
HAL Id: inserm-00637064
https://inserm.hal.science/inserm-00637064v1

Submitted on 29 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of clusters of a rare disease over a large
territory: performance of cluster detection methods
Stéphanie Goujon-Bellec, Claire Demoury, Aurélie Guyot-Goubin, Denis

Hémon, Jacqueline Clavel

To cite this version:
Stéphanie Goujon-Bellec, Claire Demoury, Aurélie Guyot-Goubin, Denis Hémon, Jacqueline Clavel.
Detection of clusters of a rare disease over a large territory: performance of cluster detection methods.
International Journal of Health Geographics, 2011, 10 (1), pp.53. �10.1186/1476-072X-10-53�. �inserm-
00637064�

https://inserm.hal.science/inserm-00637064v1
https://hal.archives-ouvertes.fr


RESEARCH Open Access

Detection of clusters of a rare disease over a
large territory: performance of cluster detection
methods
Stéphanie Goujon-Bellec1,2,3*, Claire Demoury1,2, Aurélie Guyot-Goubin1,2,3, Denis Hémon1,2 and

Jacqueline Clavel1,2,3

Abstract

Background: For many years, the detection of clusters has been of great public health interest. Several detection

methods have been developed, the most famous of which is the circular scan method. The present study, which

was conducted in the context of a rare disease distributed over a large territory (7675 cases registered over 17

years and located in 1895 units), aimed to evaluate the performance of several of the methods in realistic hot-spot

cluster situations.

Methods: All the methods considered aim to identify the most likely cluster area, i.e. the zone that maximizes the

likelihood ratio function, among a set of cluster candidates. The circular and elliptic scan methods were developed

to detect regularly shaped clusters. Four other methods that focus on irregularly shaped clusters were also

considered (the flexible scan method, the genetic algorithm method, and the double connected and maximum

linkage spatial scan methods). The power of the methods was evaluated via Monte Carlo simulations under 27

alternative scenarios that corresponded to three cluster population sizes (20, 45 and 115 expected cases), three

cluster shapes (linear, U-shaped and compact) and three relative risk values (1.5, 2.0 and 3.0).

Results: Three situations emerged from this power study. All the methods failed to detect the smallest clusters

with a relative risk lower than 3.0. The power to detect the largest cluster with relative risk of 1.5 was markedly

better for all methods, but, at most, half of the true cluster was captured. For other clusters, either large or with

the highest relative risk, the standard elliptic scan method appeared to be the best method to detect linear

clusters, while the flexible scan method localized the U-shaped clusters more precisely than other methods. Large

compact clusters were detected well by all methods, with better results for the circular and elliptic scan methods.

Conclusions: The elliptic scan method and flexible scan method seemed the most able to detect clusters of a rare

disease in a large territory. However, the probability of detecting small clusters with relative risk lower than 3.0

remained low with all the methods tested.

Keywords: Power, Cluster detection, Rare disease, Leukemia, Large scale, Spatial scan methods

Background
For many years, the detection of clusters has been of

great public health interest and widely studied. Several

hypotheses may explain the finding of spatial clusters, of

which the presence of environmental risk factors, possi-

bly localized in space and time. Several methods have

been developed to detect clusters and their performance

has been evaluated in various contexts. The most

famous method, the circular scan method [1], is gener-

ally considered the gold standard. The method is advan-

tageous in that it is easy to use thanks to the freely

available SaTScan software. This method is, however,

known to be less capable of precisely detecting non-cir-

cular clusters. In recent years, several methods have

been developed to detect arbitrarily shaped clusters.

Based on a moving window of varying size, the elliptic
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scan method [2] enables detection of circular and ellip-

tic clusters. The flexible scan method is free from the

regular shape constraints and considers all the con-

nected zones included in a given neighborhood of each

geographic unit as cluster candidates [3]. The method

may be computer intensive. Other methods use graph-

based algorithms that rely on the geographic neighbor

structure of the territory instead of the geographic coor-

dinates of the unit centers ([4-6] and Costa MA, Assun-

ção RM, Kulldorff M: Constrained spanning tree

algorithms for irregularly shaped spatial clustering, sub-

mitted). The upper level set scan statistic developed by

Patil and Taillie [6] is a special case of the static mini-

mum spanning tree method, which has been shown to

be far less powerful than the dynamic spanning tree

method (dMST) [4]. However, the dMST method tends

to detect wide clusters with long branches similar to

tentacles, a phenomenon referred to as the ‘octopus

effect’ in the literature. Three constrained spanning tree

methods, the early-stopping dMST, the double con-

nected method and the maximum linkage method, were

developed by Costa et al. to resolve the problem (Costa

MA, Assunção RM, Kulldorff M: Constrained spanning

tree algorithms for irregularly shaped spatial clustering,

submitted). Among the methods, which are closely

related to the dMST approach, the early-stopping dMST

appeared significantly less powerful with regard to

detecting clusters. Duczmal’s simulated annealing

method [5], also based on the geographic graph struc-

ture, selects the most promising connected zones of any

shape over the whole territory as cluster candidates. The

genetic algorithm more recently developed by the same

team appeared far less time consuming than, and as

powerful as, the simulated annealing method for detec-

tion of the presence of particular circular and irregularly

shaped clusters [7]. To deal with the ‘octopus effect’

problem, Duczmal et al. considered a non-compactness

penalty function defined so as to penalize irregularly

shaped cluster candidates [5,7].

Until now, the power of cluster detection methods has

mainly been evaluated by comparison with the perfor-

mance of the circular or elliptic scan methods, but three

or more of those methods have rarely been compared.

Moreover, the great heterogeneity of the literature, par-

ticularly with regard to study design and the evaluation

metrics under consideration, renders between-published

study comparisons difficult. In addition, the methods

were mostly evaluated on a territory of more limited

extent in terms of the number of geographic units, typi-

cally a few hundred units, than in a nationwide surveil-

lance context, in which a few thousands units may be

involved.

