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Abstract

We conducted a combined genome-wide association (GWAS) analysis of 7,481 individuals affected with bipolar disorder and 9,250

control individuals within the Psychiatric Genomewide Association Study Consortium Bipolar Disorder group (PGC-BD). We

performed a replication study in which we tested 34 independent SNPs in 4,493 independent bipolar disorder cases and 42,542

independent controls and found strong evidence for replication. In the replication sample, 18 of 34 SNPs had value < 0.05, and 31 ofP 

34 SNPs had signals with the same direction of effect ( 3.8  10 ). In the combined analysis of all 63,766 subjects (11,974 cases andP  = × 7 −

51,792 controls), genome-wide significant evidence for association was confirmed for and found for a novel gene InCACNA1C ODZ4. 

a combined analysis of non-overlapping schizophrenia and bipolar GWAS samples we observed strong evidence for association with

SNPs in and in the region of . Pathway analysis identified a pathway comprised of subunits of calciumCACNA1C NEK4/ITIH1,3,4 

channels enriched in the bipolar disorder association intervals. The strength of the replication data implies that increasing samples

sizes in bipolar disorder will confirm many additional loci.

MESH Keywords Alleles ; Bipolar Disorder ; genetics ; Calcium Channels, L-Type ; genetics ; metabolism ; Case-Control Studies ; Databases, Genetic ; Genetic Loci ; 

Genetic Predisposition to Disease ; Genome, Human ; Genome-Wide Association Study ; Humans ; Linkage Disequilibrium ; Nuclear Proteins ; genetics ; metabolism ; 

Polymorphism, Single Nucleotide ; Schizophrenia ; genetics

Bipolar disorder (BD) is a severe mood disorder affecting greater than 1  of the population . Classical BD is characterized by% [1 ]
recurrent manic episodes that often alternate with depression. Its onset is in late adolescence or early adulthood and results in chronic

illness with moderate to severe impairment. Although the pathogenesis of BD is not understood, family, twin and adoption studies

consistently find relative risks to first-degree relatives of ~8 and concordance of ~40 70  for a monozygotic co-twin , . BD shares– % [1 2 ]
phenotypic similarities with other psychiatric diseases including schizophrenia (SCZ), major depression and schizoaffective disorder.
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Relatives of BD individuals are at increased risk of psychiatric phenotypes including SCZ, major depression and schizoaffective disorder,

suggesting these disorders have a partially shared genetic basis , . Despite robust evidence for a substantial heritability, single causal[3 4 ]
mutations have not been identified through linkage or candidate gene association studies .[1 ]

Genome-wide association studies (GWAS) for BD have been performed with multiple partially overlapping case and control samples[

. In a small study, Baum et al. reported genome-wide significant (defined here as < 5 10 ) association to diacylglycerol kinase5 –11 ] P × 8 −

eta ( ) . Subsequently, Ferreira et al.  identified genome-wide significant association in the region of the gene ankyrin 3 (DGKH [5 ] [8 ] ANK3 

) and Cichon et al.  recently reported neurocan ( ); other studies did not report genome-wide significant loci , , , . A[12 ] NCAN [5 9 10 13 ]
critical need for psychiatric genetics is to identify consistently associated loci. Towards that end, the Psychiatric Genome-wide Association

Study Consortium (PGC) was established in 2007 to facilitate combination of primary genotype data from studies with overlapping

samples and to subsequently allow analyses both within and across the following disorders: autism, attention-deficit hyperactivity disorder,

BD, major depressive disorder and SCZ , . Here, the Bipolar Disorder Working Group of the PGC reports results from our primary[14 15 ]
association study of combined data in BD from 16,731 samples, and a replication sample of 47,035 individuals.

