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Abstract

Collagen VI myopathies, caused by mutations in the genes encoding collagen type VI (ColVI), represent a clinical

continuum with Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) at each end of the

spectrum, and less well-defined intermediate phenotypes in between. ColVI myopathies also share common

features with other disorders associated with prominent muscle contractures, making differential diagnosis difficult.

This group of disorders, under-recognized for a long time, has aroused much interest over the past decade, with

important advances made in understanding its molecular pathogenesis. Indeed, numerous mutations have now

been reported in the COL6A1, COL6A2 and COL6A3 genes, a large proportion of which are de novo and exert

dominant-negative effects. Genotype-phenotype correlations have also started to emerge, which reflect the various

pathogenic mechanisms at play in these disorders: dominant de novo exon splicing that enables the synthesis and

secretion of mutant tetramers and homozygous nonsense mutations that lead to premature termination of

translation and complete loss of function are associated with early-onset, severe phenotypes. In this review, we

present the current state of diagnosis and research in the field of ColVI myopathies. The past decade has provided

significant advances, with the identification of altered cellular functions in animal models of ColVI myopathies and

in patient samples. In particular, mitochondrial dysfunction and a defect in the autophagic clearance system of

skeletal muscle have recently been reported, thereby opening potential therapeutic avenues.

Review

Collagen VI: an important component of connective

tissues

Collagens are major constituents of the extracellular

matrix (ECM), and are found in most connective tissues.

They provide structural and mechanical stability to tis-

sues, but they also play crucial roles in cell-ECM inter-

actions through various receptors [1]. In particular,

collagen type VI (ColVI), an important component of

skeletal muscle ECM, is involved in maintaining tissue

integrity by providing a structural link between different

constituents of connective-tissue basement membranes

(for example, collagen types I and IV, biglycan, and dec-

orin) and cells [2-15] (Figure 1). In addition to its struc-

tural role, ColVI supports adhesion, spreading and

migration of cells, and cell survival, as discussed later in

this review.

ColVI is a heterotrimeric molecule composed of three

individual a(VI) chains that display a similar structure,

with a triple helical domain characterized by the repeti-

tion of the Gly-X-Y amino acid sequence, flanked by

globular domains homologous to von Willebrand factor

A domains [16,17]. In addition to the well-known a1

(VI), a2(VI) and a3(VI) chains encoded in human by

the COL6A1, COL6A2 (located head-to-tail on chromo-

some 21q22.3), and COL6A3 (on chromosome 2q37)

genes [18], three novel chains, a4(VI), a5(VI) and a6

(VI), have recently been identified [19,20]. These chains

have high structural homology to the a3(VI) chain. In

humans, the COL6A4, COL6A5 and COL6A6 genes are

all located on chromosome 3q22.1, with the COL6A4

gene being split by a chromosome break and thus not

coding for a protein [19-21]. The murine orthologs of

these genes are organized in tandem on chromosome 9

(Col6a4, Col6a5 and Col6a6) and encode the a4(VI), a5

(VI) and a6(VI) chains. The expression pattern of the

three novel chains differs between mice and humans,

and also between fetal and adult tissues [19,20].
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Figure 1 Schematic representation of the collagen type VI (ColVI) intracellular assembly process, and interactions with skeletal muscle

extracellular matrix (ECM) components. Individual a(VI) chains fold through their triple helical domains to form monomers (1:1:1 ratio) in the

endoplasmic reticulum (ER), which further align in an anti-parallel manner as dimers and tetramers that are stabilized by disulfide bonds

between cysteine residues (S = S links). Post-translational modifications (indicated in orange) take place in the ER and Golgi, followed by

secretion of tetramers that align non-covalently end to end, to form beaded microfibrils in the ECM. ColVI interacts with collagenous and non-

collagenous components of the basal lamina and interstitial matrix surrounding muscle fibers.
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Importantly, in the context of ColVI myopathies, the a6

(VI) chain is the only one expressed at high levels in

human skeletal muscle, at higher levels in fetal than

adult tissue [19]. In skin, a detailed analysis of the

expression of the human a5(VI) and a6(VI) chains

revealed that both chains are expressed, albeit differ-

ently, and that they are variably altered in tissues from

patients with mutations in the COL6A1, COL6A2 and

COL6A3 genes [22]. Interestingly, the COL6A5 gene had

previously been reported as associated with atopic der-

matitis under the name COL29A1 [23], but this associa-

tion has recently been questioned [24,25]. The knee

osteoarthritis susceptibility locus DVWA was shown to

correspond to the 5’ part of the split COL6A4 gene [21].