The present study evaluates the performance of six

cluster detection methods in the particular context of

nationwide surveillance of a rare disease. Several single

hot-spot cluster scenarios selected to approximate realis-

tic situations were considered. The study focused on the

elliptic and flexible scan methods, the double connected

and maximum linkage spatial scan methods and the

genetic algorithm based method, in addition to the cir-

cular scan method. The ability of each method to detect

the presence of the true cluster and its ability to locate

the cluster as precisely as possible were evaluated. Based

on data from the French National Registry of Childhood

Hematological Malignancies, the study provides new

insights into the systematic investigation for clusters in

the context of a rare disease distributed over a large

territory.

Methods
Material

Geographic data

France consists of 22 régions, 96 départements and

around 36500 communes, the smallest administrative

units. In 2003, a new non-administrative division, the

living zone, was created by the National Institute of Sta-

tistics and Economic Studies (INSEE) to describe the

rural space in France. A living zone (LZ), which is com-

prised of several neighboring communes, is defined as

the smallest territory in which people have access to

employment and everyday facilities (e.g. supermarket,

school, police station, post office, doctor, pharmacy,

etc.). There are 1916 LZ, of which 1745 are located in

the rural space. According to the last national census

(table 1), the population of a LZ varied from 270 people

to 9.8 million people (25th percentile = 6220, median =

9755, 75th percentile = 17968). Because 21 LZ are

located on islands and thus disconnected from the main

territory, they were not included. Thus, 1895 LZ were

included in this national study.

Childhood acute leukemia data

This study, conducted in the context of a rare disease,

was based on data from the French National Registry of

Childhood Hematopoietic malignancies (NRCH) [8]. All

cases of acute leukemia (AL) registered in the NRCH

and diagnosed between 1990 and 2006 were included.

Each case was associated with the case’s living zone of

residence at the time of diagnosis. There were 7675

cases located in the 1895 LZ considered.

Population data

The age-specific populations of each commune were

estimated from the 1999 census data and the annual

population estimates on the département scale for the

period 1990-2006 provided by the National Institute of

Statistics and Economic Studies (INSEE). The annual

populations of the communes were derived from the

annual population estimates for the départements to

which they belong, under the assumption that the
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proportions of the commune populations in the départe-

ments remained stable and equal to the corresponding

proportions for census year 1999. The population of

each LZ for the years 1990 to 2006 was then estimated

as the sum of the populations of its communes.

The age-specific numbers of cases of childhood AL

expected in each LZ under the hypothesis that the inci-

dence rate was homogeneous were based on the popula-

tion estimates and the national incidence rates provided

by the NRCH for the whole period, 1990-2006. On aver-

age, 4.1 cases were expected in a LZ with a range of 0.1-

1388.3 cases (table 1).

Cluster detection methods

The performance of six cluster detection methods, all

based on the likelihood ratio statistic developed by Kull-

dorff [1], were compared. Under the null hypothesis, the

risks of AL within (p) and outside (q) a cluster zone z

consisting of several connected LZ are equal, while p >

q under the alternative hypothesis that z is a cluster

zone. Thus, the likelihood ratio associated with z is LRz

=

(

oz

ez

)oz
(

O − oz

E − ez

)O−oz

1

{

oz

ez

>

O − oz

E − ez

}

, in which O

and E are the numbers of observed and expected cases

over the whole territory, and oz and ez the numbers of

observed and expected cases in the cluster zone.

The test statistic LR (or its logarithm, LLR) is then

defined as the maximum of the likelihood ratio function

over the whole set of cluster candidates Z, and the con-

nected area in which this maximum is achieved is

defined as the most likely cluster. LR = max
z∈Z

LRz

For each method, a maximum cluster size of 20 LZ

was considered in the main analysis. The performances

of the cluster detection methods with a 25 LZ limit and

a 10 LZ limit were also investigated in an additional

analysis.

The six methods under study mainly differ in terms of

the manner in which the set Z is constructed.

Circular and elliptic scan methods [1,2]

The circular and elliptic scan methods implemented in

the SaTScan software [9] were used. The circular scan

method (scan-c) is based on a circular window that

scans the whole territory moving from one LZ to the

next.

In the elliptic scan method (scan-e), the window is

defined by the length of its semimajor axis, its shape

(ratio between the semimajor and semiminor axes) and

the angle between the horizontal line and its semimajor

axis. For each semimajor axis length, the latter two

parameters vary in order to cover a large territory. The

likelihood ratio statistic LR can be penalized in order to

favor compact clusters. The analyses were performed

with no penalty and strong penalty, but only the results

with no penalty (scan-e0) are presented herein.

- Flexible scan method [3] The flexible scan method,

implemented in the FleXScan software [10], is based on

an unvarying circular moving window, the size of which

was set to 20 LZ, and considers not only the whole win-

dow as a cluster candidate but also all the connected

areas included in it (Figure 1). Tango proposed restricting

the log likelihood ratio LLRz in order to retain only areas

made up of high-risk units as cluster candidates [11].

The main analyses in this study were performed with

no restriction (noted FleX).

- Genetic algorithm method [7] The genetic algorithm

method was implemented using a C++ code provided by

Table 1 Number of Communes, area and population of the 1895 living zones (LZ) in France

Mean Minimum Q1 Median Q3 Maximum

Number of Communes per LZ 19.1 1 7 13 24 556

Area (km2) 282.3 0.4 108.8 193 340.2 3863.2

Total population (1999) 30542.0 270 6219.8 9754.5 17 968 9802327

Population 0-14 years (1999) 5453.7 71 1068 1725 3298 1823195

AL incidence rate
(per 100000 person-years)

40.8 0.0 0.0 36.5 58.6 545.9

Expected cases of AL per LZ (1990-2006) 4.1 0.1 0.8 1.3 2.4 1388.3

AL: childhood acute leukemia. Q1: first quartile. Q3: third quartile

(a) (b) (c)

(d) (e) (f)

Figure 1 Illustration of five cluster candidate areas in the

flexible scan method [3]. (a) Neighborhood of the cross unit. (b)-(f)

5 particular cluster candidate areas (in yellow) included in the

neighborhood of the cross unit.
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the authors. The genetic algorithm constructs successive

sets of connected areas, called generations from the

1895 LZ on the basis of an improvement in the likeli-

hood ratio from one step to the next. The first genera-

tion is created by adjoining a neighbor to each LZ while

increasing the likelihood ratio without reaching the

maximum size set at 20 LZ. Offspring areas are then

created from repeated crosses between areas from that

generation (Figure 2). The new generation is then made

up of the areas of highest LLRz in the previous genera-

tion and its offspring. The last generation constitutes

the panel Z of cluster candidates on which the test sta-

tistic is evaluated. Overall, 20 generations were created.