We received primary genotype and phenotype data for all samples ( ; and ). Results fromTable 1 Supplementary Information Table S1 

sets of samples have been reported singly , ,  and in combinations , ,  in 7 publications with varying levels of overlap of[6 7 9 –11 ] [8 9 12 ]
case and control samples. Data were divided into the 11 case and control groupings shown in and each individual was assigned toTable 1 

only one group, with the assignment chosen to maximize power of the combined analysis (See forSupplementary Information S2 & S3 

details). The final dataset was comprised of 7,481 unique cases and 9,250 unique controls. Cases had the following diagnoses: BD type 1

(n 6,289; 84 ), BD type 2 (n 824; 11 ), schizoaffective disorder bipolar type (n 263; 4 ), and 104 individuals with other bipolar= % = % = %
diagnoses (BD NOS, 1 , ). 46,234 SNPs were directly genotyped by all 11 groups and 1,016,924 SNPs were genotyped by 2 11% Table S1 –
groups. Based on reference haplotypes from the HapMap phase 2 CEU sample, genotypes were imputed using BEAGLE . We[16 ]
analyzed imputed SNP dosages from 2,415,422 autosomal SNPs with a minor allele frequency (MAF)  1  and imputation quality score ≥ % r

> 0.3. We performed logistic regression of case status on imputed SNP dosage, including as covariates 5 multidimensional scaling2 

components (based on linkage disequilibrium (LD) pruned genotype data, ) and indicator variables for each sample groupingFigure S1 

using PLINK . We observed a genomic control  value of 1.148. Consistent with previous work suggesting a highly polygenic[17 ] [18 ] λ=
architecture for SCZ and BD , this estimate will likely reflect a mixture of signals arising from a large number of true risk variants of[19 ]
weak effect as well as some degree of residual confounding. Nonetheless, below we designate an association as genome-wide significant“ ”

only if the genomic-control -value ( ) is below 5  10 . Where reported, nominal -values are labeled . Results for the primaryP Pgc × 8 − P Praw 

analyses can be found in the ( (QQ plot); (Manhattan Plot); (Region Plots)), supplementary data Figure S2 Figure S3 Figure S4 Table S2 

lists regions containing an associated SNP with < 5  10 .P gc × 5 −

lists four regions from our primary GWAS analysis that contain SNPs with < 5  10 ; two regions reach  5  10Table 2 Praw × 8 − P gc ≤ × 8 −

(see for plots of the regions). Association was detected in ankyrin 3 ( on chromosome 10q21 for the imputed SNPFigure S4 ANK3) 

rs10994397 (  7.1  10 , odds ratio (OR)  1.35). The second SNP, rs9371601, was located in synaptic nuclear envelope protein 1 (P gc = × 9 − =

on chromosome 6q25 (  4.3  10 , OR  1.15). Intergenic SNP rs7296288 (  8.4  10 ; OR  1.15) is found in aSYNE1) P raw = × 8 − = P gc = × 8 − =

region of LD of ~100 kb on chromosome 12q13 that contains 7 genes. SNP rs12576775 (  2.1  10 , OR  1.18) is found atP gc = × 7 − =

chromosome 11q14 in a human homologue of a Drosophila pair-rule gene . Generally consistent signals were observed acrossODZ4, odz 

studies, with no single study driving the overall association results ( ). Meta-analysis of the 11 samples under both fixed- andFigure S5 

random-effects models yielded results similar to the combined analysis ( ).Table S3 and S4 

We next sought to replicate these findings in independent samples ( ). 38 SNPs were selected that had < 5  10 andTable S5 P gc × 5 −

were not in LD with each other ( ). Of these, four SNPs were not considered to be completely independent signals and are not usedTable 3 

for further analyses. (For completeness, data for these 4 SNPs are listed and denoted by an asterisk in , Table 3 supplementary Section 6 

for details). We received unpublished data from investigators on a further 4,493 cases and 42,542 controls for the top 34 independent

SNPs. Significantly more SNPs replicated at all levels than would be expected by chance ( ). Four of 34 had values < 0.01, 18Table 3 Prep 

of 34 SNPs had values < 0.05 and 31 of 34 had signal in the same direction of effect (binomial test,  3.8  10 ). Within thePrep P = × 7 −

replication samples, two SNPs remained significant following correction for multiple testing. The first, rs4765913, is found on

chromosome 12 in , the alpha subunit of the L-type voltage-gated calcium channel (  1.6  10 , OR  1.13). The second,CACNA1C Prep = × 4 − =

rs10896135 is in a 17 exon, 98kb open reading frame C11orf80 (  0.0015, OR  0.91). Nominally significant values were alsoPrep = = P rep 

obtained in another calcium channel subunit, . Only 2 of the 4 SNPs in had values < 0.05; the genome-wideCACNB3 Table 2 Prep 

significant SNPs from the primary analysis, rs10994397 and rs9371601 did not (  0.11 and 0.10, respectively). Finally, we performedPrep =

a fixed-effects meta-analysis, as described in the our primary and rep data and established genome-widesupplementary information P GC P 

significant evidence for association with rs4765913 in (  1.82  10 , OR  1.14) and rs12576775 in (  2.77  10CACNA1C P = × 9 − = ODZ4 P = × 8 −