Although largely ubiquitous, the expression of ColVI

seems to be finely regulated in different cell types and

tissues, as shown for the murine Col6a1 gene. The iden-

tification of a transcriptional enhancer located in the 5’-

flanking sequence of the gene points to a collaborative

crosstalk between myogenic and mesenchymal/endomy-

sial cells, enabling transcription of ColV in muscle con-

nective tissue [26-28].

The a1(VI), a2(VI) and a3(VI) chains assemble intra-

cellularly as monomers (1:1:1 ratio), from their C-term-

inal ends, and subsequently form dimers (two anti-

parallel, overlapping monomers) and tetramers (four

monomers) that are stabilized by disulfide bonds

between cysteine residues of the three chains [29-34].

ColVI chains are subjected to extensive post-transla-

tional modifications such as hydroxylation of lysine and

proline residues [35], and glycosylation of hydroxyly-

sines, which have been shown to be essential for the tet-

ramerization and further secretion of ColVI [36,37].

Upon secretion, tetramers are further aligned end to

end as microfibrils in the extracellular space, with a

characteristic beaded appearance [33] (Figure 1). To

date, somewhat contradictory results have been obtained

regarding the possible assembly of the newly character-

ized a(VI) polypeptides with the a1(VI), a2(VI) chains.

In transfection experiments, only a4(VI) appeared to

have this ability [19], whereas in mouse muscle, all three

were reported to do so [20]. Whether and how these

additional chains may fit in the pathogenesis of ColVI

myopathies remains unresolved to date, and needs to be

addressed more comprehensively. To date, in our cohort

of patients, no pathogenic mutations have been found

by sequencing of the COL6A5 and COL6A6 genes in

patients without mutations in the COL6A1-3 genes (V.

Allamand, data not shown).

Clinical phenotypes of collagen VI myopathies

The etiological definition of ColVI myopathies as a spe-

cific condition has evolved over the years with the blur-

ring of boundaries between two disorders, initially

described separately but now recognized as the extreme

ends of a continuous clinical spectrum [38,39] (Figure

2). The severe endpoint of this spectrum corresponds to

Ullrich congenital muscular dystrophy (UCMD, OMIM

254090; http://www.ncbi.nlm.nih.gov/omim), described

in 1930 as ‘congenital atonic-sclerotic muscular dystro-

phy’, emphasizing its early onset and the presence of

proximal joint contractures associated with a striking

distal hyperlaxity [40,41]. Orthopedic deformities (joint

contractures, scoliosis) and respiratory impairment with

diaphragmatic failure generally develop within the first

decade of life, and may be life-threatening. Arrest of

motor milestones with no acquisition of walking ability

is seen in a subset of patients, but most children are

able to walk, and show later progression of muscle

weakness with loss of ambulation around 10 years of

age, and a requirement for mechanical ventilation in late

childhood or young adulthood [42,43].

At the other end of the spectrum is the milder form

Bethlem myopathy (BM, OMIM 158810), described in

1976, which begins in the first or second decade,

although a neonatal history may be recognized, charac-

terized by early contractures of finger flexors, wrist,

elbows and ankles [44,45]. Respiratory failure and distal

hyperlaxity are usually absent or are milder than in

UCMD, although the latter may not be so uncommon

in very young children with BM. The course is usually

slow, with most of the patients remaining ambulatory.

However, progression of muscle weakness occurs often

in the fifth decade, resulting in about 50% of patients

requiring walking aids or a wheelchair [46]. Intermediate

phenotypes have been described, and named ‘mild

UCMD’ or ‘severe BM’, thereby reinforcing the notion

of clinical overlap between Ullrich and Bethlem pheno-

types [38,39].

Skin features such as follicular hyperkeratosis and

hypertrophic scars or keloid formation are common

[38,39,42,43,47-49]. Other common findings include

normal cognitive abilities, normal or only slightly raised

serum creatine kinase (CK) levels, and absence of car-

diac phenotype. Two other conditions that fall within

the spectrum of ColVI myopathies have been documen-

ted: autosomal dominant limb-girdle muscular dystro-

phy (LGMD) (in three families) and, more recently,

autosomal recessive myosclerosis myopathy (OMIM

255600) (in one family) [50,51].

