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ABSTRACT  

To date, glioblastoma treatments have only been palliative. In this context, 

locoregional drug delivery strategies, which allow for blood-brain barrier bypass and reduced 

systemic toxicity, are of major significance. Recent progress in nanotechnology has led to the 

development of colloidal carriers of radiopharmaceutics, such as lipid nanocapsules loaded 

with rhenium-188 (LNC
188

Re-SSS) that are implanted in the brain. In our study, we 

demonstrated that fractionated internal radiation using LNC
188

Re-SSS triggered remarkable 

survival responses in a rat orthotopic glioma model (cure rates of 83%). We also highlighted 

the importance of the radioactivity activity gradient obtained by combining a simple 

injection (SI) with convection-enhanced delivery (CED).  We assumed that the immune 

system played a role in the treatment's efficacy on account of the overproduction of 

peripheral cytokines, recruitment of immune cells to the tumor site, and memory response 

in long-term survivor animals. Hence, nanovectorized internal radiation therapy with activity 

gradients stimulating immune responses may represent a new and interesting alternative for 

the treatment of solid tumors such as glioblastomas. 
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INTRODUCTION 

Glioblastomas (GBM) are the most common and lethal type of primary brain tumors 

[1]. Although surgery and external beam radiation therapy, with or without chemotherapy, 

slightly improve the prognosis, treatments are never curative [2]. Systemic toxicity, normal 

brain tissue sensitivity, and the blood-brain barrier (BBB) are the main factors responsible for 

treatment failure [3].  

Ionizing radiation is the gold-standard adjuvant treatment for malignant gliomas. 

Given that, efforts in developing internal radiation have been made in order to prevent harm 

to healthy tissues. In this context, locoregional drug delivery modalities, such as stereotactic 

radiosurgery, which allow for blood-brain barrier (BBB) bypass and reduced systemic toxicity, 

are of major relevance. Clinical trials on GBM patients supported the usefulness of local 

radiolabeled peptide receptor therapy (
90

Y-DOTATOC [4]) and radioimmunotherapy (
131

I-

tenascin antibodies [5] and 
188

Re-nimotuzumab [6]). Thus, nanoparticles issued from new 

technologies hold great promise for developing effective targeted therapies for gliomas. The 

distribution of the radionuclide will not only depend on its own intrinsic properties but also 

on those of the vector [7]. Hence, the benefit expected to come from loading the 

radionuclide is the avoidance of fast elimination after injection. 

Colloidal drug carriers have been designed to incorporate radionuclides, such as lipid 

nanocapsules (LNC). These LNCs are synthesized through a phase inversion process without 

any organic solvent and consist of a lipid core surrounded by a tensioactive shell [8]. With 

biomimetic properties, they provide extensive drug encapsulation capacity [9-11] and exhibit 

biological effects such as P-gp inhibition [12-14], endo-lysosomal escape [15], and biological 

barrier crossing [15]. LNCs are implanted in brain tumors using stereotactic injections for 
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locoregional therapy. We recently established the feasibility of this technique using 50nm-

LNC loaded with a lipophilic complex of Rhenium-188 (LNC
188

Re-SSS - half-life: 16.9 hours; β
-
 

emitter: 2.12 MeV; γ emitter: 155 keV) for internal radiation therapy in malignant glioma, 

demonstrating a median survival of up to 45 days after a single injection of LNC
188

Re-SSS in 

an orthotopic 9L-glioma model [9].  

In order to optimize internal radiation strategy, we assessed the efficacy of repeated brain 

administrations of LNC
188

Re-SSS following 9L cell implantation. As simple stereotactic 

injections (SI) and convection-enhanced delivery (CED) lead to distinct LNC distribution 

volumes [16], these two LNC
188

Re-SSS infusion techniques were chosen to study the impact 

of the activity gradient.  

The current rationale of ionizing radiation is based on its ability to eradicate tumor cells, 

notably through excessive reactive oxygen species generation [17, 18]. Nevertheless, several 

lines of evidence have established that radiotherapy induces dose-dependent consequences 

such as adaptative responses, genomic instability, and abscopal effects [19-24]. Hence, the 

recruitment and activation of biological effectors outside the treatment field, notably 

inflammatory and immune cells such as macrophages [20, 25-27], dendritic cells [28], or T 

cells, depend on the release of danger signals by irradiated tumor cells and the related 

microenvironment.  

According to the fractionated internal radiotherapy protocol used in our study, different 

activity gradients may be applied in order to enhance different biologic responses.  

