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Abstract

Aurora kinases belong to a conserved family of serine/threonine kinases key regulators of cell cycle progression. Aurora-A
and Aurora-B are expressed in somatic cells and involved mainly in mitosis while Aurora-C is expressed during
spermatogenesis and oogenesis and is involved in meiosis. Aurora-C is hardly detectable in normal somatic cells. However
all three kinases are overexpressed in many cancer lines. Aurora-A possesses an oncogenic activity while Aurora-B does not.
Here we investigated whether Aurora-C possesses such an oncogenic activity. We report that overexpression of Aurora-C
induces abnormal cell division resulting in centrosome amplification and multinucleation in both transiently transfected
cells and in stable cell lines. Only stable NIH3T3 cell clones overexpressing active Aurora-C formed foci of colonies when
grown on soft agar, indicating that a gain of Aurora-C activity is sufficient to transform cells. Furthermore, we reported that
NIH-3T3 stable cell lines overexpressing Aurora-C induced tumour formation when injected into nude mice, demonstrating
the oncogenic activity of enzymatically active Aurora kinase C. Interestingly enough tumor aggressiveness was positively
correlated with the quantity of active kinase, making Aurora-C a potential anti-cancer therapeutic target.
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Introduction

Aurora kinases belong to a conserved family of serine/threonine

kinases that are pivotal to the successful execution of cell division.

Three Aurora kinases (Aurora-A, -B, and –C), which share sequence

homology in their central catalytic kinase domains, have been

identified in mammals [1]. Yeast genome encodes only one member-

IpL1 of this kinase family, but there are two members of this family

in Drosophila. The three members of the mammalian family, besides

being implicated as mitotic regulators, have generated significant

interest in the cancer research field due to their elevated expression

profiles detected in many human cancers [2–5].

Aurora-A is ubiquitously expressed especially in tissues with

high mitotic and meiotic index. Aurora-A mRNA, protein

expression levels and kinase activity are cell cycle regulated, low

in G1/S phase, peaking in G2/M and then dropping upon mitotic

exit into the next G1 [6,7]. Aurora-A displays dynamic subcellular

localization: from duplicated centrosomes at the end of S phase to

mitotic spindle poles from prophase through telophase. Activation

of centrosomal Aurora-A at late G2 phase is essential for

centrosome maturation and mitotic entry. Its further activation

are required for centrosome separation, leading to subsequent

bipolar spindle formation and chromosomal alignment. Aurora-A

is found overexpressed in a large number of tumours [8–16].

Aurora-A is an oncogene. It induces tumour formation when

NIH-3T3 or Rat1 cells overexpressing Aurora-A are injected in

nude mice [11–13,17–18].

Aurora-B expression peaks at G2/M phase and the maximum

kinase activity is reached at transition during metaphase to

anaphase [19]. Aurora-B is responsible for histone H3 phosphor-

ylation on both Ser-10 and Ser-28 during mitosis [6,20]. Aurora-B

is also required to correct syntelic attachments of chromosomes [7]

and is essential for cytokinesis.

Unlike Aurora-A and -B, which are ubiquitously expressed in

many tissues, particularly in mitotically dividing cells, Aurora-C is

predominantly expressed in the testis [21,22] and in meiotically

dividing gametes where it is associated with INCENP in

spermatocytes [23,24]. Aurora-C is, however, found at a low level

in other tissues [25]. Aurora-C directly competes with Aurora-B

for binding to INCENP and survivin [5,26]. Overexpression of

Aurora-C in cancerous tissues and cell lines also raises questions

about its potential role in carcinogenesis and its effect on the

proliferative capacity of tumour cells [27,28].

Here we asked whether Aurora kinase C has any oncogene

activity. We found that Aurora kinase C causes both centrosome

amplification and multinucleation and also has the capability to

transform NIH-3T3 cells when overexpressed. Furthermore, we

show that NIH-3T3 cells overexpressing Aurora kinase C promote

tumour formation when injected into nude mice. Hence, we

provide evidence that Aurora-C is a proto-oncogene.
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Results

We address the issue of the implication of Aurora-C (aurC) in

cancer. Our goal was to determine if Aurora-C was an oncogene

when overexpressed in somatic cells. To achieve that purpose, we

overexpressed human Aurora-C tagged with GFP in mouse NIH-

3T3 cells. We studied in these cells ploidy and centrosome

number, the capability of transformation when grown in soft agar,

and the induction of tumour when injected into immunocompro-

mised mice.

