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Abstract. This paper presents a MRI-free neuronavigation technique
for repetitive transcranial magnetic stimulation (rTMS). This method is
composed of three steps: 1) surface sampling of the subject’s scalp and
face thanks to a 3D tracker, followed by Poisson surface reconstruction, 2)
non-linear surface registration of an atlas surface to the extracted surface
using an efficient modified non-linear EM-ICP algorithm [2], and 3) ex-
trapolation of the transformation to a cortical stimulation target. Results
have been obtained on a database of 10 subjects and have shown an ac-
curacy of 10.2 mm. Although clearly less accurate than neuronavigation
on the subject’s MRI, we advocate that this neuronavigation method is
reproducible and acceptable for routine application of rTMS in severe
depression.

1 Introduction

Repetitive transcranial magnetic stimulation (rTMS) is a cortical stimulation
technique where a strong electromagnetic field is generated by a coil. The field
modifies the neuronal activity beneath the coil and since the stimulation is fo-
cal, rTMS has a broad range of potential applications in psychiatry and neu-
rology [13]. It has been recently shown that there is some correlation between
the stimulation accuracy and the therapeutic efficacy [4]. Therefore, the stimu-
lation is preferably conducted using a neuronavigation system [11] that allows
one to visualize the actual stimulation locus on the subject’s MRI; thus the
clinician can move the coil so that the stimulation is at the planned anatomical
target defined on the MRI prior to stimulation. In this paper, we propose a new
method that allows neuronavigation without MRI in the context of rTMS for
severe, drug-resistant depression. It is generally admitted that a good stimula-
tion target for depression is the dorsolateral prefrontal cortex (DLPFC), defined
as Brodmann areas 9-46 in [12]. There is a huge number of patients with severe
depression that could benefit from rTMS but the cost of the MRI scan, together
with the waiting time (approximately between 5 and 15 weeks depending on
countries), is a bottleneck for widespread MRI-based neuronavigated rTMS. We



argue that a system that would allow a fast, MRI-free navigation with a slightly
degraded accuracy but an excellent reproducibility between sessions would be
valuable in clinical routine. Hence, in this paper we propose a surface-based
neuronavigation on atlas for rTMS. Firstly, the subject’s skin surface (scalp and
face) is sampled thanks to a pointer localized by a 3D tracker of the neuro-
navigation system and reconstructed using the Poisson method. Secondly, the
atlas surface, on which the stimulation target has been localized beforehand, is
registered to the subject’s surface thanks to an EM-ICP non-linear registration
technique. Thirdly, the non-linear transformation computed on the surface is ex-
trapolated to the cortical stimulation target to predict the patient’s stimulation
target for treatment-resistant depression. Accuracy was evaluated on a dataset
of 10 subjects and was found to be 10.2 mm on average. The closest work to our
method was presented in [8], where the authors used a small number of surface
points (22) to register a database of 56 subjects so as to create a functional
probabilistic atlas. In our paper, the atlas is deformed toward the subject using
a large number of points (generally, several thousands) and an anatomical target
is transformed and used in the neuronavigation system to guide a rTMS coil.

2 Material and method

2.1 Method overview

An overview of the method is presented in Figure 1. For a given subject, a
surface sampling is first performed, using a pointer tracked by a 3D localizer
of the neuronavigation system. Then, the segmented surface of the atlas X is
registered to the subject’s surface Y and the resulting transformation T is used
to map the coordinates of the target into the subject’s space. The data are then
used by the neuronavigation system to guide the rTMS coil. The next sections
will describe the following steps: surface acquisition and reconstruction of Y in
Section 2.2 and surface registration of X to Y in Section 2.3. Visual results are
presented in Section 3.

2.2 Surface acquisition and reconstruction

Anatomical sampling of the subject’s scalp and face is performed using an opti-
cal tracking system (Claron Technology Inc., Toronto) composed of the Micron-
Tracker camera and recognized markers. Sampling of points is achieved by cov-
ering the subject’s head with the calibrated pointer tooltip. A software module
was developed to record 4 anatomical landmarks denoted as LY on the subject’s
head (inion, nasion, left and right tragus) used for an initial landmark-based
registration (coined the LDM method hereafter) and then at least 100 surface
points. The average number of samples was 3500 points, and the maximal sam-
pling time was 10 minutes.

