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“What this paper adds” statement 

What is already known about this subject 

Anti-angiogenic drugs have been developed as an effective therapeutic strategy for inhibiting 

tumour growth. However, their pharmacokinetics (PK) and their ligand inhibition properties have 

not been well characterised. The binding to a circulating target, such as vascular endothelial 

growth factor (VEGF), makes the PK of these drugs more complex. 

What this study adds 

The underlying mechanism of disposition of aflibercept, where a saturable and high-affinity 

binding of aflibercept to VEGF was adequately characterised by the Michaelis-Menten 

approximation of a target-mediated drug distribution (TMDD) model. To our knowledge, it is the 

first published mechanism-based population pharmacokinetic model for an anti-VEGF drug.   
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Summary 

Aim: Aflibercept (VEGF-Trap), a novel antiangiogenic agent that binds to VEGF, has been 

investigated for the treatment of cancer. The aim of this study was to develop a mechanism-based 

pharmacokinetic model for aflibercept to characterise its binding to VEGF and its 

pharmacokinetic properties in healthy subjects. 

Methods: Data from two phase I clinical studies with aflibercept administered as a single 

intravenous infusion were included in the analysis. Free and bound aflibercept concentration-time 

data were analyzed using a nonlinear mixed-effects modelling approach with MONOLIX 3.1.  

Results: The best structural model involves two compartments for free aflibercept and one for 

bound aflibercept, with a Michaelis-Menten type binding of free aflibercept to VEGF from the 

peripheral compartment. The typical estimated clearances for free and bound aflibercept were 

0.88 L/day and 0.14 L/day, respectively. The central volume of distribution of free aflibercept 

was 4.94 L. The maximum binding capacity was 0.99 mg/day and the concentration of aflibercept 

corresponding to half of maximum binding capacity was 2.91 µg/mL. Interindividual variability 

of model parameters was moderate, ranging from 13.6 % (Vmax) to 49.8 % (Q). 

Conclusion: The present PK model for aflibercept adequately characterises the underlying 

mechanism of disposition of aflibercept and its nonlinear binding to VEGF. 
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Introduction 

 

Angiogenesis, the development of new blood vessels from pre-existing vasculature, participates 

in a variety of physiological processes and disease states [1]. Its critical role in tumour 

development and progression was established 30 years ago [2]. This discovery brought a new 

effective approach called anti-angiogenic therapy to cancer treatment, which consists in limiting 

blood supply to tumours by preventing angiogenesis. The development of new agents has 

attracted many researchers’ interest in the pharmaceutical industry. To date, the best 

characterised and most highly validated anti-angiogenic approach involves targeting the vascular 

endothelial growth factor (VEGF) pathway [3]. 

VEGF is the most potent pro-angiogenic growth factor, promoting the formation of blood vessels 

which is required for both normal and neoplastic tissue growth [1, 4]. VEGF binds to two high-

affinity receptors (VEGFR-1 and VEGFR-2) on endothelial cells. This binding activates the 

intrinsic tyrosine kinase activity of their cytodomains, initiating intracellular signalling. VEGF is 

expressed in a large variety of malignant tumours, such as tumours of breast, brain, lung and 

gastrointestinal tract [5]. Blockade of VEGF pathway is therefore an effective therapeutic 

strategy for inhibiting tumour growth [4-6]. 

Aflibercept (also called VEGF-Trap, Regeneron Pharmaceutics/ Sanofi-aventis research) is a 

novel anti-angiogenic agent that binds to VEGF with a 1:1 ratio and prevents it from interacting 

with its receptors. A recombinant fusion protein consisting of the second Ig domain of VEGFR-1 

and the third Ig domain of VEGFR-2 fused to the Fc portion of human immunoglobin IgG1, it  

has a higher affinity for VEGF-A (Kd in vitro = 0.5 pM) than current anti-VEGF monoclonal 
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antibodies [7-9]. Aflibercept also binds to VEGF-B and Placental Growth Factor (PlGF), which 

may be advantageous in some settings, such as malignant ascites where PlGF may mediate 

vascular permeability [9]. 