GFP-AuroraC-wild type and GFP-AuroraC-T191D are
active kinase

We transiently transfected NIH-3T3 cells with GFP-aurC-WT

(wild type), GFP-aurC-CA (constitutively active, T191D), GFP-

aurC-KD (kinase dead, K72R) and GFP-alone (negative control

vector) plasmids. We controlled the expression of GFP-aurC

proteins 24 hours after transfection by Western blot with two

different antibodies, anti-GFP and anti-Aurora-C (Figure 1A, B
). We clearly identified GFP-aurC in GFP-aurC-WT, GFP-aurC-

CA and GFP-aurC-KD at 65KDa with anti-GFP and anti-

Aurora-C antibodies. This band was not present in GFP-alone

samples. The blot with anti-GFP showed a non-specific band at

about 56 KDa and the blot with polyclonal anti-aurC antibody

showed also a non-specific band of 26 KDa. We never detected

any endogenous Aurora-C in NIH-3T3 cells by Western blot. Like

other Aurora kinases, Aurora kinase C phosphorylates Histone H3

at serine-10 [26,29–32]. In vitro kinase assays using histone H3 as a

substrate confirmed the activity of immunoprecipitated GFP-

aurC-WT and GFP-aurC-CA, and the inactivity of GFP-aurC-

KD and GFP-alone proteins (data not shown).

We also generated stable cell lines with GFP-aurC-WT, GFP-

aurC-CA, GFP-aurC-KD and GFP-alone. We checked the level of

expression of GFP-aurC and GFP-alone proteins in all stable cell

clones with anti-GFP antibody (Figure 1 C, D).
We checked in vivo kinase activity of GFP-aurC-WT, GFP-

aurC-CA, GFP-aurC-KD and GFP-alone in stable cell lines and

quantified the level of phosphorylation of Histone H3 by im-

munofluorescence relative to mitotic cells. Intensity of phosphor-

ylation of Histone H3-serine-10 was found two fold higher with

GFP-aurC-WT or GFP-aurC-CA compared to GFP-aurC-KD or

GFP-alone (Figure 1E, F).
We concluded that GFP-AurC-WT and GFP-aurC-CA were

active kinases in vivo while GFP-aurC-KD was inactive.

Overexpressed GFP-Aurora kinase C localizes like a
chromosomal passenger protein

We first checked by immunofluorescence whether the GFP tag

perturbed the localization of overexpressed Aurora-C along the cell

cycle. As already reported AurC localizes at centrosome in G2, on

chromosomes from prophase to metaphase and at the midbody

from anaphase to telophase [33]. As expected we found GFP-aurC-

WT, GFP-aurC-CA and GFP-aurC-KD localized on duplicated

centrosomes in G2 phase, like Aurora-A (Figure 2A and data not

shown) where it may interfere with Aurora-A functions as expected

[19] [33]. Overexpression of GFP-AurC (GFP-aurC-WT, GFP-

aurC-CA and GFP-aurC-KD) does not displace endogenous

Aurora-A out of the centrosomes (Figure 3E–H).

During mitosis, GFP-aurC-WT, GFP-aurC-CA and GFP-aurC-

KD localized at kinetochores of the chromosomes during prophase

and metaphase. They relocalized at the midzone of spindles

during anaphase and at the midbody during telophase

(Figure 2B–F and data not shown). The GFP tag does not

perturb the localization of overexpressed Aurora-C. All three

forms of GFP-aurC (WT, CA and KD) are localized as expected.

Overexpression of active GFP-AurC (GFP-aurC-WT and GFP-

aurC-CA) displaces endogenous Aurora-B (Figure 3A–D) and

decreases Aurora-B protein level. Overexpression of GFP-AurC-

KD does not displace endogenous Aurora-B. Thus, overexpressed

Aurora-C is a mitotic chromosome passenger protein that behaves

like Aurora-B and may interfere with its functions during mitosis

[5,26,33].