Then, the set of unorganized points is processed and a closed surface is re-
constructed: firstly, the point set is processed through functions dedicated to
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Fig. 1. (a): overview of the surface-based neuronavigation on atlas. (b): a surface
rendering of the cortex with the Brodmann area 9/46, or DLPFC, dashed on the
surface. To compute Euclidean errors, the area is identified as the centroid, represented
here as the red point.

smoothing, outliers removal, normal estimation using the CGAL library [6]. The
output is an oriented, smoothed point set suitable for surface reconstruction. Sec-
ondly, a surface reconstruction algorithm is applied to generate an iso-surface
from the oriented pre-processed point set. 3D surface reconstruction from points
set is a well-studied issue. Commonly used surface reconstruction techniques are
based on Delaunay triangulation, implicit functions or parametric models. Given
that the output of the pre-processing stage is a non-uniform, outlier reduced and
smoothed point set, the reconstruction method used in our study should (1) infer
the topology of the unknown surface, (2) fit the data, and (3) fill holes. For these
reasons, the Poisson reconstruction technique is used [7]. This method allows re-
construction with greater details than other techniques. An implementation of
the Poisson surface reconstruction algorithm based on the VTK framework [3]
was used. This process produces the point set Y describing the subject’s scalp
and face, along with the landmark set LY .

2.3 Surface registration: efficient EM-ICP algorithm for linear and
non-linear registration

In this section, we show how to compute the transformation T that best super-
poses the surface of the atlas X on the surface of the subject Y (using additional
landmarks LX = (lXk ) and LY = (lYk )) so as to compute the coordinates of the
target in the subject’s space.

General scheme The EM-ICP algorithm [5] is an efficient and elegant solu-
tion for rigid registration of point sets. It relies on a probabilistic modeling of
the point-to-point correspondences that allows i) a pragmatic definition of the
superimposition of two point sets and ii) to deal with a relatively smooth cost
function to minimize (in contrast to the classical ICP algorithm). Moreover, it
is mathematically well-grounded (monotonic convergence), generic (no assump-
tion on tessellation/topology/number of points) and can be specialized in many
ways (e.g. to deal with non-linear deformations or to estimate shape models [1]).
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Most importantly, the EM-ICP algorithm [5] allows dealing very efficiently and
robustly with large point sets. This algorithm can be shown to be equivalent to
the alternated iterative minimization of a energetic criterion. In this work, we
propose a slight modification of the underlying criterion that allows one i) to use
pairs of landmarks to constrain the registration, ii) to symmetrize the estimation
of point-to-point correspondences and iii) to add a regularization on T to deal
with non-linear deformations:

E(T (X), Y, A,B) =
∑
j,k

(Ajk +Bjk)ρδ(||yj − T (xk)||2) + 2σ2β
∑
k

||lYk − T (lXk )||2

+2σ2
∑
j,k

Ajk log(Ajk) + 2σ2
∑
j,k

Bjk log(Bjk) + 2σ2αL(T ),

with ∀j,
∑
k

Ajk = 1 and ∀k,
∑
j

Bjk = 1 (1)

where

– if we drop matrix B for a moment, for the sake of clarity, A = (Ajk) is
the unknown match matrix encoding the a posteriori probabilities of corre-
spondence between points of X and Y . This probabilistic interpretation of
A is made possible thanks to the barrier function

∑
jk Ajk log(Ajk) [1]. In

essence, the greater Ajk, the more likely the point xk ∈ X to be the corre-
spondent of the point yj ∈ Y . σ2 is the Gaussian noise variance of X. This
fuzzy control on the correspondences allows one to handle problems due to
differences of sampling/number of points between X and Y : we do not look
for one-to-one correspondences between points of each surface but instead
for “fuzzy” correspondences linking each point of Y to each point of X. This
match matrix is a row stochastic matrix, which leads to many-to-one cor-
respondences. This asymmetric formulation makes the algorithm unable to
achieve a good matching in specific cases and can make the choice of the
source and target sets critical. To tackle this problem, our criterion also con-
tains a second match matrix B, that is column stochastic, in addition to the
row stochastic matrix A. The a posteriori probabilities of correspondences
between points of X and Y is encoded in both matrices A and B, making
the point-to-point matching much more symmetrical compared to [5].

– T is a transformation (to be later defined) superposing X on Y . This trans-
formation is subject to a regularizer L.

