2,2 4 2 2

2 , 2 ,

( ) ( )

( ) ( )
( , , , )

( ) ( )

R R
m m m m

R R
m m m mm m m m l m

l l

R R
m l m m l m

Z f Z f

Z f Z f
C diag D

Z f Z f

λ λ λ+ ++ + + +

+ +

′′   
   ′′   =
   
   
   ′′   

L
M M

.                                      (A1) 

Applying (32) to the transformed image f ′′ , it can also be written in matrix form as 
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Based on the definition of Γf , it can be easily verified that 
.f fλ′′Γ = Γ                                                                                                                       (A3) 

Substituting (A1) and (A3) into (A2), and using the identity ,m m
l lD C I=  where I is the identity matrix, we obtain 
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The proof has been completed.                                                                                                                                                      
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Reconstructed images 

Original image 
M = 150 M = 250 M = 350 

    
Reconstruction error (ε2) 0.0115 0.0066 0.0045 

    
Reconstruction error (ε2) 0.0122 0.0062 0.0042 

Fig. 1. Reconstructed images and errors with different maximum order M of moments used 
 
 
 

 
(a)                               (b)                               (c)                                (d)                               (e)                               (f)                               (g)           

 

 
(h)                                (i)                                (j)                               (k)                               (l)                               (m)  

Fig. 2. Thirteen objects selected from the Amsterdam Library of Object Images database 
 
 
 

 
(a) original 

image 

 

(b) ∆x = 
8, ∆y = 
5, λ = 

0.5, θ = 
300 

 
(c) ∆x = 8, ∆y 
= 5, λ = 0.75, 
θ = 600 

 
(d) ∆x = 8, ∆y = 
5, λ = 1.0, θ = 

900 

 
(e) ∆x = 8, ∆y = 5, 
λ = 1.25, θ = 1200 

 
(f) ∆x = -5, ∆y = -8, λ = 

1.5, θ = 1500 

 
(g) ∆x = -5, ∆y = -8, λ = 1.75, 

θ = 1800 

 
(h) ∆x = -5, ∆y = -8, λ = 2.0, θ = 

2100 

Fig. 3. Geometric transformed images of Fig. 2(a) (∆x is the translation (in pixel) along the x-
axis, ∆y the translation along the y-axis, λ the scaling factor, θ the rotation angle) 

 



  

 
Gaussian noise Salt-and-pepper noise 

 
δ = 1 

 
δ = 2 

 
δ = 3 

 
p = 0.2% 

 
p = 0.4% 

 
p = 0.6% 

Fig. 4. Examples of image with different geometric transformations and varying noise (δ is the STD of Gaussian noise, p is the density of salt-
and-pepper noise) 

 
 
 

 
(a)                   (b)                    (c)                   (d)                   (e)                    (f)                    (g) 

 
(h)                   (i)                     (j)                    (k)                    (l)                   (m)                   (n) 

Fig. 5. Fourteen objects selected from the Columbia University Image Library database 
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Fig. 6. Images of the outdoor scene. (a) and (b) are the original image and the transformed image, (c), 
(d), (e) and (f) are the matched templates using GPIs, ACMIs, QFMMIs and QZMIs, respectively 

 



  

 
Table 1. Modulus of QZMIs of images shown in Fig. 3 

 Fig.3(a) Fig.3(b) Fig.3(c) Fig.3(d) Fig.3(e) Fig.3(f) Fig.3(g) Fig.3(h) σ /µ (%) 
1
1,1ϕ  1.294e-05 1.297e-05 1.287e-05 1.294e-05 1.294e-05 1.293e-05 1.292e-05 1.291e-05 0.226 

0
2,0ϕ  5.174 5.174 5.174 5.174 5.174 5.174 5.174 5.174 0.00 

2
2,2ϕ  1.590e-06 1.589e-06 1.592e-06 1.590e-06 1.563e-06 1.589e-06 1.594e-06 1.591e-06 0.626 

1
3,1ϕ  5.142e-05 5.155e-05 5.114e-05 5.142e-05 5.141e-05 5.140e-05 5.134e-05 5.132e-05 0.228 

3
3,3ϕ  9.627e-10 9.735e-10 9.545e-10 9.627e-10 9.290e-10 9.650e-10 9.619e-10 9.610e-10 1.369 

0
4,0ϕ  8.552 8.552 8.552 8.552 8.552 8.552 8.552 8.552 0.00 

2
4,2ϕ  7.884e-06 7.875e-06 7.894e-06 7.884e-06 7.747e-06 7.877e-06 7.903e-06 7.886e-06 0.635 

4
4,4ϕ  7.513e-11 7.524e-11 7.540e-11 7.513e-11 7.569e-11 7.535e-11 7.524e-11 7.504e-11 0.272 

 
 
 

Table 2. Recognition rates (%) of different Zernike moment invariants in object recognition with RST transformation and noise 
 GZMIs DZMIs QZMIs 

Noise-free 100.00 100.00 100.00 
Gaussian noise with STD = 1 69.05 100.00 100.00 
Gaussian noise with STD = 2 48.08 90.66 92.31 
Gaussian noise with STD = 3 38.46 75.27 92.03 

Salt-and-pepper noise with noise density = 0.2% 83.97 94.05 96.61 
Salt-and-pepper noise with noise density = 0.4% 52.47 84.62 94.87 
Salt-and-pepper noise with noise density = 0.6% 44.51 77.47 92.86 

Average rate 62.36 88.87 95.53 
 
 
 

Table 3. Recognition rates (%) of different Zernike moment invariants in object recognition with rotation and noise 
 QZMRIsICPR QZMRIs21 QZMRIs56 

Noise-free 100.00 100.00 100.00 
Gaussian noise with STD = 40 90.28 99.80 99.90 
Gaussian noise with STD = 50 73.41 98.71 99.21 
Gaussian noise with STD = 60 51.49 95.54 97.32 

Salt-and-pepper noise with noise density = 5% 98.91 100.00 100.00 
Salt-and-pepper noise with noise density = 10% 72.02 96.53 96.83 
Salt-and-pepper noise with noise density = 15% 49.90 89.19 90.67 

Average rate 76.57 97.11 97.70 
 
 
 

Table 4. Recognition rates (%) of different moment invariants in object recognition with RST transformation and noise 
 GPIs ACMIs QFMMIs QZMIs 

Noise-free 100.00 100.00 100.00 100.00 
Gaussian noise with STD = 5 86.22 99.91 100.00 100.00 
Gaussian noise with STD = 7 64.71 92.52 96.60 100.00 
Gaussian noise with STD = 9 50.00 87.16 89.63 96.26 

Salt-and-pepper noise with noise density = 1% 94.56 97.70 98.64 99.91 
Salt-and-pepper noise with noise density = 2% 84.10 86.56 88.95 92.77 
Salt-and-pepper noise with noise density = 3% 68.54 72.79 75.85 84.35 

Average rate 78.30 90.95 92.81 96.18 

 