The maximum number of “cross attempts” and “suc-

cessful crosses” used by the algorithm to create new

generations was set to 473 (one fourth of the LZ).

A strong non-compactness penalty was also used

(referred to as GA-1).

- Dynamic minimum spanning tree methods (Costa

MA et al., submitted) The dynamic minimum spanning

tree methods were applied using a program provided by

the authors. The double connected spatial scan method

(Double) and the maximum linkage scan method

(Mlink) aim to create a set of cluster candidates by

aggregating pre-selected neighbors with each LZ on the

basis of different expansion criteria. The Double method

imposes a double connection constraint so that the LZ

that is adjoined at each step is the one that increases

the LR function the most among all the neighboring LZ

that are connected to at least two LZ in the current

cluster. The algorithm stops when either the cluster

candidate comprises 20 LZ or there is no candidate

neighbor that makes the likelihood ratio increase. In the

Mlink method the LZ that is adjoined is the one that

maximizes the LR function among the LZ that are the

most connected to the current cluster, i.e. among the

neighboring LZ that have the highest number of con-

nections compared to other neighbors. If no LZ is cap-

able to increase the LR function, the Mlink method

adjoins the LZ that decreases the least the LR function.

The algorithm stops when the maximum cluster size of

20 LZ is attained.

Alternative scenarios

Twenty-seven scenarios of alternative assumption (H1)

that a single hot-spot cluster existed were considered. The

scenarios consisted in a combination of 3 cluster shapes

(linear, U-shape and compact), 3 locations equivalent to 3

population sizes (table 2 and Figure 3) and 3 relative risk

values (RR = 1.5, 2.0, and 3.0). The linear clusters, which

may be observed along rivers or roads, and the compact

clusters which may arise around point-sources, were often

considered in published studies ([2-4,7,11-17] and Costa

MA, Assunção RM, Kulldorff M: Constrained spanning

tree algorithms for irregularly shaped spatial clustering,

submitted). The additional U-shape clusters were chosen

because they seemed compatible, for instance, with terri-

tories around a lake or the mouth of a river. The expected

numbers of cases of AL were about 20, 45 and 115 cases

in the “small”, “moderate” and “large” clusters, respec-

tively, over a 17-year period.

Under the H1 hypothesis, the number of cases Oi in

LZ i follows a Poisson distribution with parameter ri*Ei,

the product of the expected number of cases Ei and ri

the relative risk, equal to RR if i belongs to the cluster

and one otherwise. For each of the 27 alternative sce-

narios, the cases were randomly allocated to each LZ

conditionally on the total number of cases O observed

over the whole territory from 1990 to 2006, from a mul-

tinomial distribution with parameters proportional to

the expected numbers of cases.

Statistical significance and estimation of power

For each method under study except one, 10000 Monte

Carlo replications of the dataset were made under the

null hypothesis (ri = 1 for all LZ i), on the basis of a mul-

tinomial distribution of cases with parameters propor-

tional to the expected numbers (reference dataset of the

test statistic). For the FleX method with a 25-LZ window,

5000 Monte Carlo simulations were made. Then, 250

Monte Carlo replications were carried out for each of the

27 alternative scenarios in order to estimate the power of

each method with a standard error of less than 5%. For

each replicated dataset, the p-value was defined as the

proportion of values from the reference dataset that were

greater than or equal to the observed statistic.

In the present context of a systematic nationwide

investigation for clusters, the decision was taken to

(a) (b) (c)

(d) (e) (f)

Figure 2 Illustration of the genetic algorithm method -

offspring resulting from the cross between two parent areas.

(a)-(b) the two parent areas. (c) cross between the two parent areas

with units in parent ‘a’ and parent ‘b’ coded positively and

negatively, respectively, and the intersection coded 0 (in green). (d)-

(f) three offspring created using the genetic algorithm procedure

(see [7]).
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promote sensitivity and thus to limit the probability of

missing a true cluster, rather than avoiding false positive

results. Therefore, all the tests were implemented with a

significance level of 0.10.

Power evaluation metrics

Usual power

The usual power was estimated as the proportion of the

250 alternative simulations that achieved statistical sig-

nificance, irrespective of where the detected cluster was

located.

Power to detect at least one LZ of the true cluster

The power to detect at least one LZ was defined as the

proportion of simulations with a significant result and at

least one true positive LZ, i.e., included in both the true

and the detected clusters.

Power to detect exactly the “true” cluster ("exact” power)

The “exact” power was estimated as the proportion of

simulations that enabled significant detection and exact

location of the “true” cluster, i.e. without any false posi-

tive or missing LZ.

Average sensitivity

The average sensitivity was defined as the average pro-

portion of LZ in the true cluster that was correctly

detected, over the 250 simulations.

Average Positive Predictive Value (PPV)

The average positive predictive value was estimated as

the average proportion of LZ in the detected cluster

that belonged to the true cluster, over the 250

simulations.

Average cost

In line with Tango (2005), the average cost under the

alternative situation in which a cluster of size s* existed

was defined as C = C1*E(s*-S) + C2*E(L-s*), in which C1

is the cost of erroneously not including a LZ and C2 is

the cost of erroneously including a LZ in the cluster,

respectively, L and S are two random variables that

represent the size of the detected cluster and the num-

ber of LZ correctly detected, and E() is the operator for

an expected value.