The prevalences of UCMD and BM in northern Eng-

land has recently been reported as 0.13 and 0.77 per

100,000, respectively, amounting collectively to 0.9 per

100,000 [52]. UCMD seems to be the second most com-

mon type of congenital muscular dystrophy (CMD) in

Europe (behind laminin a2 chain deficiency; OMIM

607855) and also in Japan (behind Fukuyama congenital

muscular dystrophy; OMIM 253800, [53]) and Australia
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(behind a-dystroglycan glycosylation defects; [54]). In

the cohort from northern England, BM emerges as the

fourth most common myopathy behind myotonic dys-

trophy (OMIM 160900), facio-scapulo-humeral muscu-

lar dystrophy (OMIM 158900) and Duchenne/Becker

muscular dystrophy (OMIM 310200 and 300376) [52].

Differential diagnosis of ColVI-related myopathies

With the most prominent clinical presentation of

ColVI myopathies being muscle weakness and contrac-

tures, associated with variable degrees of hyperlaxity,

an important difficulty lies in defining boundaries and

contiguities, with the possible differential diagnosis

including congenital myopathies, Emery-Dreifuss mus-

cular dystrophy (EDMD; OMIM 181350), LGMD, rigid

spine muscular dystrophies, and other diseases of con-

nective tissues such as Ehlers-Danlos syndrome

[55-57]. Imaging techniques, such as computed

tomography or magnetic resonance imaging (MRI) of

muscle, are now recognized as very helpful in the diag-

nostic approach of muscle disease, because there are

specific patterns of muscle involvement in each of

these contractile myopathies as reported for EDMD

with LMNA mutations [58], muscular dystrophies with

rigidity of the spine [59], and ColVI myopathies

[58,60,61]. From these studies, the typical pattern of

muscle involvement in ColVI myopathies is now con-

sidered to be constituted by a diffuse, concentric hypo-

density of the thigh muscles with relative sparing of

the sartorius, gracilis and adductor longus muscles.

The vasti muscles are the most affected muscles. In

addition, a peculiar central area of abnormal signal is

seen within the rectus femoris, initially referred to as a

‘central shadow’ [62].

Figure 2 Clinical spectrum, associated spine deformation and muscle MRI in collagen type VI (ColVI) myopathies. (A), Early severe

phenotypes, corresponding to classic Ullrich congenital muscular dystrophy (UCMD), (B) intermediate forms seen in children or adults and (C)

less severe, classic Bethlem myopathy (BM) forms constitute the overlapping clinical presentations of ColVI myopathies. (D) Radiography showing

the evolution of spine deformation in a patient presenting with a classic early-onset UCMD phenotype. T1 transverse section of Bethlem

myopathy upper limb girdle (E) and (F) thighs. Note the fatty infiltration, which appears as hyperintense area on T1-weighted images, located

around the triceps brachialis muscles in (E) and along the fascia of vastus lateralis and vastus medialis muscles in (F) (yellow arrows). (G) The

concentric fatty involvement of the thigh muscles is also seen on whole body MRI. (Images courtesy of Drs Susana Quijano-Roy and Tanya

Stojkovic).
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In the context of the differential diagnosis, the absence

of raised CK levels, the lack of a cardiac phenotype, and

the presence of a specific MRI pattern are strongly sug-

gestive of a ColVI myopathy.

Molecular diagnosis and genetics

In light of the clinical variability and the overlapping

presentation with other muscular disorders, a definite

diagnosis can only be made after the identification of

pathogenic mutations in one of the COL6A genes,

which to date are restricted to COL6A1, COL6A2 and

COL6A3. However, the large size (106 coding exons in

total corresponding to 150 kb of genomic DNA) of

these genes makes routine molecular diagnostics costly

and time-consuming. The road to this ‘holy grail’ of

diagnosis is thus often lengthy and full of pitfalls, and

relies on a combination of clinical, biochemical and

molecular findings.

Historically, muscle biopsies were the routine and pri-

mary step undertaken for diagnostic purposes, and dou-

ble immunostaining with a basement-membrane marker

enabled recognition of ColVI deficiency in patients with

UCMD [63], but not in patients with BM. The current

diagnostic method of determining ColVI involvement is

primarily based on immunocytochemistry of cultured

skin fibroblasts, but this analysis is only available in a

limited number of laboratories to date. A number of

antibodies recognizing human ColVI are now commer-

cially available and may be used for such techniques; in

particular, the refined protocol proposed by Hicks et al.