Overexpression of active Aurora-C induces mitotic
defects: centrosome amplification and multinucleation

We used gamma-tubulin staining, a centrosomal marker, to

assess centrosome number, and DNA staining to assess multi-

nucleation (more than one nucleus per cell) by immunofluores-

cence. The percentage of cells with more than 2 centrosomes per

cell expressing GFP-aurC-WT or GFP-aurC-CA was 5 times

higher compared to GFP-aurC-KD or GFP-alone in transiently

transfected NIH-3T3 cells (Figure 4A, B, E, F), in NIH-3T3

stable cell lines (data not shown) and in NIH-3T3 cells with similar

vectors lacking GFP-fusion protein (data not shown). We also

found that the percentage of multinucleated cells was 5 times

higher with GFP-aurC-WT or GFP-aurC-CA compared to GFP-

aurC-KD or GFP-alone in transiently transfected NIH-3T3 cells

(Figure 4C–E, G) and in the stable cell lines (data not shown).

We finally extracted nuclei from GFP-aurC-WT, GFP-aurC-CA,

GFP-aurC-KD and GFP-alone cells (n = 4 each). These nuclei

were stained with propidium iodide and analysed by flow

cytometry as in [34]. We confirmed that the multinucleation

phenotype was really an increase in nucleus number per cell rather

than just multilobular nuclei (data not shown). All multinucleated

cells exhibited centrosome amplification. We also observed

aberrant mitotic structures such as lagging chromosomes and

DNA strands between dividing cells in cells overexpressing GFP-

aurC-WT or GFP-aurC-CA (data not shown). Taken together, our

results demonstrate that the overexpression of active Aurora kinase

C induces centrosome amplification and polyploidy, defects

frequently observed in cancers cells.

Transformation of NIH-3T3 cells is correlated to the
quantity of active kinase GFP-Aurora-C

Only transformed cells can grow on semi-liquid materials, like

soft agar, as they lose the property of cell-to-cell contact inhibition

and can grow over one another forming colonies. Overexpression

of Aurora-A induces cell transformation [35,36] while overex-

pression of Aurora-B cannot form colonies on soft agar [37].

Overexpressed Aurora-C behaves like Aurora-A in interphase and

like Aurora-B in mitosis, does it posses any oncogenic activity? We

assessed the potential of transformation of Aurora-C in soft agar

assay using GFP-aurC-WT (n = 9), GFP-aurC-CA (n = 9), GFP-

aurC-KD (n = 4) and GFP-alone (n = 4) NIH-3T3 stable cell

clones (Figure 5A, B). All the clones of GFP-aurC-WT or GFP-

aurC-CA formed a large number of colonies. Similar results were

obtained with GFP-aurA stable cell line used as a positive control

for soft agar growth [18]. In contrast, stable cell clones of GFP-

aurC-KD or GFP-alone formed negligible number of very small

colonies. Interestingly, the higher the level of expression of active

Aurora-C, the higher the colonies numbers it was (Figure 5C).

To test whether NIH-3T3 cells overexpressing GFP-aurC were

able to induce neoplastic transformation in vivo, clones overex-

pressing GFP-aurC-WT (n = 8), GFP-aurC-CA (n = 8), GFP-

aurC-KD (n = 4), and GFP-alone (n = 4) were injected subcutane-

ously into immuno-compromised Swiss nu/nu mice (Figure 4D,
E). We observed that only the cells overexpressing GFP-aurC-