– α and β are two positive parameters weighing respectively the regulariza-
tion L(T ) term and the landmark-to-landmark discrepancy term

∑
k ||lYk −

T (lXk )||2 over the other terms.
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– the function (ρδ : r 7−→ r if r < δ and δ else) is a robust function allowing
points of X (resp. Y ) having no homologue in Y (resp. X) to be discarded
from the estimation of T .

It can be shown that the criterion E can be minimized over the three un-
known parameters T , A and B using the following two-step algorithm:

Algo NL-Sym-EM-ICP: Symmetric robust non-linear EM-ICP with landmarks

Step 1:
initialise Ã and B̃ to the null matrix
∀xk ∈ X;
S = {yj ∈ Y such that ||yj − T̃ (xk)||2 < δ} (using a kd-tree)
∀yj ∈ S;
∀yj ∈ S; Ãjk = exp(−(||yj − T̃ (xk)||2/(2σ2))
∀yj /∈ S; Ãjk is left equal to 0

B̃ = Ã

normalise Ã in rows and B̃ in columns
compute the vectors (p̃j) : ∀j, p̃j = 0 if

∑
i Ãji = 0 and 1 else

compute the vectors (q̃k) : ∀k, q̃k = 0 if
∑
i B̃ik = 0 and 1 else

Step 2: solve the approximation problem:
arg minT

∑
j,k(p̃jÃjk + q̃kB̃jk)||yj − T (xk)||2 + 2σ2β

∑
k ||T (lXk )− lYk ||2 + 2σ2αL(T )

Specifying T/L In practice, we design a coarse-to-fine approach to estimate T
by first computing the rigid transformation best superposing LX on LY and then
using the NL-Sym-EM-ICP algorithm by modeling T successively as a rigid R, an
affine F and a non-linear transformation W . For rigid and affine transformations
T , we take L(T ) = 0 and Step 2 has a closed-form solution. For the non-linear
transformation, we parametrize W as a deformation field (i.e. W (x) = x+ t(x))
and design L as a scalar Fourier-based regularizer over t:

L(t = (t1, t2, t3)T ) = L(t1)+L(t2)+L(t3),with L(ti) =
1

(2π)3

∫ ∞
−∞

|t∗i (ω)|2

φ∗(|ω|/b)
dω,

where ∗ is the Fourier transform operator, φ : R → R is an integrable function
and b is a real strictly positive rescaling factor. We choose φ as a Wu compactly
supported positive definite kernel. The advantage of such a regularization (over
the TPS regularizer for example) is that it i) provides efficient solutions for Step
2 based on sparse linear algebra [14] and ii) introduces a scaling parameter b.
The larger the b value, the more drastic the penalization of the high frequencies,
i.e. by choosing a large b value, we focus on capturing the global/high-scale
deformation superposing X and Y .
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Interpolating the target position Each estimated transformation R, F and
W is defined over R3 and has a closed-form expression. As a result, any point y
of Y (thus those representing the DLPFC) can be mapped in the space of X as
y

′
= W (F (R(y))).

2.4 Material

Phantom To assess the accuracy of the point acquisition and reconstruction
steps, a human-head phantom was used, shown in Figure 2-(a). The phantom
was scanned with an isotropic 0.5 mm resolution CT (size 512×512×841). A set
of 4099 points was acquired as described in Section 2.2. The surface of the phan-
tom was extracted using heuristic thresholding and mathematical morphology
operators.

Subjects The experiments were performed using anatomical brain MRI of 10
healthy volunteers. Each subject had a brain MRI scan using a 3D T1-weighted
sequence with 1 mm isotropic resolution, and the skin surface was extracted
using thresholding and mathematical morphology operators. On the subjects, the
surface representing the scalp and face was sampled using the process described
in Section 2.2.

MRI Atlas In the experiments, the MRI atlas described in [9] was used. The
skin surface was extracted using thresholding and mathematical morphology
operators, and the four landmark points LX were manually localized. This atlas
was used instead of the Colin27 atlas since on the latter, the surface extraction
process is difficult due to an antenna visible on the top of the atlas.

DLPFC localization Manual positioning of the DPLFC on the subjects’ MRI
and on the atlas was performed by an expert in neuroanatomy. The DLPFC was
defined as the second third, i.e. middle part, of the middle frontal gyrus along
the antero-posterior axis, corresponding to Brodmann areas 9/46 as described
in [12], and as shown in Figure 1-(b). We have chosen to characterize the position
of the DLPFC by its centroid, shown by the red dot. Therefore, hereafter the
DLPFC is considered as a point, what enables to compute Euclidean distances
between estimated targets and reference targets.