; OR  0.89). As in the primary analyses, generally consistent signals were observed across replication studies and meta-analysis of the=
replication data also did not reveal significant heterogeneity between the samples ( ).Tables S6 and S7 



Nat Genet . Author manuscript

Page /5 12

To interpret why two of the significant associations in the primary analysis appear to fail to replicate, it is important to quantify the

role of the winner s curse  on estimates of power to replicate individual signals. Given a polygenic model, power will be very low to“ ’ ”
detect any one variant at genome-wide significant levels, but there will be many chances to get lucky  with at least one variant. Those that“ ”
are discovered will have relatively inflated effect estimates. A simple simulation of the distribution of ORs around several true  ORs“ ”

(conditioning on a genome-wide significant value of 5  10 , fixed minor allele frequency (0.20), and our sample size ( ))P × 8 − Table S8 

demonstrates a distinct inflation of the estimated OR leading to a marked overestimate of the power to replicate an individual result. For

example, for a true genotypic relative risk of 1.05 the mean estimated OR is 1.17, conditioning on having < 5  10 . Thus, although theP × 8 −

nominal power for replication is 100  for the inflated OR, the true power to replicate at < 0.05 is only 30 . Thus any single failure to% P %
replicate is by itself less informative. This simulation is consistent with the positive signal we observed in the independent replication

where many more than expected show nominal replication with all but one in the original, expected, direction of effect.

We performed an analysis to look for enrichment of Gene Ontology (GO) terms among genes in the association intervals containing

the same top 34 independent SNPs used in the replication analysis ( < 5  10 ) from using a permutation-based approach thatPgc × 5 − Table 3 

controlled for potential biases due to SNP density, gene density, and gene size and found enrichment in GO:0015270,

dihydropyridine-sensitive calcium channel activity. This GO category contains 8 genes, 3 of which ( , and CACNA1C CACNA1D CACNB3)

are present among the 34 independent association-intervals tested (  0.00002); the probability of observing an empirical value thisP = P 

small, given all the targets tested, is  0.021 (See ). Overall, these analyses suggest that the set of intervalsP = Supplementary section 7 

ranked highly in our GWAS do not represent a random set with respect to annotated gene function. This analysis focused only on the most

significant loci, consistent with the other results presented in this manuscript. It is likely that a study based on a larger number of loci,

defined by a more liberal value cutoff, would indicate other promising areas for biological investigation.P 

We performed a conditional analysis that included the 34 independent SNPs listed in . In three of the 34 regions with 5 <Table 3 P gc 

10 , we identified SNPs within 1 MB of the most strongly associated SNP that continued to show evidence of association (conditional 5 − P

<10 ). We next performed region specific conditional analysis in these regions and observed conditional association at 3p21.1gc 
4 −

(rs736408, conditional  8.1  10 ), 10q21.2 (rs9804190, conditional  7.3  10 ) and 15q14 (rs16966413, conditional  7.3 Pgc = × 7 − Pgc = × 5 − Pgc =

 10 ) ( ). On chromosomes 3 and 15, the SNP most strongly associated after conditioning was > 500kb from the conditioning× 5 − Figure S6 

SNP with multiple genes in the intervening interval. On chromosome 10 we observed additional less strongly associated conditionally

independent SNPs located upstream of the 5  end of , in an intron of , and at the 3  end of the longest transcript (704kb). In′ ANK3 ANK3 ′
each of these three regions, the association signals remaining after conditioning could arise from multiple causal variants, from a single

rare causal variant that is incomplete LD with the tested SNPs or represent false positive associations. The presence of additional SNPs

with evidence for association in three of the regions of interest, including ANK3 (10q21.2) (previously reported by Schulze et al.  in[13 ]
partially overlapping samples), might increase the likelihood that these loci are causal. The 3p21.1 and 15q.14 regions also each showed

evidence for association ( < .05) in the replication sample for one of the SNPs.P 