C1 and C2 were both set to 1, so that the cost was the

sum of the numbers of LZ missed and LZ erroneously

included in the detected cluster.

Computational time

All the methods were implemented on a Windows Dell

R710 server (2.93 Ghz, RAM 32 Go), except the genetic

algorithm, for which a Unix Dell R710 server (2.93 Ghz,

RAM 64 Go) was used.

With a maximum cluster size window of 20 LZ, the

typical running time for the 250 replications of a given

Table 2 Description of the simulated alternative cluster scenarios

“Small Clusters”1 “Moderate Clusters”1 “Large Clusters”1

#1 #2 #3 #4 #5 #6 #7 #8 #9

Linear U-shaped Compact Linear U-shaped Compact Linear U-shaped Compact

No. LZ = 6 No. LZ = 10 No. LZ = 8 No. LZ = 7 No. LZ = 7 No. LZ = 11 No. LZ = 12 No. LZ = 16 No. LZ = 13

Population (1999, all ages)

Total 147794 153067 136704 360752 351089 404176 948557 954460 913030

Mean 24632.3 15306.7 17088.0 51536.0 50155.6 36743.3 79046.4 59653.8 76085.8

SD 35843.1 15350.6 16754.8 100719.4 101328.7 81488.4 223805.2 194750.3 224749.6

Min 6519 3963 6519 8267 7177 2949 5202 2259 4051

Max 97315 57355 57355 279841 279841 279841 788887 788887 788887

Expected No. AL 20.8 21.4 19.7 44.9 44.0 50.1 115.4 116.8 113.6

No. AL: number of childhood acute leukemia; No. LZ: number of living zones in the cluster
1

“small”, “moderate” and “large” clusters are clusters with about 20, 45 and 115 cases of childhood acute leukemia over the period 1990-2006, respectively.

#1 #2 #3 

#7 

#9 

#8 

#4 

#6 

#5 

Figure 3 The 9 clusters under study (3 cluster shapes and 3

cluster locations). The nine scenarios considered consisted in a

combination of 3 cluster shapes (linear, U-shaped and compact) and

3 locations equivalent to 3 population sizes (20 expected cases for

clusters 1-3,45 expected cases for clusters 4-6 and 115 expected

cases for clusters 7-9).
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cluster scenario, e.g. the small linear cluster with a rela-

tive risk of 1.5, ranged from 1 minute, for Double, to 3

hours, for FleX (additional file 1).

Although the running time remained quite stable for

most of the methods when the maximum cluster size

was increased to 25 LZ, it doubled for the GA-1 method

and increased exponentially for the FleX method (3.2

days).

Results
Table 3 shows an example of the evaluation metrics

obtained on the basis of one of the 250 datasets gener-

ated for the 6th cluster. The latter was a compact clus-

ter consisting of 11 LZ with 50 expected cases, and had

a relative risk of 2. In this example, the methods evi-

denced a cluster sized between 8 LZ (with Double) and

18 LZ (with Scan-c and Scan-e0). The circular and ellip-

tic scan methods detected large clusters including

almost all of the true cluster, but also a large proportion

of false positive LZ (PPV = 0.56 and 0.61 for Scan-c and

Scan-e0, respectively). In contrast, the Double method

detected a smaller cluster and had fewer false positive

LZ (PPV = 0.75) but missed about half of the true clus-

ter (sensitivity = 0.55). The FleX and GA-1 methods

yielded intermediate results correctly detecting 8 and 9

LZ, respectively, with a PPV greater than 0.6. The GA-1

method minimized the cost, with 6 LZ either missed or

erroneously detected.

Power

The estimated usual power of all the methods increased

with the number of expected cases in the cluster and

the relative risk (table 4). The usual power was greater

than 0.8, and even greater than 0.9, for all the scenarios

under study with a relative risk of 3, and, for the large

and moderate clusters with a relative risk of at least 2.

Only Mlink had a usual power of at least 0.8 to detect a

small cluster with a relative risk of 2. Mlink performed

better than the other methods with regard to the

detection of small and moderate clusters with a relative

risk of 1.5. Mlink also had the highest power (≥ 0.95) to

detect large clusters with a relative risk of 1.5, which

were detected by the other methods with a usual power

of about 0.8 (slightly lower for FleX).

The power to detect at least one LZ in the true cluster

was very similar to the usual power, but the highest

power to detect a small cluster with a relative risk less

than or equal to 2.0 (again obtained with Mlink) was

less than 0.6 (table 5). The power to detect at least one

LZ in the true cluster was particularly low for the small

and moderate clusters with a relative risk of 1.5.

Lastly, none of the methods was ever able to detect

the underlying cluster exactly, irrespective of the popu-

lation size, shape or relative risk of the cluster.

Sensitivity, positive predictive value and cost

Table 6 reports the results for the scenarios in which at

least one LZ in the true cluster was detected with a

power of about 0.8 by most of the methods.

In all the corresponding categories of cluster popula-

tion size and relative risk, the compact clusters were

detected with a higher average sensitivity than the other

clusters and the Scan-c and Scan-e0 methods performed

best. Scan-e0 was the most sensitive for detection of lin-

ear clusters. In the small and moderate clusters, FleX

detected the linear clusters better than all the other

methods except Scan-e0, but was clearly the most sensi-

tive for the U-shaped clusters. Few differences in the

average sensitivity were observed for the detection of

large U-shaped clusters.

Similarly, the average positive predictive value (PPV)

was higher for the compact clusters, and better with the

Scan-c method, except in the small cluster with RR = 3.

The average PPV associated with the detection of linear

and U-shaped clusters was of the same order of magni-

tude and none of the methods performed significantly

better than the others. The Double method had, how-

ever, an average PPV greater than 0.7 in all the linear

Table 3 Performance of cluster detection methods on one replicated dataset.