In addition, synthetic nano-objects can also function as “danger signals” that activate 

dendritic cells, potentially inducing subsequent T-cell immunity [29-32]. As gliomas are 

infiltrative tumors, any modification to the tumor microenvironment via ionizing radiation, 
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associated with synthetic adjuvants, exemplified by nanoparticles, may aid tumor 

eradication through both direct and immune-dependent cell death.  

Accordingly, we investigated the impact of fractionated internal radiation using LNC
188

Re-SSS 

on a 9L Fischer rat glioma model. Special attention was given to therapeutic efficiency and 

the potential involvement of the immune system. 
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MATERIALS AND METHODS 

Ethics Statement 

This study was carried out in strict accordance with the French Minister of Agriculture and 

the European, Communities Council Directive of 24 November 1986 (86/609/EEC). The 

protocol was approved by the Committee on the Ethics of Animal Experiments of the "Pays 

de la Loire" (Permit Number: CEEA.2010.3). All surgery was performed under 

ketamine/xylazine anesthesia, and all efforts were made to minimize suffering. 

 

Materials 

Lipoïd® S75-3 (soybean lecithin at 69% of phosphatidylcholine) and Solutol® HS15 (a mixture 

of polyethylene glycol 660 and polyethylene glycol 660 hydroxystearate) were kindly 

provided by Lipoïd Gmbh (Ludwigshafen, Germany) and BASF (Ludwigshafen, Germany), 

respectively. NaCl and dichloromethane were provided by Sigma (St-Quentin, Fallavier, 

France). Deionized water was obtained from a Milli-Q plus system (Millipore, Paris, France). 

Lipophilic Labrafac® CC (caprylic-capric acid triglycerides) was provided by Gattefosse S.A. 

(Saint-Priest, France). 

 

Preparation of the 
188

Re-SSS complex 

188
Re as carrier-free Na [

188
ReO4

-
] in physiological solution was obtained by saline elution and 

concentration of 
188

W/
188

Re generator (Institut des Radioéléments, Fleurus, Belgium). The 
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188
Re-SSS complex was prepared according to the method developed by Lepareur et al. [33]. 

In brief, the 
188

Re-SSS complex was obtained by the reaction of the ligand sodium 

dithiobenzoate (Plateform of organic synthesis, Rennes, France) with a freeze-dried 

formulation containing 30mg sodium gluconate, 30mg ascorbic acid, 40mg potassium 

oxalate, and 4mg SnCl2.2H2O reconstituted in 0.5mL of physiological serum. 1 110MBq of 

188
Re-perrhenate (

188
ReO4

-
; in 0.5mL) was added, and the solution was mixed for 15 minutes 

at room temperature. Next, 20mg of sodium dithiobenzoate (in 0.5mL; pH=7) was added 

before being heated at 100°C for 30 minutes, which allowed for the formation of the 
188

Re-

SSS complex. Due to its precipitation in aqueous media, the 
188

Re-SSS complex was extracted 

with dichloromethane (1mL) and washed three times with 1mL of deionized water. The 

radiochemical purity (RCP) of the complex was checked by thin-layer chromatography as the 

ratio of migrated radioactivity to total radioactivity. Thin-layer chromatography was carried 

out using silica gel 60-F254 alumina plates (Merck) and a solution of petroleum 

ether/dichloromethane (6/4; v/v) as an eluant. Radioactivity was assessed with a phosphor-

imaging machine (Packard, Cyclone storage phosphor system).  

 

Nanocapsule formulation and characterization 

The overall study was performed on 50nm diameter LNCs, which were
 
prepared according to 

a phase-inversion process described by Heurtault et al. [8]. In brief, 25mg Lipoïd® S75-3, 

282mg Solutol® HS15, 342.7mg Labrafac®, 29.7mg NaCl, and 987.5mg deionized water were 

mixed by magnetic stirring. The 
188

Re-SSS complex extracted with dichloromethane (1mL) 

was then added to the other components of the emulsion. The organic solvent was removed 
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by being heated at 60°C for 15 minutes. Three
 
cycles of progressive heating and cooling 

between 85°C
 
and 60°C were then carried out and followed by an irreversible

 
shock, induced 

by dilution with 4.16mL of 0°C deionized
 
water, which was added to the mixture at 70°C. 

Afterwards, slow magnetic stirring was applied to the suspension for 5 minutes. LNC
188

Re-

SSS were dialyzed during 2 hours with deionized water at room temperature by magnetic 

stirring. The mean diameter and polydispersity index were then determined using a Malvern 

Zetasizer® Nano Serie DTS 1060 (Malvern Instruments S.A., Worcestershire, UK).  