Aurora-C and Tumour
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Figure 1. Expression and activity of GFP-Aurora-C in transiently transfected cells and in stable cell lines. (A–B) NIH-3T3 cells were
transfected with GFP-aurC-WT (Aurora-C-wild type), GFP-aurC-CA (Aurora-C-T191D, constitutively active), GFP-aurC-KD (Aurora-C-K72R, kinase dead)
and GFP-alone plasmids. Proteins were extracted 24 hours after transfection and immunoprecipitated with mouse anti-GFP (A) and polyclonal rabbit
anti-Aurora-C (B) antibodies. Western blots were revealed using (A) mouse Anti-GFP antibody and (B) polyclonal rabbit Anti-Aurora-C antibody and
showed level of expression of GFP-aurC at about 65 kDa and GFP-alone at 29 kDa. (C–D) Western blots showed the level of expression of GFP-aurC
protein in stable NIH-3T3 clones of GFP-aurC-KD (KD1 to KD3), GFP-aurC-CA (CA1 to CA4), GFP-aurC-WT (WT1 to WT3) and GFP-alone (GFP1 to GFP3)
illustrating the different level of expression of GFP-aurC and GFP proteins by different clones. The antibodies were (C) mouse anti-GFP and (D) anti-b
tubulin antibody for loading control. (E) Immunofluorescence was performed on stable cell clones overexpressing GFP-aurC-WT, GFP-aurC-CA, GFP-
aurC-KD and GFP-alone plasmids. Cells were stained with rabbit anti-phospho histone H3 ser-10 then anti-rabbit Alexa-555 and DAPI. The left column
shows DAPI stained cells and the right column shows phosphorylated Histone-H3 ser-10 cells. (F) Histogram shows the ratio of H3-staining intensity
(arbitrary unit from ImageJ) over GFP intensity in metaphase cells. A minimum of 300 cells were counted for each condition. We performed non-
parametric Mann-Whitney test. Results were considered as statistically significant (*) for a p-value under 0.05 when compared to GFP-alone(*)
condition.
doi:10.1371/journal.pone.0026512.g001

Aurora-C and Tumour
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WT, GFP-aurC-CA or aurC-WT gave rise to tumour formation

within 30 days (Figure 4E and data not shown for aurC-WT).

We never observed tumour with NIH3T3 cells overexpressing

GFP-aurC-KD or GFP-alone. Here again, we were able to

correlate tumour aggressiveness to high level of expression of

active Aurora-C (Figure 4F). These data are concordant with

previous report showing that Aurora-C protein overexpression in

cells derived from thyroid cancers correlated with the aggressive-

ness of the tumours [38].

We further analysed semi-quantitatively the proliferation status of

the tumours obtained from GFP-aurC-WT and GFP-aurC-CA

overexpressing cell lines. More than 50% and 40% of cells from

respectively GFP-aurC-CA and GFP-aurC-WT tumours were positive

for Ki-67 antigen, a marker of cycling cells, compared to less than 2%

of GFP-aurC-KD and GFP-alone injected cells (Figure 5G). More

than 10% of cells overexpressing GFP-aurC-WT or GFP-aurC-CA

were positive for histone H3-Serine10 phosphorylation, a M-phase

marker, compared to less than 1% of cells overexpressing GFP-aurC-

KD and GFP-alone (Figure 5H). We found more than 90% of

abnormal metaphase and more than 85% of both lagging chromo-

somes and cytokinesis defects in Feulgen staining of tumours induced

by GFP-aurC-WT or GFP-aurC-CA (Figure 5I). No such types of

defects were observed in cells overexpressing GFP-aurC-KD or GFP-

alone. Thus, the histological analysis of these tumours confirmed high

proliferation rate and defects in mitosis of both GFP-aurC-WT and

GFP-aurC-CA induced-tumors.

We concluded that only active GFP-aurC is oncogenic and

induces tumour when it is overexpressed.

Discussion

An overexpression of the three kinases of Aurora family has

been detected in many human cancers [2–5]. In this report, we ask

whether Aurora-C overexpression can result in cell transformation

and tumour formation. We compared the potential to induce cell

growth in soft agar and tumor of stable cell lines overexpressing

GFP-aurC-WT, GFP-AurC-K72R (GFP-aurC-KD expressing

kinase dead GFP-tagged aurC), GFP-aurC-T191D (GFP-aurC-

CA expressing the constitutively active GFP-tagged aurC) and

GFP as a control.

Aurora-C-K72R kinase dead
In our hand, kinase dead mutant-K72R (GFP-AurC-KD or

AurC-KD) did not induce centrosome amplification nor multi-

nucleation in NIH-3T3 cells on the contrary to previous published

data in other cell types [5,27,33,39,40]. Overexpression of GFP-

AurC-KD did not displace either Aurora-B at centromeres

(Figure 3). Taken together, our results suggest that Aurora-C

kinase dead did not compete with endogenous Aurora-A or

Aurora-B.