Scan-c Scan-e0 FleX GA-1 Double Mlink

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

No. LZ 18 18 13 13 8 13

True Positive LZ1 10 11 8 9 6 7

Sensitivity2 0.91 1.00 0.73 0.82 0.55 0.64

PPV3 0.56 0.61 0.62 0.69 0.75 0.54

Cost4 9 7 8 6 7 10

Results for the sixth cluster scenario (compact cluster, E = 50.1 cases, covering 11 LZ), with a relative risk of 2.

Results based on 250 Monte Carlo replications. Scan-c: circular scan method, Scan-e0: elliptic scan method with no penalty, FleX: unrestricted flexible scan

method, GA-1: strongly penalized genetic algorithm, Double and Mlink: dynamic minimum spanning tree method with double and maximum link connections,

respectively. No. LZ: number of living zones in the detected cluster. 1 number of living zones in the intersection of the true and detected clusters. 2 sensitivity:

proportion of living zones in the true cluster that are correctly detected. 3 proportion of living zones in the detected cluster that are in the “true” cluster. 4

number of living zones that are either missed or erroneously detected.
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Table 4 Usual power of the cluster detection methods

“Small Clusters”1 “Moderate Clusters”1 “Large Clusters”1

#1 #2 #3 #4 #5 #6 #7 #8 #9

Linear U-Shaped Compact Linear U-Shaped Compact Linear U-Shaped Compact

No LZ = 6 No. LZ = 10 No. LZ = 8 No. LZ = 7 No. LZ = 7 No. LZ = 11 No. LZ = 12 No. LZ = 16 No. LZ = 13

RR = 1.5 Scan-c 0.18 0.16 0.14 0.30 0.32 0.40 0.84 0.85 0.83

Scan-e0 0.11 0.11 0.11 0.26 0.26 0.36 0.83 0.83 0.79

FleX 0.12 0.15 0.16 0.25 0.29 0.36 0.78 0.74 0.76

GA-1 0.14 0.11 0.10 0.33 0.30 0.44 0.87 0.87 0.83

Double 0.14 0.13 0.13 0.26 0.25 0.39 0.82 0.79 0.78

Mlink 0.65 0.60 0.60 0.71 0.73 0.79 0.95 0.96 0.96

RR = 2.0 Scan-c 0.46 0.49 0.52 0.94 0.96 1.00 1.00 1.00 1.00

Scan-e0 0.51 0.51 0.50 0.95 0.95 0.98 1.00 1.00 1.00

FleX 0.52 0.57 0.52 0.93 0.92 0.97 1.00 1.00 1.00

GA-1 0.32 0.41 0.43 0.95 0.95 1.00 1.00 1.00 1.00

Double 0.44 0.42 0.48 0.92 0.90 0.98 1.00 1.00 1.00

Mlink 0.83 0.82 0.85 1.00 1.00 1.00 1.00 1.00 1.00

RR = 3.0 Scan-c 0.97 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Scan-e0 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

FleX 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

GA-1 0.92 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Double 0.98 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Mlink 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Scan-c: circular scan method, Scan-e0: standard elliptic scan method, FleX: unrestricted flexible scan method, GA-1: strongly penalized genetic algorithm, Double

and Mlink: dynamic minimum spanning tree method with double and maximum link connections, respectively. No. LZ: size of living zones in the cluster (number

of living zones); RR: relative risk in the true cluster. Results based on 250 Monte Carlo replications.
1

“small”, “moderate” and “large” clusters are clusters with about 20, 45 and 115 cases of childhood acute leukemia over the period 1990-2006, respectively.

Table 5 Power to detect at least one LZ in the true cluster

“Small Clusters”1 “Moderate Clusters”1 “Large Clusters”1

#1 #2 #3 #4 #5 #6 #7 #8 #9

Linear U-Shaped Compact Linear U-Shaped Compact Linear U-Shaped Compact

No. LZ = 6 No. LZ = 10 No. LZ = 8 No. LZ = 7 No. LZ = 7 No. LZ = 11 No. LZ = 12 No. LZ = 16 No. LZ = 13

RR = 1.5 Scan-c 0.04 0.07 0.05 0.22 0.21 0.34 0.83 0.82 0.80

Scan-e0 0.03 0.02 0.05 0.19 0.19 0.31 0.81 0.81 0.76

FleX 0.04 0.07 0.07 0.17 0.19 0.28 0.76 0.72 0.72

GA-1 0.02 0.05 0.02 0.24 0.23 0.36 0.85 0.86 0.80

Double 0.03 0.06 0.05 0.17 0.16 0.32 0.80 0.76 0.74

Mlink 0.11 0.13 0.11 0.34 0.34 0.50 0.90 0.91 0.88

RR = 2.0 Scan-c 0.38 0.41 0.44 0.94 0.92 1.00 1.00 1.00 1.00

Scan-e0 0.43 0.39 0.46 0.94 0.94 0.98 1.00 1.00 1.00

FleX 0.44 0.54 0.47 0.92 0.91 0.97 1.00 1.00 1.00

GA-1 0.25 0.37 0.34 0.94 0.92 0.99 1.00 1.00 1.00

Double 0.38 0.36 0.42 0.91 0.88 0.98 1.00 1.00 1.00

Mlink 0.59 0.57 0.58 0.96 0.96 0.99 1.00 1.00 1.00

RR = 3.0 Scan-c 0.97 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Scan-e0 0.99 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00

FleX 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

GA-1 0.92 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Double 0.98 0.96 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Mlink 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Scan-c: circular scan method, Scan-e0: standard elliptic scan method, FleX: unrestricted flexible scan method, GA-1: strongly penalized genetic algorithm, Double

and Mlink: dynamic minimum spanning tree method with double and maximum link connections, respectively. No. LZ: size of the cluster (number of living

zones); RR: relative risk in the true cluster. Results based on 250 Monte Carlo replications.
1

“small”, “moderate” and “large” clusters are clusters with about 20, 45 and 115 cases of childhood acute leukemia over the period 1990-2006, respectively.
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Table 6 Average sensitivity, PPV and cost of cluster detection methods