Finally, to provide direct and independent evidence for a highly polygenic basis for BD  as implied by a polygenic component shared–
between BD and SCZ, International Schizophrenia Consortium (2009)  we repeated the analysis performed by the ISC in these samples,–
with BD discovery samples. We observed a significant enrichment of putatively-associated BD score alleles  in target sample cases“ ”
compared to controls for all discovery value thresholds tested (see ; ).P Supplementary Section 9 Table S9 

A parallel study has been performed by the PGC investigators for SCZ. Given the known overlap in risk factors between BD and SCZ,

we asked if a combined analysis of PGC-BD and PGC-SCZ (eliminating overlapping control samples, see section)Supplementary S10 

would show stronger evidence of association than the original BD GWAS analysis for 5 of the most strongly associated SNPs from the

primary GWAS and meta-analysis, supplemented by the additional genome-wide significant region (i.e. ) in our replicationCACNA1C 

analyses. In the combined BD and SCZ analysis of GWAS samples two SNPs showed stronger association compared to the BD GWAS

analysis, rs4765913 in ( SCZ  7.0  10 compared to BD 1.35  10 ) and rs736408 in a multigene regionCACNA1C Praw = × 9 − P  raw = × 6 −

containing (SCZ 8.4  10 compared to BD 2.00  10 ) ( ).NEK4/ITIH1,3,4 Praw = × 9 − Praw = × 7 − Table S10 

In the current analysis of BD we observed primary association signals that reached genome-wide significance ( < 5  10 ) in thePgc × 8 −

primary analyses in the region of and and two signals near genome-wide significant on chromosome 12 and in the region of ANK3 SYNE1 

. While in our independent replication sample we did not find additional support for or , this is consistent with aODZ4 ANK3 SYNE1 

potential overestimation of the original ORs and should not be taken to disprove the involvement of these genes. Data from additional

samples will be needed to resolve this question.

The most striking finding is the overall abundance of replication signals observed. Among our top 34 signals, the number of nominal

associations in the same direction of effect is highly unlikely to be a chance observation. That the enrichment of replication results is

almost entirely in the direction of the original observations strongly implies that many, if not most of the signals will ultimately turn out to
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be true associations with BD. Such results are expected under a highly polygenic model, where there are few or no variants of large effect.

BD has a heritability estimated at higher than 80 . As is typical in studies of complex disorders, our findings explain only a small fraction%
of this heritability. Our data are consistent with the presence of many common susceptibility variants of relatively weak  effect,[19 ]
potentially operating together with rarer variants with a range of effect sizes . Although this is the largest GWAS study of BD to date,[20 ]
our sample size remains modest in comparison with some other recent meta-analyses of common, complex diseases and is therefore likely

to be underpowered to detect the majority of risk variants. Variation among the eleven studies in patient ascertainment, assessment and

population could also potentially reduce power to detect loci with relatively specific phenotypic effects. Alternative analytic approaches

that consider a broader approach to phenotype, both within and across psychiatric disorders, are underway in the PGC.

In order to understand the implications of these results for disease pathogenesis, we focused on one approach based on the joint

analysis of variation at biologically meaningful sets of polymorphisms (e.g. specific genes, gene families or biological pathways). The

connections drawn by INRICH between calcium channel subunits are not novel, but are consistent with a prior literature regarding the role

of ion channels in BD, the mood stabilizing effects of ion channel modulating drugs, and the specific treatment literature suggesting direct

efficacy of L-type calcium channel blockers in the treatment of BD . We observed significant enrichment of and [21 ] CACNA1C CACNA1D

which are the major L-type alpha subunits found in the brain and their specific association with BD suggests a value to designing calcium

channel antagonists that are selective for these subunits. Magnetic resonance imaging studies have implicated SNP rs1006737CACNA1C 

with several alterations in structural , and functional imaging . Several groups have previously implicated in other[22 ] [23 –25 ] CACNA1C 

adult psychiatric disorders, in particular, SCZ and major depression . L-type calcium channels also regulate changes in gene[26 –29 ]
regulation responsible for many aspects of neuronal plasticity and have more recently been shown to have direct effects on transcription[29

. Taken together these lines of evidence should lead to renewed biological investigation of calcium channels in the pathogenesis of BD]
and other psychiatric diseases. , located on chromosome 11, is a member of a family of cell surface proteins, the teneurins, relatedODZ4 

to the Drosophila pair-rule gene ten-m/odz. These genes are likely involved in cell surface signaling and neuronal pathfinding.