Multinucleation and extra-centrosomes
We demonstrated that the overexpression of active Aurora

kinase C induces centrosome amplification and multinucleation.

All Aurora kinases are required for cell cycle regulation. Abnormal

expression of Aurora kinases causes extra-centrosomes and

multinucleation [5,17–18,26,33,36,41,53]. Inhibition or overex-

pression of Aurora-B results also in multinucleation [41–43]. Both

Aurora-A and Aurora-B overexpression phenotypes are aggravat-

ed in the absence of active p53 [33,41]. An elimination of the p53-

dependent checkpoint may be evoked [44] to explain centrosome

amplification and multinucleation induced by Aurora-C. More-

over, overexpressed Aurora-C kinase behaves like a dominant

negative kinase for Aurora-B leading to cytokinesis defect that

could explain the multinucleation phenotype observed in Aurora-

C overexpressing cells [33].

Aurora-C-T191D causes very aggressive tumors
It was reported that Aurora-C-T191D is a hyperactive mutant

with a relative activity seven fold higher than the activity of

Figure 2. Subcellular localization of GFP-Aurora C along cell
cycle. Immunofluorescence was performed on stable cell clones
overexpressing GFP-aurC-WT, GFP-aurC-CA, GFP-aurC-KD and GFP-
alone plasmids. Cells were stained with DAPI, anti-GFP and anti-
gamma-tubulin antibodies. The immunoflorescent microscopy images
show the localization of (A-F) GFP-aurC-WT and (G-I) GFP-alone.
Localization of GFP-aurC-WT at (A) centrosome in G2 phase, (B)
chromosomes/centromeres in prophase, (C) chromosomes in prometa-
phase, (D) chromosomes in metaphase, (E) the midzone of spindles in
anaphase, (F) midbody in telophase. (G-I) Localization of GFP-alone in
(G) metaphase, (H) anaphase, and (I) telophase. The original
magnification used was 636.
doi:10.1371/journal.pone.0026512.g002

Aurora-C and Tumour
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Figure 3. Localization of endogenous Aurora-A and Aurora-B in cell line overexpressing GFP-aurC. Immunofluorescence was performed
on stable cell clones overexpressing GFP-aurC-WT, GFP-aurC-CA, GFP-aurC-KD and GFP-alone plasmids. Cells were stained with DAPI, anti-GFP, and
anti-Aurora-B antibodies (A-D) or anti-Aurora-A antibodies (E-H). The immunoflorescent microscopy images show also the localization of (A, E) GFP-
aurC-WT, (B, F) GFP-aurC-CA, (C, G) GFP-aurC-KD and (D, H) GFP-alone during metaphase (A-D) or interphase (E-F). The original magnification used
was 636.
doi:10.1371/journal.pone.0026512.g003

Aurora-C and Tumour
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Aurora-C-WT [25,45]. In our hand in NIH-3T3 cells, GFP-aurC-

T191D was constitutively active (GFP-AurC-CA) and its relative

activity was very close to that of GFP-aurC-WT based on in vitro

kinase assay (data not shown) and in vivo Histone H3 phosphor-

ylation (Figure 1E,F). The amplitude of centrosome amplifica-

tion and multinucleation was similar with GFP-aurC-WT and

GFP-aurC-CA (Figure 2). In case of growth in soft agar and

mouse tumour growth, however, clones from GFP-aurC-CA

induced very aggressive tumours as compared to GFP-aurC-WT

clones (Figure 5A–E). These data underline that the intensity of

kinase activity correlates with the aggressiveness of the tumours.

That concept is worthy to be validated in human cancer, although

a correlation has already been observed in thyroid cancers [38].