Based on the mechanism of action, this drug undergoes a target-mediated drug disposition 

(TMDD), a term used to describe the phenomenon in which drug is bound with high affinity to its 

pharmacologic target such that this interaction is reflected in the pharmacokinetic properties of 

the drug. A general PK model for drugs exhibiting TMDD has been developed by Mager et al 

[10, 11]. This model describes the elimination pathway of drug plasma concentrations as the 

combination of first-order elimination from the central compartment and specific target binding 

clearance followed by internalization of drug-target complex. It, as well, characterises the 

turnover of the target. The full TMDD model is complex and generally overparameterised. The 

more information we have about free drug, bound drug and the target, the more TMDD model 

components and parameters can be adequately identified, although it is yet unclear which 

elements should be measured to estimate all the parameters in the full TMDD model. In order to 

overcome this problem, several simpler forms of TMDD model were proposed [12, 13]. There 

are mainly three approximations: quasi equilibrium (QE), quasi steady state (QSS) and 

Michaelis-Menten (MM). The QE approximation is based on the assumption that the drug-target 

binding is much faster than all other system processes. If the rate of elimination of complex is not 

negligible, the QE approximation is replaced by the QSS approximation assuming that the drug-

target complex concentration changes more showly than the binding and internalization process. 

The MM approximation describes the system when the target concentration is small relative to 

the free drug concentration and the dosing regimens result in the target being fully saturated [13].  
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Pharmacokinetics (PK) of aflibercept were investigated in healthy subjects after single 

intravenous (i.v.) doses of 1 to 4 mg/kg and single subcutaneous (s.c.) dose of 2 mg/kg, in two 

phase I clinical studies as part of the drug’s clinical development. Both free and bound aflibercept 

concentrations were assayed. The objective of this analysis was to develop a mechanism-based 

PK model for aflibercept in order to characterise its binding to VEGF and its pharmacokinetic 

properties in healthy subjects. The influence of covariate was not assessed in this study due to the 

limited number of individuals and their healthy status 

 

Methods 

Study design  

The data for the population PK analysis were collected from two phase I, monocentric and 

randomised studies which were both carried out in healthy male subjects to assess the PK of 

aflibercept. The studies were approved by the independent ethics committees (Pharma-Ethics, 

South Africa and Ethik-Kommission der Landesärztekammer Baden-Württemberg, Germany). 

They are performed according to recommendations of the 18th World Health Congress (Helsinki, 

1964) and all applicable amendments. The volunteers gave their written informed consent after 

full explanation of all procedures involved in the studies. 

Study 1 was a placebo-controlled, single-dose, sequential ascending dose study. Forty eight 

subjects were enrolled in this study and equally divided into four groups: one group receiving 

placebo and three groups receiving a single dose of 1, 2 or 4 mg/kg of aflibercept respectively 

administered as a 1-hour i.v. infusion.  
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Study 2 was an open-label, single-dose, crossover study. Two groups of 20 subjects were 

included in the study. The first group received a single i.v. dose of 2 mg/kg in the first period, 

with a 2 month follow-up period, followed by a single s.c. dose of 2 mg/kg in the second period. 

The second group received the s.c. dose first, then the i.v. dose.  

The data from subcutaneous administration in the cross-over study (study 2) was removed from 

the analysis because this route of administration was not pursued in the subsequent clinical 

development. Moreover, in this study, a carry-over effect was found and should have been taken 

into account in the modelling, but this required the modelling of the subcutaneous route. To avoid 

it and to work on homogenous data, only the i.v. infusion data in the first period were used in the 

population analysis.  

Blood sampling schedules 

In study 1, blood samples (4 mL) were taken at the following times: predose, 1 (end of infusion), 

2, 4, 6, 8, 12, 24 hours post-start of administration on day 1, then on days 8, 15, 22, 29, 36 and 43 

at the same morning time corresponding to 2 hours after the start of infusion on day 1. 

In study 2, blood samples (4 mL) were taken at the following times: predose, 1, 2, 4, 6, 8 hours 

post-start of administration on day 1, then on days 2, 3, 5, 8, 15, 29, 43 of each period at the same 

morning time corresponding to 2 hours after the start of infusion on day 1.  