[64], using a polyclonal antibody raised against mature

ColVI from human placenta, has better sensitivity, espe-

cially in fibroblast cultures from patients with BM

(Figure 3). The absence or alteration of ColVI secretion

in cultured fibroblasts, associated with clinical symptoms

compatible with a diagnosis of ColVI myopathy, cer-

tainly warrants further genetic analysis.

Over the past decade, the development of genetic stu-

dies has demonstrated the heterogeneity and complexity

of the molecular mechanisms at play in ColVI myopa-

thies. An autosomal recessive pattern of inheritance was

initially thought to be involved in UCMD, and linkage

analysis led to the identification of mutations in the

COL6A2 and COL6A3 genes [65-67]. However, numer-

ous dominant de novo mutations have now been shown

to be involved, accounting for more than 50% of the

mutations causing UCMD [38,39,42,68]. Similarly, auto-

somal dominant mutations were first identified in the

COL6A1 and COL6A2 genes in families with BM, sug-

gesting that BM was mostly familial and inherited as an

autosomal dominant disease [69], although rare de novo

mutations and autosomal recessive mutations have now

been reported [70-73]. To date, over 200 mutations

have been identified in these genes, mostly distributed

in the COL6A1 and COL6A2 genes. The most common

types of mutations are point mutations, and mutations

leading to premature termination codons (PTCs) and

exon skipping (Figure 4). Among the former, missense

changes affecting glycine residues in the triple helical

domains of the corresponding proteins are the most

common, and are often dominant de novo. Because

these changes affect crucial amino acids within the col-

lagenous domains, they hamper triple-helix formation

[74-77]. Splice mutations resulting in in-frame exon

skipping are generally dominant de novo mutations, and

exons 16 of COL6A3 and 14 of COL6A1 seem to be

preferentially affected, leading to UCMD or BM pheno-

types, respectively [53,75,78-83]. Nonsense mutations

and small deletions or insertions inducing PTCs within

the coding frame are mostly inherited as recessive muta-

tions, and lead to loss of function of the protein

[42,53,68,75,76,79-92]. These mutations are responsible

for most UCMD phenotypes. Nevertheless, it should be

noted that genotype-phenotype correlations are very dif-

ficult to identify.

It has recently been shown that all types of mutations

alter transcript levels, and that in the case of PTC-bear-

ing transcripts, which are specifically degraded via the

nonsense-mediated mRNA decay (NMD [93,94]) path-

way, quantification of the three COL6A mRNAs is a

helpful tool to pinpoint the mutated gene, thereby facili-

tating these cumbersome molecular analyses [42]. The

NMD-induced degradation of PTC-bearing transcripts

may also, at least in part, explain why the parents of

patients with UCMD who themselves harbor recessive

mutations are asymptomatic; their heterozygous status

sustains the expression of 50% of the ‘normal’ protein,

thereby leading to a ‘functional loss of heterozygosity’.

The study by Briñas and collaborators also provided

some genotype-phenotype correlations in a cohort of

patients with early-onset ColVI myopathy, showing that

recessive mutations leading to PTC were associated with

severe phenotypes [42]. Genetic studies are further com-

plicated by a possibly variable penetrance as reported by

Peat et al. [89].

Finally, the highly polymorphic nature of the COL6A

genes makes it difficult to definitely assign pathogenicity

to some variants, especially missense ones that do not

affect glycine residues within the triple-helix domains of

the proteins. In addition, these ‘polymorphisms’ may

very well play a role in the extreme clinical variability of

these conditions, particularly in patients carrying identi-

cal mutations but presenting with variable severity.

The types of mutations identified also reflect the

methods used in laboratories performing these analyses

(for example, sequencing of genomic DNA or of the

coding sequences on cDNA), but the emergence of

high-throughput methods (arrays) is likely to allow the
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identification of as yet unknown or under-recognized

pathogenic mechanisms, such as large gene rearrange-

ments, or promoter or deep intronic mutations, as

recently illustrated in two reports [95,96].