 

Tumor cells 

9L (European Collection of Cell Culture, n° 94110705, Salisbury, UK), a rat gliosarcoma cell 

line, was maintained in Dulbecco’s modified Eagle’s medium (DMEM, BioWhittaker, Verviers, 

Belgium) containing 10% fetal calf serum (FCS) (BioWhittaker, Verviers, Belgium) and 1% 

antibiotic and antimycotic solution (Sigma, St Quentin Fallavier, France) in a humidified 

incubator gassed with 5% CO2 (37°C) until reaching 80–90% confluence. The number of 9L 

passages at the time of use for the experiments was between P10-P11.  

 

Animals 

Female syngeneic Fisher 344 rats aged 9 to 10 weeks were obtained from Charles River 

(L’arbresle, France). The animals were kept in polycarbonate cages in a room with controlled 

temperature (20-22°C), humidity (50-70 %), and light (12 hours’ light/dark cycles). Room air 

was renewed at the rate of 10vol/hour. Tap water and diet were provided ad libitum. 
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Intracerebral tumor implantation 

Tumor cells for intracerebral implantation were trypsinized, counted, and checked for 

viability by trypan blue exclusion. Cells were washed twice with Eagle’s minimal essential 

medium (EMEM, BioWhittaker, Verviers, Belgium) without FCS or antibiotics, and a final 

suspension of 1x10
5
cells/mL in EMEM was obtained. Animals were anesthetized with an 

intraperitoneal injection of 0.75–1.5mL/kg of a solution containing 2/3 of ketamine (100 

mg/mL; Clorketam®, Vétoquinol, Lure, France) and 1/3 xylazine (20mg/mL; Rompun®, 

Bayer, Puteaux, France). Using a stereotactic head frame and a 10µL Hamilton syringe 

(Hamilton® glass syringe 700 series RN), 10µL of 1x10
3
9L cells were injected into the rat's 

right striatum. The coordinates used for the intracerebral injection were 1mm posterior to 

the bregma, 3mm lateral to the saggital suture (right hemisphere), and 5mm below the dura. 

 

External beam radiation and groups. 

An external beam radiation study was performed using a fractionated regimen of 2x8Gy at 

D6 and D12 following 9L cells implantation. Two groups were studied: a control group (n=6) 

and a treated one (n=8). We set the therapeutic dose at 16 Gy (2x8Gy) as the maximum 

tolerated dose (MTD) of 18 Gy (3x6Gy) proved to be effective in the 9L-glioma rat model 

[34].  
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Fractionated internal radiation, protocols, and groups  

A fractionated internal radiation study was performed at an early and late stage of tumor 

progression. In the first study, animals underwent internal radiotherapy with 2.8MBq of 

LNCs loaded with rhenium-188 (LNC
188

Re-SSS) on D6 and D12 following 9L cell implantation.  

In the second study, the efficacy of LNC
188

Re-SSS was assessed at a late stage of tumor 

progression, and the animals therefore received internal radiotherapy on D12 and D18. Two 

different administration types of LNCs (LNC
188

Re-SSS) were chosen: a SI with a final volume 

of 10µL and a flow of 1µL/min, and a CED injection with a final volume of 60µL and a flow of 

0.5µL/min. Depending on the administration technique chosen, four injection protocols 

were carried out, notably protocol 1: SI at D6 and D12; protocol 2: CED injections at D6 and 

D12; protocol 3: CED injection at D6 (or D12) and SI at D12 (or D18); protocol 4: SI at D6 (or 

D12) and CED injection at D12 (or D18). Each protocol was composed of four groups: a 

LNC
188

Re-SSS group (n=6), a blank LNC group (n=4), a 
188

ReO4
-
 group (n=4), and a saline 

solution group (n=4).  

We chose to set the injected activity at 2.8 MBq of LNC
188

Re-SSS because it proved to be 

effective after a single injection in the 9L-glioma model [9]. 

 

Simple injection and convection enhancement delivery procedures 

The animals were anesthetized with an intraperitoneal injection of 0.75–1.5mL/Kg of a 

solution containing 2/3 of ketamine (100mg/mL; Clorketam®, Vétoquinol, Lure, France) and 

1/3 xylazine (20mg/mL; Rompun®, Bayer, Puteaux, France). For the SI, 10µL were injected 
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into the rat striatum at a flow of 1µL/min using a 10µL syringe (Hamilton® glass syringe 700 

series RN) with a 32-G needle (Hamilton ®). For this purpose, rats were immobilized in a 

stereotactic head frame (Lab Standard Stereotactic; Stoelting, Chicago, IL). Coordinates were 

1mm posterior to the bregma, 3mm lateral to the saggital suture, and 5mm below the dura. 

Following the injection, the needle was left in place for an additional 5 minutes to avoid 

expulsion of the suspension from the brain during the removal of the syringe.  