Assay method  

For both studies, free and bound aflibercept plasma concentrations were measured in all samples 

collected collected at Regeneron Pharmaceuticals, Inc using enzyme-linked immunosorbent assay 

(Elisa) method. Blood samples were collected in tubes (containing 1mL of citrate buffer, sodium 
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citrate, and 4.2 mg of citric acid) and were centrifuged at 2000 g for 15 minutes at room 

temperature. Plasma was stored at -20°C until analyzed.  

In the assay of free aflibercept, the human VEGF165 was initially adsorbed to the surface of a 

polystyrene solid support to capture the free aflibercept in subject samples. A mouse monoclonal antibody 

(reporter antibody), specific to an epitope on the VEGFR1 domain of aflibercept, was then bound to the 

immobilized complex and an enzyme-linkedantibody (peroxidase-conjugated Affinipure goat anti-

mouse IgG Fc-γ) was bound to the immobilized mouse monoclonal complex. A luminolbased 

substrate specific for peroxidase was added to achieve a signal intensity that was directly 

proportional to the concentration of free aflibercept. The limit of quantification of free aflibercept 

was 15.6 ng/mL. The calibration curves ranges from 100 ng/mL to 1.56 ng/mL in two-fold serial 

dilution. The limit of quantification of free aflibercept was 15.6 ng/mL. The inter-day accuracy 

and precision ranged from 92.24% to 103.09% and 1.05% to 16.18%, respectively. The intra-day 

accuracy and precision ranged from 106.36% to 109.90% and 9.56% to 13.68%, respectively.  

In the assay of bound aflibercept, the human VEGF165 was replaced by a non-blocking goat anti-

human VEGF antibody for capturing the bound aflibercept in subject samples. The rest of the 

procedure was similar as the one used in the assay of free aflibercept.  The limit of quantification 

for bound aflibercept is 43.9 ng/mL. The calibration curves ranges from 100 ng/mL to 8.78 

ng/mL in a 1.5 serial dilution. The inter-day accuracy and precision ranged from 93.85% to 

110.19 % and 0.38% to 16.17%, respectively. The intra-day accuracy and precision ranged from 

115.70% to 123.34% and 1.09% to 1.58%, respectively. 

Population PK analysis 
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The population PK analysis was performed using the MONOLIX program (version 3.1) 

implementing the SAEM algorithm. The model control files were written using MLXTRAN 

script. The early concentrations of bound aflibercept were often below the limit of quantification, 

thus the censored data of bound aflibercept, representing 32.5% of data, were taken into account 

and used for model development using the extended SAEM algorithm implemented in 

MONOLIX as an exact maximum likelihood estimation method [14]. In this algorithm, the left-

censored data are simulated in a right-truncated Gaussian distribution, instead of being imputed 

by the LOQ value or half of LOQ value. The data of bound aflibercept contains also some 

observed concentrations which were reported with values below the LOQ reported for most of 

the data (see bottom left plot in figure 4). 

The database included a total of 56 subjects, with 36 subjects receiving treatments from study 1 

and 20 subjects receiving i.v. infusions at the first period from study 2. With respect to the law of 

mass action, the concentrations of bound aflibercept were converted into equivalent 

concentrations of free aflibercept by multiplying them with 0.717, the ratio of molecular weights 

between free and bound aflibercept. The units of free aflibercept and bound aflibercept 

concentrations were µg/mL and µg.eq/mL respectively. 

PK structural model  

The following strategy was used to develop the model. Free aflibercept concentration-time data 

were first modelled alone. Then, bound concentration-time data were included for simultaneous 

modelling. 

The structural model for free aflibercept was developed by testing the following models: two-

compartment or three-compartment model with first order and/or MM elimination. 
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In the next step, we developed a structural model including bound aflibercept. The TMDD model 

with association and dissociation rate constants (kon and koff), reduced approximate TMDD 

models and other simpler models with linear binding constant were used to describe the joint 

evolution of the two entities. 

Statistical model  

Denoting f the function describing the model, the statistical model for observed concentration Cij 

of subjects i for sampling time tij is:  

    Cij= f(θi,tij) + εij 

where θi is the vector of parameters of subject i and εij is the residual error.  