“Small Clusters”1 “Moderate Clusters”1 “Large Clusters”1

#1 #2 #3 #4 #5 #6 #7 #8 #9

Linear U-Shaped Compact Linear U-Shaped Compact Linear U-Shaped Compact

6 LZ 10 LZ 8 LZ 7 LZ 7 LZ 11 LZ 12 LZ 16 LZ 13 LZ

Average sensitivity

RR = 1.5 Scan-c 0.52 0.40 0.68

Scan-e0 0.52 0.38 0.61

FleX 0.43 0.35 0.49

GA-1 0.37 0.30 0.47

Double 0.42 0.31 0.39

Mlink 0.49 0.38 0.46

RR = 2.0 Scan-c 0.49 0.63 0.81 0.59 0.49 0.82

Scan-e0 0.64 0.46 0.75 0.71 0.45 0.78

FleX 0.57 0.68 0.64 0.50 0.43 0.64

GA-1 0.54 0.54 0.78 0.45 0.35 0.60

Double 0.48 0.48 0.63 0.50 0.37 0.51

Mlink 0.50 0.54 0.69 0.58 0.46 0.57

RR = 3.0 Scan-c 0.48 0.43 0.79 0.51 0.75 0.93 0.63 0.54 0.90

Scan-e0 0.82 0.18 0.82 0.85 0.50 0.92 0.89 0.49 0.88

FleX 0.68 0.70 0.82 0.69 0.86 0.78 0.61 0.51 0.75

GA-1 0.65 0.60 0.73 0.53 0.57 0.86 0.57 0.39 0.70

Double 0.43 0.39 0.81 0.52 0.57 0.79 0.60 0.44 0.59

Mlink 0.44 0.44 0.66 0.55 0.63 0.81 0.66 0.49 0.62

Average PPV

RR = 1.5 Scan-c 0.46 0.50 0.69

Scan-e0 0.40 0.39 0.53

FleX 0.45 0.49 0.57

GA-1 0.47 0.52 0.58

Double 0.54 0.54 0.62

Mlink 0.43 0.46 0.51

RR = 2.0 Scan-c 0.39 0.46 0.81 0.57 0.57 0.84

Scan-e0 0.47 0.33 0.65 0.61 0.52 0.73

FleX 0.45 0.49 0.67 0.57 0.61 0.74

GA-1 0.42 0.41 0.77 0.68 0.69 0.76

Double 0.56 0.55 0.77 0.70 0.67 0.80

Mlink 0.50 0.51 0.75 0.63 0.59 0.74

RR = 3.0 Scan-c 0.51 0.68 0.73 0.43 0.59 0.90 0.68 0.63 0.92

Scan-e0 0.73 0.25 0.73 0.73 0.44 0.90 0.73 0.53 0.89

FleX 0.57 0.76 0.77 0.65 0.70 0.83 0.75 0.79 0.88

GA-1 0.55 0.79 0.82 0.52 0.55 0.89 0.88 0.86 0.86

Double 0.72 0.73 0.88 0.70 0.73 0.92 0.85 0.81 0.89

Mlink 0.65 0.66 0.80 0.68 0.72 0.91 0.82 0.70 0.91

Average cost

RR = 1.5 Scan-c 14.00 16.70 8.60

Scan-e0 15.50 19.80 12.50

FleX 13.20 16.20 11.30

GA-1 13.30 16.10 11.40

Double 11.60 15.60 11.40

Mlink 14.40 17.40 13.60

RR = 2.0 Scan-c 10.30 8.40 4.80 11.10 14.60 4.80

Scan-e0 9.20 11.70 8.10 9.30 16.00 6.90
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and U-shaped cluster scenarios, except the moderate

cluster with RR = 2.0, for which its average PPV was

higher than for other methods, but only about 0.55. The

Scan-e0 method also had a good average PPV (0.73) for

linear clusters with RR = 3.0 but appeared systematically

with the lowest average values for U-shaped clusters,

irrespective of the relative risk. Compact clusters were

detected with an average PPV of about 0.7-0.8 when RR

= 2.0. The maximum average PPV were obtained with

the Scan-c method. With a relative risk of 3.0, the meth-

ods were quite similar and most of the average PPV

were greater than 0.8.

The detection of the large clusters with RR = 1.5 was

associated with an average cost of more than 10 LZ and

even more than 15 LZ for the U-shaped cluster, except

for the compact cluster detection with Scan-c, which

resulted in an average cost of 8.6 LZ. More generally,

the detection of large or moderate clusters was less

costly for compact clusters and in those cases Scan-c

was mostly associated with the lowest costs. The average

costs for U-shaped clusters were higher than for other

shapes. The highest values were systematically observed

with the Scan-e0 method. The latter method was, how-

ever, more cost-effective for the detection of linear clus-

ters with RR = 3.0.

Additional analyses

Non-compactness penalty and restriction (additional file 2)

Irrespective of the cluster configuration, the elliptic scan

method gave quite similar results for all evaluation

metrics, with and without a penalty.

The flexible scan method with a restriction appeared

to be as powerful as the standard flexible scan method

with regard to the detection of a cluster and identifica-

tion of at least one of its LZ. However, clusters were

less precisely located with the restriction; the average

sensitivity was systematically lower than with the unrest-

ricted method.

In all the cluster scenarios, the genetic algorithm with no

penalty tended to detect clusters as large as the maximum

cluster size allowed, i.e. 20 LZ, while the detected clusters

were about half the size with the non-compactness pen-

alty. The average sensitivity was lower in most cases and

the average positive predictive value systematically higher

with the penalty. Irrespective of the cluster scenario, the

average cost was also far greater when no penalty was con-

sidered. Incidentally, despite smaller detected clusters, the

genetic algorithm with a strong penalty had a higher aver-

age sensitivity for the detection of moderate compact clus-

ters, irrespective of the relative risk.