CED injection was similar, except that the 10µL Hamilton® syringe with a 32-G needle was 

connected to a 100µL Hamilton ® 22-G syringe containing the product (Harvard Apparatus, 

Les Ulis, France) through a cannula (CoExTMPE/PVC tubing, Harvard Apparatus, Les Ulis, 

France). CED was performed using an osmotic pump PHD 2,000 infusion (Harvard Apparatus, 

Les Ulis, France) by controlling a 0.5µL/min rate for 2 hours.  

 

Tissue distribution study 

A tissue distribution study was carried out using 16 female Fisher rats 6 days following 9L 

implantation. They were divided into two groups: one injected with LNC
188

Re-SSS after a SI 

(n=8) and one with LNC
188

Re-SSS following a CED injection (n=8). In both groups, the animals 

were sacrificed at post-injection interval times of 24 hours (n=4) and 96 hours (n=4). The 

organs were removed, washed, and weighed (blood, liver, spleen, kidneys, heart, lung, 

stomach, small intestine, large intestine, bladder, bone, muscle, brain, and carcass). The 

content activity of each organ was determined using a gamma counter (Packard Auto-

Gamma 5,000 series). 
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Autoradiography 

Female Fisher rats 6 days following 9L cell implantation received 2.8MBq after SI and CED 

injections of LNC
188

Re-SSS (n=3 per group). Twenty-four hours following the LNC
188

Re-SSS 

injection, the brain was extracted and fixed with 4% of paraformaldehyde in phosphate-

buffered saline 1X (pH=7.3). Coronal sections (1mm thick) were prepared from brains on an 

acrylic brain matrix. Brain slices were then placed on phosphor screens for 1 minute and 

read by the Cyclone Phosphor Imaging System (Packard Instruments). 

 

MRI 

MRI was performed with a Bruker Avance DRX 300 (Germany) machine equipped with a 

magnet of 7T. Rapid T2-weighted images were obtained using rapid acquisition with 

relaxation enhancement (RARE) sequence (TR=2,000ms; mean echo time [Tem]=31.7ms; 

RARE factor=8; FOV=3x3cm; matrix 128x128; nine contiguous slices of 1mm; eight 

acquisitions).  

 

Interleukin-2 (IL-2) and interferon-γ (IFNγ) quantifications 

Blood samples were collected from the tail vein using heparinized tubes in each protocol 

from a fractionated internal radiation study (D6/D12) at D8, D16, and D24 following 9L cell 

implantation. After centrifugation at 1 000g for 20 minutes, the rat IL-2 and rat IFNγ ELISA 

tests (Duoset, R&D Systems Europe, Lille, France) were immediately performed according to 

manufacturer’s instructions.  
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Immunohistochemistry 

Brains from tumor-bearing animals treated were frozen at D15, D24, and D32 in isopentane 

cooled by liquid nitrogen and stored at -80°C. Fourteen-micron cryosections were fixed with 

4% of paraformaldehyde in phosphate-buffered saline 1X (pH=7.3) and washed three times 

with phosphate-buffered saline (PBS). In order to block nonspecific binding, sections were 

incubated 1 hour in PBS containing 4% BSA and 10% normal goat serum, and washed twice 

with PBS. All incubations with primary antibodies (OX18 antibody: mouse, 1/100, BD 

Sciences; OX6 antibody: mouse, 1/100, BD Sciences; OX62 antibody: mouse, 1/100, BD 

Sciences; CD161a antibody: mouse, 1/100, BD Sciences; OX42 antibody: mouse, 1/100, BD 

Sciences; CD4 antibody: mouse, 1/100, BD Sciences; CD8b antibody: mouse, 1/100, BD 

Sciences; and IgG isotypes) were performed overnight at 4°C at a 1/100 final dilution. 

Primary antibodies were detected using a rat-absorbed biotinylated anti-mouse IgG 

secondary antibody (BD Biosciences). After 1 hour of incubation at 4°C, the sections were 

washed twice with PBS containing 4% of BSA. Sections were developed with Alexa 488-

conjugated secondary antibody (Streptavidin Alexa Fluor 488 conjugate S11223, Invitrogen) 

at a final concentration of 2.5µg/mL after an incubation of 1 hour at 4°C and washed four 

times with PBS 1X. After immunostaining, DAPI (4’, 6-diamidino-2-phenylindole 

dihydrochloride D9542, 0.1µg/mL, Sigma, St Quentin Fallavier, France) was added for 20 

minutes at room temperature to stain the nuclei. 
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Re-challenging 

Long-term survivors obtained from fractionated internal radiation studies (D6/D12 and 

D12/D18) were re-challenged with 1 000 9L cells in the left striatum. The animals were 

anesthetized with an intraperitoneal injection of 0.75 – 1.5mL/kg of a solution containing 2/3 

of ketamine (100mg/mL; Clorketam®, Vétoquinol, Lure, France) and 1/3 xylazine (20mg/mL; 

Rompun®, Bayer, Puteaux, France). The intracerebral tumor implantation procedure was 

described above, but the coordinates used were modified: 1mm posterior to the bregma, 

3mm lateral to the saggital suture (left hemisphere), and 5mm below the dura. 