The errors εij are assumed to be independent and normally distributed with a null mean and a 

heteroscedastic variance σ²ij, which was modelled using a combined additive and proportional 

model:   

          σ²ij = (σa+σp f(θi,tij) )²  

where σa and σp are additive and proportional coefficients of residual error model respectively.  

Two alternative residual error models, proportional model (σa = 0) and additive model (σp=0) 

were also evaluated for the residual variability.  

The interindividual variability on all parameters was modelled with an exponential model, e.g. 

for CL: 

CLi = CL.exp (ηi,CL) 
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where ηi,CL denotes the random effect in subject i,  CLi the individual clearance parameter and CL 

the typical value of the population. The use of an exponential model implies a log-normal 

distribution for the parameters. The η’s (e.g. ηi,CL) are zero mean random variables with variance 

ω² (e.g. for CL, ω²CL). The ω²’s represent the variance of the random effects; the elements of the 

interindividual variance-covariance matrix, Ω, was modelled as diagonal, e.g. assuming no 

covariance between the η’s.  

The following strategy was used for model development. First, the structural PK models were 

developed with a combined residual error model and interindividual variability on all parameters. 

Then, the residual error models were evaluated for the selected structural model. Finally, the 

interindividual variability on each parameter was tested for significance, and non-significant 

variability component were removed one by one starting with the smallest and least significant 

estimate.  

The log likelihood (LL) was computed using importance sampling. The likelihood ratio test was 

used to discriminate between nested models through the difference in log likelihood (-2LL). A p-

value of 0.05 was considered statistically significant. For non-nested models, the model selection 

was based on the Bayesian information criterion BIC. The better model is the one with a smaller 

value of BIC [15]. 

Model evaluation   

Internal evaluation of the model was based on goodness-of-fit (GOF) plots, including plots of 

observations versus individual and population predictions and plots of normalised prediction 
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distribution error (NPDE) [16]. A visual predictive check (VPC) was used to assess model 

predictive performance, based on the simulation of 500 datasets.  

Results 

Data 

The database for population PK analysis contained data from 56 healthy subjects involved in the 

two phase I clinical studies. A total of 1476 concentrations were used for model building: 732 

concentrations of free aflibercept and 744 concentrations of bound aflibercept of which 242 (32.5 

%) were below the quantification limit (LOQ= 43.9 ng/mL or 0.0314 µg.eq/mL).  

The pooled concentrations of free aflibercept and bound aflibercept plotted versus time are 

presented in Figure 1. 

The time-course of free aflibercept after i.v. infusion of doses of 1, 2 and 4 mg/kg in semi-log 

scale suggests a bi-exponential decline with a rapid phase of distribution followed by a prolonged 

terminal phase of elimination regardless of the dose. The time-course of bound aflibercept 

suggests a saturable binding phenomenon with the same observed plateau for two higher doses. 

The peaks of complex occurred sooner for dose 1 mg/kg and later for doses 2 and 4 mg/kg 

(around 21 days, for both doses).  

Free aflibercept modelling 

Several models were proposed to characterise the kinetics of free aflibercept. In the two-

compartment model with first-order elimination, the distribution of post-hoc clearance for 3 doses 

showed a dose-dependent clearance, confirming the nonlinear disposition already observed during 
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non-compartmental analysis. The two-compartment model with MM elimination was then 

developed and showed a better description of data with a decrease of 33.61 point in -2LL value. 

The three-compartment models with first-order or MM elimination were also evaluated. They 

provided a slight decrease in -2LL compared to the two-compartment models but the fitting did 

not show a significant improvement. The two-compartment model with MM elimination was 

therefore selected as an adequate structural model for free aflibercept.  

The best residual error for this model was the combined additive and proportional error. The 

interindividual variability on Km was not significant. 

Free and bound aflibercept modelling  

The binding of aflibercept to VEGF and the nonlinear kinetics of free aflibercept suggests that 

this drug has target-mediated drug disposition properties. Therefore, the TMDD model with 

association and dissociation rate constants (kon and koff), reduced approximate TMDD models and 

other simpler models with linear binding constant were tested. The MM approximation of TMDD 

model developed by Gibiansky and colleagues [13] was found the best approach to describe the 

kinetics of both free and bound aflibercept, while others did not fit the concentrations of bound 

correctly and/or had overparameterization issues. In all of these models, the dissociation rate koff 

was very small compared to other constants and very badly estimated.  