Three of our top 5 regions have non-coding RNAs present within the associated region (none are found in the remaining regions in 

). MicroRNAs are small RNA molecules known to regulate gene expression. Mir708, a member of a conserved mammalianTable S2 

microRNA family, is located in the first intron of . Three small nucleolar RNAs, SNORD69 and SNORD19, and SNORD19B areODZ4 

located on chromosome 3p21.1 and belong to the C/D family of snoRNAs involved in processing and modification of ribosome assembly.

Finally, a 121 base non-coding RNA with homology to the 5S-rRNA is also located within the association region. The role ofSYNE1 

microRNAs in neurodevelopmental disorders is increasingly apparent in Rett s syndrome, Fragile  and SCZ. Our study represents the first’ ×
connections to BD.

Our combined analyses with SCZ illuminates the growing appreciation of shared genetic epidemiology  and shared polygenic[30 ]
contribution to risk . This adds to the evidence that best supported loci have an effect across the traditional bipolar/schizophrenia[31 ]
diagnostic divide.

In conclusion, we have obtained strong evidence for replication of multiple signals in BD. In particular, we support prior findings in 

, and now identify as associated with BD. The strongly positive replication results imply that data from additionalCACNA1C ODZ4 

samples, both from GWAS and sequencing, will identify more of the genetic architecture of BD. When the biological concomitants of the

association signals have been characterized they are likely to provide important novel insights into the pathogenesis of BD.
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Figure 1
Results are shown as log ( value) for genotyped and imputed SNPs. The most associated SNP in the primary analysis is shown as the– 10 P 

small purple triangle. The most associated SNP in the combined analysis is shown as the large purple triangle. The color of the remaining

markers reflects with the most associated SNP. The recombination rate from CEU HapMap (second y axis) is plotted in light blue.r2 
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Table 1
Description of individual samples

Sample Ancestry Case (n)a Control (n)b Platformc Publicationd

BOMA- Bipolar Study, University of Bonn and CIMH Mannheim German 675 1297 550 [7 ]–[10 ]

Genetic Association Information Network (GAIN)/Bipolar Genome Study (BiGS) European-American 542 649 6.0 [7 ]–[10 ]

GlaxoSmithKline (GSK) British/Canadian/Scottish 890 902 550 [9 ]

Pritzker Neuropsychiatric Disorders Research Consortium European-American 1130 718 550 [9 ]

Systematic Treatment Enhancement Program for Bipolar Disorder (STEP1) European-American 922 645 500K [7 ],[8 ]

Systematic Treatment Enhancement Program for Bipolar Disorder (STEP2) European-American 659 192 5.0 [8 ]

Thematically Organized Psychosis (TOP) Study Norwegian 203 349 6.0 [11 ]

Trinity College Dublin Irish 150 797 6.0 [8 ]

University College London (UCL) British 457 495 500K [7 ],[8 ]

University of Edinburgh Scottish 282 275 6.0 [8 ]

Wellcome Trust Case-Control Consortium (WTCCC) British 1571 2931 500K [6 ], ,[8 ] [9 ]
TOTAL 7481 9250
a Cases include BD1, BD2, SAB, BD-NOS (see ).Table S1 
b Most controls were not screened for psychiatric disease. A subset of 33  however were, see .% supplement 
c Platforms are 6.0  Affymetrix Genome-Wide Human SNP Array 6.0; 5.0  Affymetrix Genome-Wide Human SNP Array 5.0; 500K  Affymetrix GeneChip Human Mapping 500K Array; 550 = = = =
Illumina HumanHap 550.
d Primary publication reporting individual sample level genotypes for BD listed. See for fuller description of publications and for sample origins in primary GWAS analyses.supplement table S1 