3 Validation and results

3.1 Poisson reconstruction accuracy

The point set acquired on the physical phantom was registered to the phan-
tom’s skin surface extracted from the CT using a rigid EM-ICP. The computed
transformation was then applied to the reconstructed Poisson surface. The mean
point-to-point error between the Poisson surface and the surface extracted from
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the CT scan was 1.6 mm (standard deviation 1.08 mm). Results are presented
in Figure 2. These results demonstrate the accuracy of the point sampling and
show that the reconstructed surface is valid to represent the subject’s scalp and
face.

3.2 Distance between predicted and reference DLPFC

The skin surface extracted on the MRI was registered toward the Poisson re-
constructed surface using rigid EM-ICP. On the other side, the Poisson recon-
structed surface was registered toward the atlas skin surface using the non-
linear EM-ICP. Therefore, the predicted DLPFC can be compared to the ref-
erence DLPFC. Various degrees of freedom of the transformation were tested:
landmark-based registration that corresponds to a Procrustes alignment using
the 4 anatomical landmarks (LDM), LDM followed by a rigid registration (R),
R followed by an affine registration (RA) and RA followed by a non-linear reg-
istration (NL). Table 1 shows the obtained errors for the 10 subjects for all
transformations. Firstly, it can be observed that the mean error decreases when
the degrees of freedom of the transformation increase. Secondly, the error ob-
tained with the fully non-linear method is 10.2 mm on average. These results
are discussed hereafter.

4 Conclusion

In this paper, a new method was proposed to perform neuronavigation without
MRI for transcranial magnetic stimulation. The method is based on a subject’s
surface sampling and reconstruction, followed by a non-linear registration of an
atlas surface to the obtained surface. The transformation is then used to map
the coordinates of the DLPFC in the atlas to the subject’s space. Firstly, we
found the surface sampling and reconstruction on the phantom to be accurate
(mean error 1.6 mm, standard deviation 1.08 mm). Secondly, we compared the
surface-based DLPFC localization to a ground truth localization performed by
an expert in neuroanatomy. Results have shown on 10 subjects that the mean
error was 10.2 mm.

In a previous study [10], we have assessed the performance of 3 clinicians on
25 subjects to localize the DLPFC on MRI and found a large discrepancy be-
tween raters: accuracy compared to reference localization varied between 8 mm
and 14 mm (standard deviation 5.7 mm). In comparison, the mean error of
10.2 mm can be considered acceptable. In addition, we focus on rTMS appli-
cation where the electromagnetic field has some dispersion. Therefore, we ar-
gue that, although less accurate than neuronavigation using the subject’s MRI,
this MRI-free neuronavigation technique is reproducible between sessions and is
valuable for a routine clinical use of rTMS. Further work should 1) enlarge the
database of subjects and extend this technique to other stimulation targets, such
as the temporoparietal cortex to treat auditory hallucination in schizophrenia
for instance and 2) evaluate the therapeutic efficiency on patients.
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Fig. 2. This figure shows the validation of the acquisition and reconstruction of a point
set on a physical-head phantom. (a) shows a picture of the physical phantom used to
assess the surface acquisition and reconstruction method. (b) shows the acquired point
set and the reconstructed Poisson surface. (c) shows the skin surface extracted from
CT. (d) shows the Poisson surface registered to the CT surface. The color represents
the spatial distribution of errors after reconstruction and registration. The mean point-
to-point error was 1.6 mm with standard deviation was 1.08 mm.
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Landmark-based Rigid Affine Non-linear
Subject 1 11.3 5.7 3.5 3.3
Subject 2 13.1 13.5 12.1 11.9
Subject 3 23.8 15.1 13.6 12.3
Subject 4 27.7 10.5 8.8 9.2
Subject 5 16.8 4.7 3.2 3.1
Subject 6 22.5 9.1 7.6 6.8
Subject 7 32.9 21 20.3 19.5
Subject 8 22.7 18.7 14.2 13.6
Subject 9 21.3 19.2 15.6 15.4
Subject 10 23.3 7.7 6.4 6.7

Mean (mm) 21.54 12.52 10.53 10.18
Std.dev. (mm) 6.46 5.86 5.56 5.33

Table 1. Results of the surface-based localization of the DLPFC when compared to the
reference DLPFC. Various parametrization of the surface-based method were tested.
The fully non-linear registration provided a mean error of 10.2 mm.
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