 

Statistical analysis 

Results are expressed as mean±standard deviation (SD). For the survival study, comparisons 

between control groups were made using the log-rank test (Mantel-Cox test). For other 

studies, statistical analysis was performed using the t test. Data was considered to be 

significant when p<0.05. 
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RESULTS 

 

Biodistribution of nanovectorized radionuclide: importance of the administration route 

 In order to highlight the importance of the administration route, biodistribution of 

LNC
188

Re-SSS was assessed. At Day 6 following 9L cell implantation, we examined the 

usefulness of encapsulating rhenium-188 within LNCs in order to maintain high levels of 

radiopharmaceutics in the brain. Rhenium-188 entrapping is essential, as only 4% and 65% of 

the injected dose were eliminated in urine and feces, respectively, 96 hours after injecting 

LNC
188

Re-SSS and the solution of 
188

Re-perrhenate (
188

ReO4
-
) (Figure 1a). Depending on the 

rhenium-188 formulation, different distributions were obtained, whereas the two 

administration techniques (SI; CED) had no impact on the elimination process (Figures 1b-c). 

This was corroborated by biodistribution studies, with 86% and 78% of the injected dose 

remaining in the brain 24 hours and 96 hours post-injection, respectively, regardless of the 

administration technique used (Figure 1d).  

 

Importance of the administration route on the activity gradient 

To address the distribution of LNC
188

Re-SSS within the brain, autoradiography views 

were performed 24 hours after SI and CED injections (Figure 1e-g). Even if biodistributions 

were similar using SI or CED injections, the distribution within the brain tissue itself revealed 

the rhenium-188 spread to be greater with CED than SI administrations, as illustrated by 

LNC
188

Re-SSS areas of 34.74±0.72mm² and 21.57±0.78mm², respectively (p=0.00004) (Figure 

1e,f). Relative radioactivity was quantified using OptiQuant software and expressed as the 

mean radioactivity density (DLU/mm²). Results revealed the radioactivity content to be more 
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concentrated for the SI injection compared to the CED, with 64.54±1.99DLU/mm² and 

23.24±2.68 DLU/mm², respectively (p=0.0006) (Figure 1e,g).  

 

Treatment efficacy of fractionated internal radiotherapy at Day 6 and Day 12 following 

tumor implantation 

 In addition to characterizing the LNC
188

Re-SSS distribution, the efficacy of 

fractionated internal radiation therapy was studied. Rats were treated with stereotactic 

injections of 2.8MBq of LNC
188

Re-SSS 6 days (D6) and 12 days (D12) after 9L cell 

implantation. Depending on the administration technique (SI or CED), four injection 

protocols were used, notably protocol 1: SI at D6 and D12; protocol 2: CED at D6 and D12; 

protocol 3: CED at D6 and SI at D12; protocol 4: SI at D6 and CED at D12. In control group 

animals, the median survival time was close to 30 days for 
188

ReO4
-
 and 28 days for both 

blank LNC and saline solutions (Figures 2a-d). There were no significant differences between 

the control groups (p>0.05), regardless of the injection protocol used. Treatments with 

LNC
188

Re-SSS were associated with an increased median survival time (IMST) of 37.5% and 

35.7% for protocols 1 and 2, with 13% and 0% of long-term survivors, respectively (Figures 

2a-b). Long-term survivors were defined as animals that survived for more than 120 days 

following 9L cell implantation [35]. Magnetic resonance imaging [36] corroborated this 

observation, with no tumor progression revealed. The combination of CED and SI strongly 

improved animal survival, with an IMST of 176% with protocol 3 and 257% with protocol 4 

(Figure 2c-d). Combining the two administration types exhibiting distinct activity gradients 

had a strong impact on survival (7 out of 12 animals were long-term survivors for protocols 3 

and 4 versus only one out of 12 for protocols 1 and 2). MRI follow-up, which is able to detect 
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9L glioma tumors from Day 9, confirmed these findings with similar tumor progression in the 

control groups, as demonstrated by representative images obtained with physiological 

serum (Figure 2e). Protocols 1 and 2 led to a comparable evolution with a slightly delayed 

tumor progression. In contrast, protocols 3 and 4 resulted in tumor eradication (Figure 2e).  