Table 2
Primary GWAS association results for four most significant regions

SNP Chra Positiona Nearest Gene A1 /A2b A1 freqc OR 95  CId % Praw Pgc

rs10994397 10 61949130 ANK3 T/C 0.06 1.35 (1.48 1.23)– 5.5  10× 10− 7.1  10× 9−

rs9371601 6 152832266 SYNE1 T/G 0.36 1.15 (1.21 1.10)– 4.3  10× 9− 4.3  10× 8−

rs7296288 12 47766235 Many C/A 0.48 1.15 (1.20 1.09)– 9.4  10× 9− 8.4  10× 8−

rs12576775 11 78754841 ODZ4 G/A 0.18 1.18 (1.25 1.11)– 2.7  10× 8− 2.1  10× 7−
a Chromosome;
b SNP basepair position on Build 36;
c Allele frequency in the total sample;
d OR is predicted towards allele A1

Table 3

Bipolar association results for primary GWAS, replication and combined samples for the most significant SNP from regions with gc < 5  10P × 5−
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SNP

CHR
b POSc A1 A2

PRIMARY
GWAS

REPLICATION
a

COMBINED
GWAS and

REPLICATION

GENES IN LD REGIONP gc

OR
d P 1-sided OR P OR

rs4765913 12 2290157 A T
6.50 ×

10 6− 1.15 1.6  10× 4− 1.13 1.82  10× 9− 1.14 CACNA1C

rs10896135 11 66307578 C G
8.46 ×

10 6− 0.88 1.47  10× 3− 0.91 2.77  10× 8− 0.89
ZDHHC24,YIF1A,TMEM151A, SYT12,SPTBN2,SLC29A2,SF3B2, RIN1,RCE1,RBM4B,RBM4,RBM14,
RAB1B,PELI3,PC,PACS1,NPAS4, MRPL11,LRFN4,KLC2,GAL3ST3, DPP3,CTSF,CNIH2,CD248,CCS,
CCDC87,C11orf86,C11orf80, BRMS1,BBS1,B3GNT1,ACTN3

rs2070615* 12 47504438 A G
4.00 ×

10 5− 0.90 2.52  10× 3− 0.93 2.48  10× 7− 0.91 RND1,DDX23,CACNB3

rs12576775 11 78754841 A G
2.09 ×

10 7− 0.85 7.59  10× 3− 0.92 6.32  10× 9− 0.88 ODZ4

rs2175420* 11 78801531 C T
2.90 ×

10 5− 0.87 7.80  10× 3− 0.92 6.55  10× 7− 0.89 ODZ4

rs3845817 2 65612029 C T
1.65 ×

10 5− 0.90 8.98  10× 3− 0.94 4.68  10× 7− 0.91

rs2176528 2 194580428 C G
3.98 ×

10 5− 1.15 1.04  10× 2− 1.09 1.12  10× 6− 1.12

rs4660531 1 41612409 G T
3.16 ×

10 5− 0.89 1.11  10× 2− 0.93 1.02  10× 6− 0.91

rs7578035 2 98749324 G T
1.83 ×

10 5− 1.12 1.29  10× 2− 1.06 7.93  10× 7− 1.09 TXNDC9,TSGA10,REV1,MRPL30, MITD1,MGAT4A,LYG1,LYG2,LIPT1, EIF5B,C2orf55,C2orf15

rs2287921 19 53920084 C T
1.68 ×

10 5− 1.12 1.37  10× 2− 1.06 8.99  10× 7− 1.10 SPHK2,SEC1,RPL18,RASIP1, NTN5,MAMSTR,IZUMO1,FUT2, FUT1,FGF21,FAM83E,DBP,CA11

rs11168751
* 12 47505405 C G

1.80 ×

10 5− 0.84 1.43  10× 2− 0.90 7.08  10× 7− 0.86 CACNB3

rs7296288 12 47766235 A C
8.39 ×

10 8− 0.87 1.50  10× 2− 0.94 8.06  10× 9− 0.90 TUBA1B,TUBA1A,RHEBL1, PRKAG1,MLL2,LMBR1L,DHH,DDN

rs7827290 8 142369497 G T
3.54 ×

10 5− 1.13 1.67  10× 2− 1.06 3.03  10× 6− 1.10 LOC731779,GPR20

rs12730292 1 79027350 C G
2.37 ×

10 5− 1.12 1.71  10× 2− 1.06 1.59  10× 6− 1.10

rs12912251 15 36773660 G T
9.57 ×

10 6− 1.13 2.04  10× 2− 1.06 9.63  10× 7− 1.10 C15orf53

rs4332037 7 1917335 C T
1.78 ×

10 5− 0.87 3.00  10× 2− 0.93 2.44  10× 6− 0.90 MAD1L1

rs6550435 3 36839493 G T
1.97 ×

10 5− 1.12 3.26  10× 2− 1.05 3.26  10× 6− 1.09 LBA1
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rs17395886 4 162498835 A C 2.18 ×