Animal models and pathophysiology

Limited access to muscle biopsies hinders extensive

investigations of the specific cellular mechanisms leading

to the development of the muscle pathology, and in

vitro/ex vivo cellular systems only partially reproduce

the complexity of the tissue. The development of the

first animal model of ColVI deficiency in 1998, engi-

neered by invalidating the Col6a1 gene in mice, has

proven central to understanding the cellular pathways

involved in these diseases. Homozygous animals were

reported to develop a mild myopathic phenotype, and

were initially described as a model of BM [97]. Interest-

ingly, the diaphragm was the most affected muscle, with

signs of necrosis evidenced by uptake of Evan’s blue dye

[97]. Subsequently, a latent mitochondrial dysfunction

accompanied by ultrastructural alterations of mitochon-

dria and the sarcoplasmic reticulum, resulting in sponta-

neous apoptosis, was found in about one-third of muscle

fibers [98]. Reduced contractile strength of the dia-

phragm and other muscle groups was also reported in

Col6a1
-/- mice in this initial study [98]. The maximal

Figure 3 Collagen type VI (ColVI) expression study in cultured skin fibroblasts. (A) Representative images obtained using the protocol

from [67] in which ColVI (red) is labeled with monoclonal antibody MAB1944 (Chemicon (now Millipore), Billerica, MA, USA) and perlecan (green)

with monoclonal antibody MAB1948 (Chemicon). Note that ColVI expression appeared clearly altered in a patient with an early severe (ES) form

and less so in patients with intermediate (Int) or Bethlem myopathy (BM) forms, compared with control fibroblasts (Cont). (B) Using the protocol

of Hicks et al. [64], which detects ColVI (red) with polyclonal antibody Ab6588 (Abcam, Cambridge, UK) and fibronectin (green) with monoclonal

antibody F15 (Sigma Chemical Co., St Louis, MO, USA), the sensitivity of the method is increased, and defective ColVI secretion could be

detected in all patients’ samples. Insets indicate nuclei, labeled using DAPI. Bars are 50 μm. (Images courtesy of Corine Gartioux and Valérie

Allamand).
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isometric tension generated by ColVI-deficient skinned

fibers from gastrocnemius was found to be reduced in a

recent report; however, using a protocol of eccentric

contractions in vivo, no muscle force drop was found,

indicating that the lack of ColVI does not impair myofi-

brillar function [99]. Importantly, mitochondrial dys-

function was also reported in cultured muscle cells from

patients and could be reversed by cyclosporin (Cs)A, an

immunosuppressive drug that prevents the opening of

the mitochondrial permeability transition pore through

binding to cyclophilin D, and also inhibits the phospha-

tase calcineurin [100,101]. Another in vitro study

showed that patients-derived skin fibroblasts behave dif-

ferently from myoblasts in that respect, and also ques-

tioned the specificity of this mitochondrial dysfunction

[102], warranting further studies on the matter.

A role for cell survival had previously been proposed

for ColVI because it was shown to prevent anti-a1

integrin-mediated apoptosis and trigger the downregula-

tion of bax, a pro-apoptotic molecule [103,104].

Recently, a study of the autophagic process in muscles

of Col6a1 knockout mice revealed that autophagy was

not induced efficiently [105]. The ensuing defective

autophagy provides the link between the previously

Figure 4 Repartition of the various types of mutations identified in the COL6A1, COL6A2 and COL6A3 genes. This schematic reflects, to

the best of our ability, the distribution of 258 allelic mutations (98 on COL6A1, 113 on COL6A2 and 47 on COL6A3). Dominant de novo mutations

represent 67% of the missense mutations, affecting glycine residues in the TH domains (Gly in TH), 57% of small deletions (< 5 amino acids) and

44% of splice-site mutations leading to in-frame exon skipping, whereas 97% of mutations leading to premature termination codons (PTCs) are

familial (recessive or dominant).
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Figure 5 Current pathological hypotheses and therapeutic targets. The currently known cascade of main events leading to myofiber

degeneration in ColVI-deficient skeletal muscle is shown. Mitochondrial dysfunction (due in part to the defective permeability transition pore

(PTP) opening) triggers an energetic imbalance with the increased levels of phosphorylated adenosine monophosphate-activated protein kinase

(p-AMPK), Ca2+ overload and the production of reactive oxygen species (ROS). Lack of autophagy induction exacerbates the cellular dysfunction

because defective mitochondria and proteins (such as p62 aggregates) are not cleared from the cytoplasm. Together, these defects lead to

increased apoptosis. Potential therapeutic interventions are indicated in green.
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described mitochondrial dysfunction and myofiber

degeneration, as abnormal organelles and molecules

cannot be efficiently cleared from the cell. This study

further showed that the forced induction of autophagy,

either by dietary restriction or by treatment with rapa-

mycin or CsA, ameliorated the phenotype of the

Col6a1
-/- mice (Figure 5). A similar alteration of autop-

hagy was also detected in muscle biopsies derived from

nine patients with UCMD or BM [105]. These data thus

provide a basis for novel therapeutic targets to promote

the elimination of defective organelles in ColVI-deficient

skeletal muscle.