 

Treatment efficacy of fractionated internal radiotherapy after tumor detection (D12/D18) 

In order to mimic late-stage tumor progression, fractionated internal radiation was 

performed at D12 and D18 following 9L cell implantation. Protocols 3 and 4, which provided 

the best survival results during prior treatment, were used. As expected, no significant 

differences between the control groups were detected, with a median survival close to 28 

days. However, with protocols 3 and 4, five out of six rats (83%) were long-term survivors 

(Figures 2f-g). MRI confirmed these results, with a tumor lesion at D9 following 9L cell 

implantation, which grew up until D25 and then regressed, long-term survivor animals being 

free of brain tumors (Figure 2h).  

 

Effect of LNC
188

Re-SSS on the production of peripheral cytokines 

As over-expression of interleukin-2 (IL-2) and interferon-γ (IFNγ) cytokines produced 

by T cells are important for anti-tumoral brain immune reponses [37], these cytokines were 

quantified at D8, D16, and D24 in blood of control and LNC
188

Re-SSS-treated animals for 

protocols 3 and 4 (Figures 3a-b). No significant differences between the control groups were 

observed (saline solution, blank LNC, and 
188

ReO4
-
 solution); hence results of control groups 
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were expressed as a mean ± standard deviation of all control groups data. LNC
188

Re-SSS 

treatment resulted in an overproduction of peripheral cytokines, as major increases in IL-2 

and IFNγ were observed in LNC
188

Re-SSS groups.  

 

Recruitment and activation of immune and inflammatory cells within the central nervous 

system after LNC
188

Re-SSS treatment 

In order to evaluate immunostimulating effects of LNC
188

Re-SSS versus blank LNC, the 

immunostaining of central nervous system (CNS) infiltrating or resident immune cells was 

assessed and illustrated for protocol 4, with results similar to those observed in protocol 3 

(Figures 4a-b). Immunostaining of brain cryosections at D15 demonstrated a stronger 

activation of monocyte-macrophage-microglia in LNC
188

Re-SSS-treated animals, as proven by 

the ameboid shape of OX42-positive cells [38, 39]. In addition, an improved recruitment of 

natural killer (CD161a) and dendritic cells (OX62) was observed from D15 to D25, with a 

slight decrease at D32.  

MHC class II (OX6) over-expression in LNC
188

Re-SSS-treated rats confirmed the recruitment 

and activation of inflammatory and immune cells in the CNS. Strong induction of MCH class I 

(OX18), whether present on the glioma cells themselves or on antigen-presenting cells, 

provided evidence in favor of an improved capability to develop an antitumor immune 

response. As effectors of the antitumor immune response, such as CD4 and CD8 positive 

cells, were absent at D15, they were progressively recruited in the CNS tumors at D25 and 

D32 (Figures 4a-b).  

 

 



19 

 

Rechallenge in long-term survivors reveals immune protection 

To validate this immune response, long-term animal survivors obtained with 

protocols 3 and 4 were re-challenged with implantation of 1 000 9L cells in the left striatum. 

Regardless of the fractionated internal radiation timing used (D6/D12, Figure 5a; D12/D18, 

Figure 5b), median survival was significantly improved (from 35 to 37 days) when compared 

to control animals (25 days). Moreover, one long-term survivor was obtained for treatment 

at D6/D12 with protocol 4 and for treatment at D12/18 with protocols 3 and 4, thus 

representing three of 17 animals included in the study. 

 

Treatment efficacy of fractionated external beam radiation at Day 6 and Day 12 following 

tumor implantation and its immune system effect  

External beam radiation was performed and its related-biological effect assessed in 

order to compare our internal radiation strategy with routine treatment. Rats were treated 

with 2 x 8 Gy regimen at Day 6 and Day 12 following 9L cell implantation. External beam 

radiation efficacy resulted in a slight increase with a median survival of 26.5±2.1 days and 

33.5±1.5 days for control and treated animals, respectively (Figure 6a,b). Meanwhile, the 

immunostaining of CNS infiltrating or resident immune cells revealed a weaker recruitment 

of immune cells, in particular natural and dendritic cells, which are crucial in adaptative 

immune responses (Figure 6c,d).  
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DISCUSSION 

In this study, we evaluated fractionated internal radiation therapy using LNC188Re-SSS 

in an orthotopic 9L Fischer rat glioma model.  Survival and immune-related effects induced 

by the variation in the 188Re-activity gradient within the brain parenchyma were 

investigated. 