10 5−
0.86 3.51  10× 2− 0.93 3.78  10× 6− 0.89 FSTL5

rs6746896 2 96774676 A G
2.33 ×

10 6− 1.14 3.86  10× 2− 1.05 6.59  10× 7− 1.10 LMAN2L,FER1L5,CNNM4

rs736408 3 52810394 C T
1.22 ×

10 6− 1.14 4.65  10× 2− 1.05 6.03  10× 7− 1.10
WDR82,TWF2,TNNC1,TMEM110, TLR9,STAB1,SPCS1,SNORD69, SNORD19,SNORD19B,SFMBT1,
SEMA3G,RFT1,PRKCD,PPM1M, PHF7,PBRM1,NT5DC2,NISCH, NEK4,MUSTN1,LOC440957,ITIH1,
ITIH3,ITIH4,GNL3,GLYCTK, GLT8D1,DNAH1,BAP1,ALAS1

rs11162405 1 78242248 A G
2.54 ×

10 5− 0.90 4.76  10× 2− 0.96 7.11  10× 6− 0.92 ZZZ3,USP33,NEXN,MGC27382, GIPC2,FUBP1,FAM73A,DNAJB4, AK5

rs9804190 10 61509837 C T
3.06 ×

10 5− 1.17 9.63  10× 2− 1.04 6.32  10× 5− 1.10 ANK3

rs9371601 6 152832266 G T
4.27 ×

10 8− 0.87 0.103 0.97 1.52  10× 7− 0.91 SYNE1

rs3774609 3 53807943 G T
1.14 ×

10 5− 0.89 0.107 0.97 1.63  10× 5− 0.92 CHDH,CACNA1D

rs10994397 10 61949130 C T
7.08 ×

10 9− 0.74 0.116 0.94 6.14  10× 8− 0.82 ANK3

rs4668059 2 168874528 C T
4.45 ×

10 5− 1.18 0.158 1.04 7.05  10× 5− 1.12 STK39

rs16966413 15 36267191 A G
4.74 ×

10 5− 0.84 0.160 0.95 5.10  10× 5− 0.88 SPRED1

rs6102917 20 40652833 C G
3.88 ×

10 5− 1.44 0.165 1.11 4.22  10× 5− 1.31 PTPRT

rs11085829 19 13035312 A G
4.03 ×

10 6− 0.87 0.175 0.97 3.37  10× 5− 0.92 NFIX

rs875326 1 173556022 C T
2.51 ×

10 5− 1.15 0.183 1.03 5.75  10× 5− 1.10 TNR

rs13245097
* 7 2307581 C T

3.81 ×

10 5− 1.13 0.196 1.02 0.0001992 1.08 SNX8,NUDT1,MAD1L1,FTSJ2

rs780148 10 80605089 C G
4.66 ×

10 5− 1.12 0.230 1.03 7.59  10× 5− 1.09 ZMIZ1

rs2281587 10 105367339 C T
1.96 ×

10 5− 1.12 0.372 1.01 0.000238 1.07 SH3PXD2A,NEURL

rs10776799 1 115674570 G T
4.84 ×

10 5− 1.15 0.434 1.01 0.0009391 1.08 NGF

rs263906 1 101750922 C T
2.42 ×

10 5− 1.13 0.440 1.01 0.0002859 1.08

rs10028075 4 87186854 C T
8.96 ×

10 6− 0.89 1.00 1.02 0.001651 0.95 MAPK10

2.09 ×
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rs3968 9 4931997 C G 10 5− 1.17 1.00 0.92 0.07571 1.04

rs8006348 14 50595223 A G
4.91 ×

10 5− 0.89 1.00 1.05 0.01855 0.95 TRIM9

a Replication case and control sample details can be found in the ; 4  of the controls were screened for psychiatric disordersupplement %
b Chromosome;
c SNP basepair position on Build 36;
d OR is predicted towards allele A1