Direct implication of Aurora-C in oncogenesis
Although all Aurora kinases are found overexpressed in cancer

cells, their direct implication in oncogenesis varies. What would be

the main difference between Aurora-B and Aurora-C that could

explain the oncogenicity of Aurora-C? This might be linked to the

different behaviour in interphase. In G2 phase cells, Aurora-B is

found only in the nucleus whereas Aurora-C is cytoplasmic

[33,46]. During interphase Aurora-C localizes to the centrosomes

just like Aurora-A, both of them demonstrating oncogenic

potentials. Moreover, centrosome amplification, a common

feature of Aurora-A and Aurora-C overexpression, is a frequent

event in almost all types of solid cancers [47–52,53]. Interestingly,

the kinase activity of Aurora-A is not essential for induction of

centrosome amplification, however, the oncogenic transformation

requires kinase activity. Aurora-B by itself cannot induce

transformation of cells but augments Ras-mediated transformation

[37]. Aurora-B and -C have overlapping functions and compete

each other for their substrates and other chromosome passenger

proteins [5]. INCENP and Survivin have stronger affinity for

Aurora-B than for Aurora-C [5] but interestingly Aurora-C can

complement the functions of Aurora-B in mitotic cells. Whether

the oncogenic activity of Aurora-C is related to its interphase

function (Aurora-A like) or to its mitotic function related to its

chromosome passenger behaviour (Aurora-B like) remains to be

deciphered.

Two sequences in Aurora-A mediate its degradation at the end

of mitosis: the destruction box (D-box at the carboxy-terminal

domain) and the D-box activating domain (DAD, or A-box, at the

amino-terminal domain). It is known that the A-box/DAD is

absent from Aurora B and C, and their D-boxes are not targeted

by the APC/C during mitotic exit [55]. Moreover, Aurora kinase-

C is less susceptible than Aurora-B to degradation after anaphase

by APC/Cdh1-mediated degradation [56]. The half-life of Aurora

kinase-C needs to be deciphered throughout the cell cycle and the

role of D-box should be adressed. According to Ulisse et al, the D-

box present in the catalytic domain of Aurora-C may normalize

the amount of protein in vivo [38].

It is likely that the presence of Aurora-C at the centrosome

results in its oncogenic activity. We think, however, that the lack of

A-box/DAD is not sole agent to be responsible for oncogenicity.

Figure 4. Centrosome number and multinucleation. NIH-3T3 cells
were transfected with (A, C) GFP-aurC-WT, (B, D) GFP-aurC-CA and (E)
GFP-aurC-KD vectors, fixed after 96 hours and stained with DAPI and
Anti-c tubulin antibody. (A-B) More than two centrosomes/cell
appeared as white dots with anti-c tubulin staining in (A) GFP-aurC-
WT and (B) GFP-aurC-CA transfected cells. (C-D) Multinucleation (more
than one nucleus/cell) in (C) GFP-aurC-WT and (D) GFP-aurC-CA in
transfected cells. (E) Two centrosomes per cell and only one nucleus/

cell in G2 phase of GFP-aurC-KD transfected cells. (F) Histogram shows
the percentage of cells with more than 2 centrosomes/cell of 96 hours
GFP-aurC-WT, GFP-aurC-CA, GFP-aurC-KD and GFP-alone transfected
cells. (G) Histogram shows the percentages of multinucleated cells of
96 hours GFP-aurC-WT, GFP-aurC-CA, GFP-aurC-KD and GFP-alone
transfected cells. A minimum of 600 cells was counted for each
condition. We performed non-parametric Mann-Whitney test. Results
were considered as statistically significant (*) for a p-value under 0.05
when compared to GFP-alone condition.
doi:10.1371/journal.pone.0026512.g004

Aurora-C and Tumour
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Figure 5. Cell growth in soft agar and tumour formation correlated with the quantity of active Aurora-C. (A-C) Stable cell clones of
GFP-aurC-WT (n = 9), GFP-aurC-CA (n = 9), GFP-aurC-KD (n = 4), GFP-alone (n = 4) and GFP-AurA (n = 2) were tested in a soft agar growth assay. (A) Foci
of colonies of GFP-aurC-WT, GFP-aurC-CA and GFP-aurA stable cell lines and very negligible number of very small colonies of GFP-aurC-KD and GFP-
alone cell lines. (B) Histogram of the average number of colonies. We performed non-parametric Mann-Whitney test. Results were considered as
statistically significant (*) for a p-value under 0.05 when compared to GFP-alone condition. (C) The dot blot shows a positive correlation between
protein expression level of GFP-aurC-WT and GFP-aurC-CA, quantified for each clone on immunoblot by ImageJ, and the number of colonies in soft

Aurora-C and Tumour
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Indeed, Aurora-A that has an active A-box/DAD domain is also

an oncogene.