The first part of this work highlights the advantages of using LNC for entrapping Rhenium-

188 as physico-chemical properties of the nanocarrier prevail over those of Rhenium-188. 

Hence, our data supported that most of rhenium-188 activity from LNC remained confined 

to the brain until its disintegration.  

The originality of our strategy was to use two modes of stereotaxic injections during the 

fractionated treatment in order to modulate 188Re distribution within the brain. Thus, a 

remarkable survival benefit was only revealed when SI injection was combined with CED, 

indicating that the 188Re-activity gradient is of major significance. This therapeutic effect can 

be explained by the cellular heterogeneity and the related microenvironment of the tumor 

mass. Solid tumors are indeed heterogenous from a histology point of view with 

inflammatory infiltrates and vascular structures [40]. Different subpopulations of cancer cells 

are hierarchically and topographically organized, with radio-resistant cancer initiating cells 

[41] within either hypoxic or vascular niches [42]. Thus, we can assume that the injection of 

LNC188Re-SSS by the combination of SI and CED injections targets different types of 

radiosensitive and radioresistant sub-cellular populations within the tumor mass. As it is 

more difficult to apply an activity-gradient irradiation within the tumor mass through 

external beam radiation, being the gold-standard adjuvant treatment for gliomas, these 

possibilities are important to consider. Corroborating this idea, the fractionated external 
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beam radiation used in this study triggered weaker therapeutic efficiency as compared with 

internal radiotherapy.  

In this study, animals were treated with a combination of SI and CED at Days 6/12 and 12/18 

following 9L cells implantation. As no significant differences were noted between early- and 

late-care of the tumor, tumor size and proliferation gradient did not appear to influence 

treatment response. This could be explained by a 188Re-activity gradient that is sufficient for 

direct eradication of the entire tumor mass in the two situations (early- and late-care). In 

addition, the 188Re-activity gradient might induce an indirect immune response likely to 

affect all types of tumor cells. Thus, we have investigated whether an adaptative immune 

response was involved in tumor regression. According to the scientific literature, radiation 

after external beam radiation exposure produces an immunogenic death of the most 

radiosensitive subset of cancer cells [43]. Recent evidence has highlighted the involvement 

of calreticulin and high-mobility group protein B1 (HMGB1) in the mechanism by which the 

irradiated tumor can become a source of antigen [19, 44]. Our data demonstrated that while 

there was a recruitment of immune cells with both internal and external radiotherapy, the 

intensity of this response was weaker after external than internal radiation. In addition, our 

internal radiation strategy induced a memory antitumor response as long-term survivors 

were partially or totally immunized after re-injecting 9L cells in contrast to naïve animals. As 

no long-term survivor animals were obtained with external beam radiation, the intensity of 

the immune response depending on the irradiation mode may play a role. Radiation has 

been reported to induce up-regulation of MCHI and other pro-immunogenic effects at the 

irradiated site [21, 45]. As MCHI expression was more important after internal radiotherapy 

compared with external radiation modality, we assume that tumor cell recognition by the 
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immune system is improved in this context. Moreover, Dewan et al. have shown that two 

external radiation regimens had similar effects on tumor growth, but led to different 

synergistic effects when associated with immunotherapy [46]. The conditions of irradiation 

are of major significance, and the 188Re-activity gradient used in our study may well play a 

role by enhancing a particular type of cell death (apoptosis, autophagy, or necrosis), thus 

leading to tumor eradication or not [47]. 

The nano-object used for internal radiotherapy can interact with immune responses. As 

previously shown in scientific literature, the transporters associated with antigen processing 

(TAP) and multidrug resistance efflux pumps share a significant degree of homology among 

their transmembrane domains, which are thought to be the primary determinants of 

substrate specificity [48, 49]. As nanoparticles interfere with P-gp and reverse multidrug 

resistance in glioma cells [12], they could promote pro-immunogenic conditions by 

increasing antigen processing based on interactions with TAP transporters. LNC may also 

cross biological barriers [12] with endo-lysosomal escape [15], which may impact autophagy 

cell death [50]. This could be crucial as migrating glioblastoma cells have been shown to be 

resistant to apoptosis [50]. 
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CONCLUSION 

Fractionated internal radiotherapy using LNC
188

Re-SSS induced a remarkable survival benefit 

in rat glioma model, with a significant increase in the number of long-term survivor animals. 