Maximum cluster sizes of 25 LZ and 10 LZ

When the maximum cluster size was increased to 25 LZ

the results were similar to those obtained with a limit of

20 LZ (not shown).

While the usual power and the power to detect at least

one LZ of the true cluster remained unchanged with a

window of at most 10 LZ, the average sensitivity of all

the methods decreased and their PPV tended to

increase, particularly for the detection of large clusters

(additional files 3 and 4). For small and moderate clus-

ters, the greatest differences were observed with the

FleX method, which became as sensitive as the other

methods with regard to the detection of U-shaped clus-

ters, with, however, a higher PPV. Scan-e0 remained the

most sensitive method to detect linear clusters. Overall,

the shift from 20 LZ to 10 LZ did not change the results

of the genetic algorithm method.

Discussion
The present study evaluated the performance of six

cluster detection methods, the most famous of which

was the widely used circular scan method [1], in several

realistic alternative scenarios of a single hot-spot cluster

of a rare disease, childhood AL, in mainland France.

Three situations emerged from the power study. (1)

The less detectable clusters, i.e. the small clusters with a

Table 6 Average sensitivity, PPV and cost of cluster detection methods (Continued)

FleX 8.30 7.40 7.60 10.70 13.60 7.70

GA-1 9.20 9.50 5.30 9.60 13.40 7.70

Double 7.00 6.90 6.60 9.10 13.40 8.40

Mlink 8.50 8.00 6.60 10.10 14.80 9.10

RR = 3.0 Scan-c 8.00 9.10 4.50 9.10 5.70 2.10 8.70 12.70 2.40

Scan-e0 3.60 13.80 4.60 3.70 8.50 2.30 5.50 15.40 3.10

FleX 5.50 5.50 3.80 5.20 3.80 4.30 7.20 10.10 4.70

GA-1 6.00 6.10 3.70 7.20 6.60 2.90 6.20 11.00 5.50

Double 5.10 8.10 2.80 5.20 4.60 3.30 6.40 11.00 6.40

Mlink 5.90 9.10 4.80 5.30 4.60 3.20 6.40 12.60 6.10

Scan-c: circular scan method, Scan-e0: standard elliptic scan method, FleX: unrestricted flexible scan method, GA-1: strongly penalized genetic algorithm, Double

and Mlink: dynamic minimum spanning tree method with double and maximum link connections, respectively. Results based on 250 Monte Carlo replications. 1

“small”, “moderate” and “large” clusters are clusters with about 20, 45 and 115 cases of childhood acute leukemia over the period 1990-2006, respectively.
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relative risk of 1.5 or 2.0 and the moderate clusters with

a relative risk of 1.5: in these scenarios, the usual statis-

tical power was mostly lower than 0.5 and all the cluster

detection methods most often failed to detect at least

one unit of the true cluster. (2) The large clusters with a

relative risk of 1.5: in this case, all the methods detected

at least one living zone 8 times out of 10. However,

when the true cluster was linear or U-shaped, at most

half of it was detected and a great number of living

zones were misclassified, particularly with the elliptic

scan method. All the methods and particularly the cir-

cular scan method performed slightly better in compact

cluster detection. (3) The moderate and large clusters

with a relative risk of 2.0 and all the clusters with a rela-

tive risk of 3.0 were far easier to detect and in most

cases at least one living zone of the true cluster was

detected. In particular, compact clusters were well

detected by all the methods. In terms of sensitivity, posi-

tive predictive value and average cost, the elliptic scan

method with no penalty detected the linear clusters bet-

ter, while the flexible scan method without restriction

located the U-shaped clusters more precisely than did

the other methods.

All the methods require prior specification of the

maximum cluster size. The published cluster detection

studies often considered half of the total population,

which is not realistic in a nationwide study. In this

study, the parameter was therefore defined in terms of

geographic units rather than population proportion.

The influence of the parameter on power could not

be readily assessed since increasing the size increased

the computational time and did so exponentially with

the unrestricted flexible scan method. In consequence,

the maximum size was limited to 25 LZ. The shift

from 20 to 25 LZ did not enable enhanced detection

of small clusters with a relative risk of 1.5 or 2.0 or

change the performance of the methods with regard

to the detection of clusters with a relative risk of 3.

Most of the results obtained with maximum cluster

sizes of 10 LZ and 20 LZ were qualitatively similar,

although the average sensitivity decreased. However,

the flexible scan method, which exhibited the greatest

decreases in sensitivity, was no longer superior to the

other methods with regard to the detection of U-

shaped clusters.

The restricted flexible scan method, with a local sig-

nificance threshold set to the default value of 0.20, was

as powerful as the method with no restriction with

regard to detection of at least one LZ of the true cluster,

but the average sensitivity was lower. However, the

default parameter value may not be appropriate in the

context of this study and the possibility of the restricted

approach performing better with another value cannot

be ruled out.

Several tuning parameters also hinder the use of the

genetic algorithm method. No analysis has yet been

done to determine which values would be recommended

for a dataset as large as that used in the present study.

The parameters were thus arbitrarily set to values that

enabled varied generations in a reasonable computa-

tional time. Under those conditions, the genetic algo-

rithm method with no penalty tended to detect large

“octopus shaped” clusters, while the strongly penalized

approach detected smaller clusters, but had a lower sen-

sitivity than the elliptic or flexible scan methods.

Kulldorff et al. [2] reported that the elliptic scan

method with a strong penalty was as powerful as the

non-penalized method with regard to usual power. The

finding was similar to that reported herein. However, no

information on detected cluster locations was provided.

In contrast, Costa et al. concluded recently that the

method with no penalty was more powerful for detect-

ing small irregular clusters (Costa MA, Assunção RM,

Kulldorff M: Constrained spanning tree algorithms for

irregularly shaped spatial clustering, submitted). How-

ever, even though the approach yielded a numerically

higher power for small irregular clusters, few changes

were observed when a penalty was added so that we

would have rather concluded that the penalized and

non-penalized results were similar.