In conclusion, we show that overexpression of Aurora-C in

somatic cells has an oncogenic potential that is dependent on its

kinase activity. We also show that tumour aggressiveness is

positively correlated to the quantity of active Aurora-C kinase.

Together all these data makes Aurora-C kinase a novel excellent

target of anticancer therapy.

Comment
While we were preparing this manuscript, an article demonstrating that

AURKC enhances the transformation and tumourigenicity of epithelial cells

was published [54]. Our results are in total agreement with these data. Taken

together, our data and that article reinforce the active role of Aurora-C in

tumourigenity, and place Aurora-C as a potential target of cancer therapies.

Materials and Methods

Vectors
Human Aurora-C cDNA was obtained from pET21b-Aurora-C

(Dutertre et al., 2005) and inserted into peEGFP-C3 plasmid

(Clontech). This vector was called GFP-aurC-WT. The GFP-

AurC-K72R (GFP-aurC-KD expressing kinase dead GFP-tagged

aurC) and GFP-aurC-T191D (GFP-aurC-CA expressing the

constitutively active GFP-tagged aurC) vectors were obtained by

PCR site directed mutagenesis (Quick change site-directed

mutagenesis kit, Stratagene) using GFP-aurC-WT plasmid as a

template. The GFP-alone empty vector pEGFP-C3 was used as a

negative control.

Cell lines and transfection
NIH-3T3 cells (ATCC) were grown in Dulbecco’s Modified-

Eagle Medium (GIBCO) containing 10% fetal bovine serum

(PAA) and 1% Penstrep (GIBCO). Cells were transfected in Jet

Prime buffers (Polyplus) with GFP-aurC-WT, GFP-aurC-CA,

GFP-aurC-KD and GFP-alone plasmids following manufacturer’s

instructions. For stable NIH-3T3 cell line establishment, 800 mg/

ml Geneticin G-418 was added in culture media for 14 days,

clones were selected and kept in 800 mg/ml Geneticin G-418.

Western blotting
Proteins were extracted in RIPA buffer containing protease

inhibitor cocktail (Roche). Western blots were run into 10% SDS

PAGE gels, transferred and revealed using mouse Anti-GFP

antibody (#1814460, 1:1000, Sigma), polyclonal rabbit Anti-

Aurora-C antibody (#38-9400, 1:250, Zymed), and anti-beta

tubulin antibody (T-4026-Sigma). In some experiments as stated in

the figure legends, proteins extracts were immunoprecipitated with

G-sepharose and mouse anti-GFP or polyclonal rabbit anti-

Aurora-C antibodies according to manufacturer’s procedure.

Expression of Aurora-C protein were measured for anti-GFP

western blot and analysed by ImageJ software.

Immunofluorescence
Cells were fixed in cold methanol for 10 minutes at 220uC,

washed and saturated with 1%BSA TBS. Primary antibodies in

1%BSA TBS were added on the cells (mouse anti-gamma tubulin,

#GTU-88- T6557, 1:2500, Sigma; rabbit anti-phospho histone

H3 ser-10- #06570, 1:1000, Millipore; rabbit anti-GFP-

#632375, 1:2000, Clontech) for 2 hours at 4uC, washed and

incubated with secondary antibodies (anti-mouse Alexa-555,

1:1000; anti-rabbit Alexa-555, 1:1000; anti-rabbit Alexa-488,

1:1000, Invitrogen) for 1 hour at room temperature, washed and

mounted in Prolong-Gold (Invitrogen) containing DAPI, a DNA

staining dye. Images were collected using Leica DMRXA2

fluorescent microscope. Photographs were taken using a black

and white cool snap ES camera (Roper Scientific). Images were

processed using Metamorph Software (Universal Imaging) and

ImageJ for quantification of H3 staining intensity. All the images

have been taken for quantitative analysis in ImageJ with the same

settings for image acquisition (intensity, exposure time, magnifi-

cation).