Those observations are mainly ascribed to 
188

Re-activity gradient leading to a bypass of 

immunosuppressive barriers, thus demonstrated by total or partial immunity of rechallenged 

animals. Hence, the present work strengthen the interest of developing new anti-

glioblastoma strategies based on internal radiotherapy using 
188

Re-lipid nanocapsules 

associated with immunotherapy.  
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Figure 1: Distribution of LNCs loaded with rhenium-188  

a: 
188

Re elimination measured in urine and feces by a gamma counter during 96 hours 

following SI and CED injections of 
188

ReO4
-
 and LNC

188
Re-SSS in 9L glioma-bearing rats 6 days 

following 9L implantation. Repartition between urine and feces for 
188

ReO4
-
. (b) and 

LNC
188

Re-SSS (c). d: Organ biodistribution of 
188

ReO4
-
 (n=8) and LNC

188
Re-SSS (n=8) solutions 

24 and 96 hours after the injection; results are expressed as a percentage of the injected 

dose per gram of organ, mean±SD. e: Autoradiography views of LNC
188

Re-SSS injected by SI 

and CED injections 24 hours following the injection. f: Relative amount of radioactivity in 

brain slices after bolus and CED injections of LNC
188

Re-SSS. g: Percentage of LNC
188

Re-SSS 

area after bolus and CED injections 
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Figure 2: Efficacy of fractionated internal radiation with LNCs loaded with rhenium-188 

a-d: Kaplan-Meier survival curves of rats treated at D6 and D12, 5.6MBq of LNC
188

Re-SSS 

(n=6), 5.6MBq of 
188

ReO4
-
 (n=4), blank LNC (n=4), and saline solution (n=4). a: Protocol 1, SI 

at D6 and D12. One in six rats was a long-term survivor (>120 days). b: Protocol 2, CED 

injections at D6 and D12. c: Protocol 3, CED and SI at D6 and D12. Three in six rats were long-

term survivors. d: Protocol 4, SI and CED injections at D6 and D12. Four in six rats were long-

term survivors. e: T2-weighted images of control rats and LNC
188

Re-SSS in each protocol of 

the D6/D12 fractionated internal study. f-g: Kaplan-Meier survival curves of rats treated at 

D12 and D18, 5.6MBq of LNC
188

Re-SSS (n=6), 5.6MBq of 
188

ReO4
-
 (n=4), blank LNC (n=4), and 

saline solution (n=4). f: Protocol 3, CED and SIs at D12 and D18. Five in six rats were long-

term survivors. g: Protocol 4, SI at D12 and CED injection at D18. Five in six rats were long-

term survivors. h: T2-weighted images of control rats and LNC
188

Re-SSS in each protocol of 

the D12/D18 fractionated internal study 
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Figure 3: Peripheral cytokines (interleukin-2 and interferon-�) quantification after 

nanovectorized internal radiotherapy 

Concentrations of interleukin-2 (IL-2) (a) and interferon-γ (IFNγ) (b) for control group and 

LNC
188

Re-SSS of each protocol. Results are expressed in pg/mL of IL-2 and IFNγ, mean±SD. 

Comparison of IL-2 content in LNC
188

Re-SSS groups versus control groups; **p<0.01; 

***p<0.001  
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Figure 4: Recruitment and activation of immune and inflammatory cells within the central 

nervous system after LNC
188

Re-SSS treatment 

a: Immunohistochemistry staining of macrophage cells (OX42), natural killer cells (OX61), 

major histocompatibility (class I - OX18; class II – OX6), dendritic cells (CD161a), and T 

lymphocytes cells (CD4 and CD8) of protocol 3 and 4 of the D6/D12 fractionated study. b: 

Semi-quantitative results of immunohistochemistry. Results are expressed as % of 

immunostaining area after their determination with MetaMorph software 
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Figure 5: Rechallenge in long-term survivors obtained from the nanovectorized internal 

radiation studies 

a: Kaplan-Meier survival curves of re-challenged long-term survivors from the D6/D12 

fractionated internal radiation study. b: Kaplan-Meier survival curves of re-challenged long-

term survivors from the D12/D18 fractionated internal radiation study 
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Figure 6: Efficacy of fractionated external beam radiation at D6 and D12 following tumor 

implantation and its immune system effects. 

a: Kaplan-Meier survival curves of rats treated at D6 and D12with 2 x 8 Gy (n=6) and control 

animals (n=6). b: T2-weighted images of control and treated rats of the D6/external beam 

radiation study. c: Immunohistochemistry staining of macrophage cells (OX42), natural killer 

cells (OX61), major histocompatibility (class I - OX18; class II – OX6), dendritic cells (CD161a), 

and T lymphocytes cells (CD4 and CD8) of the D6/D12 external beam radiation study. d: 

Semi-quantitative results of immunohistochemistry. Results are expressed as % of 

immunostaining area after their determination with MetaMorph software.  

 

 

 