In the last 10 years, several power studies involving at

least one of the present methods have been carried out

and most of them enabled comparison of cluster or

clustering methods to the circular scan method.

Five studies evaluated the performance of the methods

considering only the usual power [2,7,14-16], which may

lead to erroneous conclusions due to false positive

results. In this study, by far the highest usual power to

detect small clusters with a relative risk of 1.5 or 2.0

was that of Mlink, but most of the time the detected

cluster did not intersect the true cluster. In line with

some other studies ([3,4,11-13,18,19] and Costa MA,

Assunção RM, Kulldorff M: Constrained spanning tree

algorithms for irregularly shaped spatial clustering, sub-

mitted), this study focused on the ability of each method

not only to detect the presence of the true cluster but

also to capture as many of its LZ as possible.

The previously published studies had various designs

(additional file 5). Except for one of the two nationwide

studies, all the studies covered a territory of less than

500 geographic units. In the context of a systematic

investigation for clusters over a large territory, the

power to detect a true cluster is reduced due to the

large number of cluster candidates considered by the

cluster detection method. The significance level was set

to 0.10 in the simulation study, instead of the usual

value of 0.05, so as to limit the lack of power. The pre-

sent study led to results of the same order of magnitude
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as those of other published studies for comparable sce-

narios. The observed differences versus published stu-

dies are more likely to be explained by the population

size and the relative risk of the true cluster than by the

choice of the alpha-level. Half of the studies used pub-

licly available datasets that were simulated in a rare dis-

ease context and considered the presence of a single

circular cluster centered either on a rural, urban or

mixed rural/urban county in the northeastern United

States ([2,7,13,15,16] and Costa MA, Assunção RM,

Kulldorff M: Constrained spanning tree algorithms for

irregularly shaped spatial clustering, submitted). Some

irregularly shaped cluster alternative scenarios defined

in [14] were sometimes considered additionally ([7] and

Costa MA, Assunção RM, Kulldorff M: Constrained

spanning tree algorithms for irregularly shaped spatial

clustering, submitted). Three other studies were con-

ducted on 113 regions in the area of the Tokyo metro-

polis and Kanagawa Prefecture in Japan [3,11,17]. The

nationwide study conducted in the United States

focused on multiple cluster scenarios with several cancer

sites [18]. Several methods were considered but the

powers of the circular and elliptic scan methods were

not evaluated and, due to the considerable computa-

tional time, the flexible scan method was finally applied

on a larger scale (49 States). The great heterogeneity of

the literature renders between-published study compari-

sons and comparison of the published results with those

reported herein difficult. In contrast to the present

study, many authors defined the relative risks in cluster

areas so that the probability of rejecting the null hypoth-

esis with a standard binomial test would be 0.999 if the

cluster location were known a priori ([2,4,7,13-16] and

Costa MA, Assunção RM, Kulldorff M: Constrained

spanning tree algorithms for irregularly shaped spatial

clustering, submitted). A relative risk of 5 was some-

times considered additionally ([4] and Costa MA,

Assunção RM, Kulldorff M: Constrained spanning tree

algorithms for irregularly shaped spatial clustering, sub-

mitted). This choice resulted in scenarios, in which clus-

ter detection methods yielded the best performance. In

the present context, the approach would lead to relative

risks equal to 2.4, 1.9 and 1.5 in the small, moderate

and large clusters, respectively. Those values are close to

the values of 1.5, 2.0 and 3.0 considered in the present

study. The alternative scenarios defined with that

approach would thus have led to similar results. On the

other hand, a relative risk of 1.5 in an area with about

20 expected cases would yield a local power of 0.68 for

a local binomial test, markedly below the 0.999 thresh-

old. The existence of such a less detectable cluster has

not been considered as an alternative scenario in other

published studies. Although less likely to be evidenced

by a local test than the clusters considered in Kulldorff

et al. [15], such clusters constitute, however, realistic

scenarios. The large number of geographic units consid-

ered in the present study and consequently the large

number of cluster candidates may have limited the abil-

ity of the study to detect small clusters.

Conclusions
The present study showed that none of the circular scan

or other recent sophisticated methods was powerful

enough to detect and locate some realistic hot-spot clus-

ters (E ≤ 45 and RR = 1.5). In less demanding scenarios,

the methods differed in their ability to locate the true

cluster: the elliptic scan window performed better in lin-

ear and compact cluster detection while the flexible

scan method was superior for U-shaped clusters.

The context of this study was childhood leukemia in

France. However, the authors believe that the results

hold for any situation in which a systematic search for a

localized cluster of a rare disease is conducted over a

large territory. In such contexts, the elliptic scan method

and flexible scan method, both of which are easy to use

thanks to the SaTScan [9] and FleXScan [10] public

software, seem the most able to detect clusters.

Additional material

Additional file 1: Computational time for analyzing 250 replicated

datasets of a given cluster scenario, by maximum cluster size (10,

20, 25 LZ). For each of the 27 cluster scenarios, 250 replicated datasets

were analyzed. The table gives the average running time for the 250

replications, and for one replication, of a given scenario.

Additional file 2: Performance of the Elliptic scan method with and

without a penalty, the Flexible scan method with and without a

restriction and the Genetic Algorithm with and without a non-

compactness penalty. Evaluation of the performance of each method,

with and without restriction or penalty, for the 9 cluster scenarios with a

relative risk of 2.0.

Additional file 3: Power to detect at least one LZ of the true cluster

with a maximum cluster size of 10 LZ. Power of each method to

detect at least one LZ of the true cluster for the 27 cluster scenarios,

based on 250 Monte Carlo replications for each.

Additional file 4: Average sensitivity, PPV and cost with a maximum

cluster size of 10 LZ. Estimation of the average sensibility, PPV and cost

for each of the 27 cluster scenarios, based on 250 Monte Carlo

replications.

Additional file 5: Study design of published studies on the

performance of cluster detection methods. Information on the

methods, the study area, the cluster scenarios and the evaluation metrics

considered in the published studies.
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