Soft Agar Assay
Stable cell clones of GFP-aurC-WT (n = 9), GFP-aurC-CA

(n = 9), GFP-aurC-KD (n = 4), GFP-alone (n = 4) and GFP-AurA

(n = 2) were tested in a soft agar growth assay. Ten thousands

cells/well in a 6-well plate in triplicate were grown in 2 ml top

agar containing 26DMEM media, 20% fetal bovine serum and

1% agarose. Geneticin-G-418 was added 24 hours after seeding.

Media were changed twice a week. Thirty days after seeding, well

plates were stained with 0.005% crystal violet dye and the

numbers of colonies were counted.

Ethics
Experiments with mice were conducted in accordance with

University of Rennes 1 and French Ministère de l’Enseignement

Supérieur et de la Recherche authorization (agreement #5346 to

C. Prigent) and guidelines from the ‘‘Direction Départementale

des services Vétérinaires d’ Ille et Vilaine’’.

Tumour growth
Female immunocompromized mice (SWISS, nu/nu) of 3 weeks

of age were housed in microisolator units under controlled

humidity and temperature. They were fed with sterile diet and

water. Stable cell clones were stained overnight with 10 mg/ml

DilC18(3) (FluoProbes) prior to injection. Seven millions cells of

each clone were injected subcutaneously in the abdomen. We

injected GFP-aurC-WT (n = 8 clones), GFP-aurC-CA (n = 8),

GFP-aurC-KD (n = 4), and GFP-alone (n = 4) cell lines. Each

mouse was injected with two different clones, one on each side of

the abdomen. Tumour sizes were monitored every 10 days by

direct measurement with vernier caliper and, on the day of

sacrifice, using Kodak image station 2000 by an excitation of

535 nm that detected cells stained with DilC18(3). Tumour

agar. Full line and dotted line are linear regression for GFP-AurC-CA and GFP-AurC-WT respectively. The label of the cell lines are named after in
Figure 1C. (D–I) Female immunocompromized mice (SWISS, nu/nu) were injected subcutaneously in the abdomen. We injected GFP-aurC-WT (n = 8
clones), GFP-aurC-CA (n = 8), GFP-aurC-KD (n = 4), and GFP-alone (n = 4) cell lines. (D) Visualization of the tumours formed by injecting GFP-aurC-WT
and GFP-aurC-CA stable cell lines, and the remaining injected cells of GFP-aurC-KD and GFP-alone on the day of sacrifice. For these images, the cell
line injected were WT3, CA2, KD2 and GFP2 cell lines as named in Figure 1C. (E) The graph indicates an appearance and a gradual increase of tumour
volume with GFP-aurC-WT and GFP-aurC-CA cell lines and no tumour formation in GFP-aurC-KD and GFP-alone cell lines. (F) The dot blot shows a
positive correlation between expression level of GFP-aurC-WT and GFP-aurC-CA, quantified for each clone on immunoblot by ImageJ, and the tumour
volume at day 30. Full line and dotted line are linear regression for GFP-AurC-CA and GFP-AurC-WT respectively. (G–I) Immunohistochemistry was
performed on frozen sections of tumours or remaining injected cells with (G) rabbit monoclonal KI-67, a proliferation marker from late G1 to M-phase
and (H) anti-phospho histone-H3 ser-10 and anti-HRP secondary antibodies, and (I) Feulgen staining.
doi:10.1371/journal.pone.0026512.g005
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volumes were calculated according to the formula, LxWxHxp/6.

Mice were sacrificed when tumours reached a size of about 1 cm

or after 7–8 weeks of monitoring. Tumours were removed,

immediately frozen in liquid nitrogen and then stored at 280uC
for further analyses.

Immunohistochemistry
Ten micrometers thick frozen sections of tumours or remaining

injected cells were cut on a cryostat (Leica, Milton Keynes, UK)

and mounted onto uncoated glass slides. Immuno-histochemistry

was performed with rabbit monoclonal KI-67, a proliferation

marker from late G1 to M-phase (1:200, Epitomics, clone SP6)

and anti-phospho histone-H3 ser-10 (Millipore) and anti-HRP

(Jackson) secondary antibodies. We also performed Feulgen

staining.

Statistics
We performed non-parametric Mann-Whitney test. Results

were considered as statistically significant (*) for a p-value under

0.05 when compared to GFP-alone condition.
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