Morpholino-mediated knock-down of the col6a1 and

col6a3 genes in zebrafish embryos showed that collagen

VI deficiency significantly impairs muscle development

and function [106]. Increased apoptosis, partially pre-

vented by CsA treatment, was also described in the zeb-

rafish morphants [106]. As in other instances,

perturbation of muscle components leads to a more

severe phenotype in zebrafish than in mouse models,

which may in part be due to intrinsic differences in

muscle development in these species, especially in terms

of timing. Zebrafish models have emerged as major in

vivo models of neuromuscular disorders, and seem to be

particularly well suited for whole-organism screens for

potential pharmacological treatments, as recently illu-

strated in zebrafish models of Duchenne muscular dys-

trophy [107].

Therapeutic intervention

To date, no curative treatment exists for these disorders,

and most patients rely on supportive treatment of symp-

toms, usually involving orthopedic (spinal deformations,

contractures) and respiratory complications [108].

The unveiling of mitochondrial dysfunction led to an

open pilot trial in five patients with UCMD or BM trea-

ted orally with CsA for 1 month [109]. This study

reported normalization of the mitochondrial dysfunction

and decrease of apoptosis of muscle cells following this

short-term treatment [110,111]. Longer treatment (up to

2 years) had some beneficial effect on muscle function

in these patients but did not prevent progression of the

disease in the children [38]. Debio-025 (D-MeAla3Et-

Val4-cyclosporin; DebioPharm) prevents the inappropri-

ate opening of the mitochondrial permeability transition

pore (PTP) without interfering with calcineurin [112],

and was shown to restore mitochondrial function in cul-

tured muscle cells of patients [100] and in Col6a1
-/-

mice [113]. Debio-025 is currently being tested in a

phase II clinical trial in patients with chronic hepatitis

C. Another anti-apoptotic pharmacological agent that is

being investigated in the context of ColVI myopathies is

Omigapil (N-(dibenz(b, f)oxepin-10-ylmethyl)-N-methyl-

N-prop-2-ynylamine maleate; Santhera Pharmaceuticals),

a chemical derivative of (-)-deprenyl, which was shown

to reduce GAPDH-Siah1-mediated apoptosis in a mouse

model of laminin a2 chain deficiency [114].

It should be noted that translating some of this

research from animal models to patients represents a

challenging task, particularly because, to date, these

drugs have not been approved for use in children, the

patient population with the most severe forms of ColVI

myopathies. In addition, there is concern about these

therapeutic approaches because of the pleiotropic, and

potentially harmful, consequences of anti-apoptotic and/

or pro-autophagy treatments. Furthermore, such

approaches aiming at modulating downstream pathways

would not address the primary defect in these disorders,

that is, lack of ColVI in the connective tissue, and

would thus need to be continually administered. For the

sake of discussion, several alternative, and not necessa-

rily exclusive, therapeutic avenues that would sustain re-

expression of ColVI may be envisioned. These

approaches may consist of gene-based therapies, such as

vector delivery of ColVI-coding sequence, and antisense

inhibition of mutant transcripts exerting dominant-

negative effects [96]. Additionally, as nonsense muta-

tions leading to PTCs are often associated with early-

onset, severe phenotypes [42], pharmacological

approaches aiming to ‘force’ translation of PTCs (a phe-

nomenon known as ‘translational readthrough’ [115])

may prove beneficial for a subset of patients carrying

these types of mutations. However, the complex assem-

bly process and regulation of ColVI may prove challen-

ging and may limit the realistic options to be

investigated.

Conclusions

The past decade of research on neuromuscular disorders

has proven very exciting, and has seen ColVI myopa-

thies emerge as an important set of disorders, rather

under-recognized until recently. Many challenges remain

despite the tremendous advances in the understanding

of their genetic, biochemical and pathophysiological

bases. It is hoped that the decade(s) to come will see the

development of safe and efficient therapies for these dis-

orders. Consequently, as for other rare diseases, the

scientific community, and patient organizations, and

patients and their families have become increasingly

aware of the need for databases, both clinical and

genetic, to facilitate recruitment of patients for upcom-

ing clinical trials.
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