The nonlinear central and peripheral binding of this MM approximate TMDD model were tested 

and compared. The nonlinear peripheral binding model was found to better describe the data than 

the central binding one with a smaller value of BIC (2160 vs 2703) and therefore retained as the 

structural model for free and bound aflibercept.  
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The final structural model relating free and bound aflibercept is shown in Figure 2.  

Free aflibercept in plasma distributes first to tissues then binds to VEGF to form the complex. 

Binding to VEGF follows the law of mass action and can be characterised by a nonlinear form 

with MM constants (Vmax, Km). The bound aflibercept (complex) is assumed to be directly 

eliminated through internalisation (kint) and not through the dissociation rate constant (koff) which 

gives back free aflibercept and free VEGF. The concentration of free aflibercept in central 

compartment (Cp), in tissue compartment (Ct) and the concentration of bound aflibercept (Cb) are 

described by means of differential equations: 

(1) 

 

(2) 

(3) 

in which kel is the first order elimination rate constant of free aflibercept (day-1) from central 

compartment, ktp and kpt are the first order rate constants between central and peripheral 

compartment (day-1), kint is the first order rate constant of bound aflibercept internalization (day-1), 

Vmax is the maximum binding capacity (mg/day), Km is the concentration of free aflibercept 

corresponding to half of maximum binding capacity (µg/mL), Vp is the central volume of 

distribution of free aflibercept (L), Vt is the peripheral volume of distribution of free aflibercept 

and Vb is the volume of distribution of bound aflibercept (L). More details concerning the 

derivation of the model equations and its relationship to other TMDD models proposed in the 

literature can be found in the Appendix. 
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In this model, the volume of bound aflibercept (Vb) and the maximum binding capacity (Vmax) 

were however highly correlated with a correlation coefficient higher than 0.95, suggesting 

identifiability issues. In order to prevent this problem, the value of Vb was assumed to be equal to 

the value of central volume of distribution of free aflibercept (Vp), corresponding to the 

hypothesis that free and bound aflibercept are distributed within the same space in the plasma 

compartment. To do so, Vb was fixed to the population value of Vp with no interindividual 

variability, instead of being estimated.  

The best residual error model of bound aflibercept was the proportional model, while that of free 

aflibercept was the combined additive and proportional error model found in the first step. A 

combined error model was also attempted; however, the contribution of the additive error was 

negligible and was therefore discarded. The interindividual variability on the internalization rate 

constant (kint) was found to be small (11.9%) and badly estimated. The likelihood ratio test 

demonstrated that removing this variability from the model did not significantly change the fit.   

The estimated parameter values for the best model of free and bound aflibercept are presented in 

Table 1. 

All model parameters were well estimated with relative standard errors (RSE) < 20%. The 

population estimate of clearance for free aflibercept was 0.88 L/day and internalisation rate for 

bound aflibercept was 0.028 day-1, resulting in a clearance of 0.14 L/day. The central volume of 

distribution for free aflibercept was 4.94 L. The maximum binding capacity was 0.99 mg/day and 

the estimated concentration of free aflibercept corresponding to half of maximum binding 

capacity was low (2.91 µg/mL). 
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Interindividual variability for random effects associated with model parameters was moderate, 

ranging from 13.6 % (Vmax) to 49.8 % (Q). Residual errors were low for both free aflibercept and 

bound aflibercept with proportional parts of 17.1 % and 12.6 % respectively. The additive error 

of free aflibercept was also small compared to the observed concentrations. 

The goodness-of-fit plots of the best joint model are shown in Figure 3. The plots of observations 

versus population predictions and observations versus individual predictions indicated that the 

model adequately described the observations over the dose range. The normalised prediction 

distribution error plots, NPDE versus time and NPDE versus predictions, show a symmetric 

distribution around zero, except for the early times and the small concentrations of bound 

aflibercept. This bias was caused by omitting the NPDE corresponding to below the 

quantification limit (BQL) observations. For BQL data, the metric NPDE has not yet been 

developed.  

The total number of BQL concentrations of bound aflibercept predicted by the model was 251 

(33.73%), 231 of which correspond to observed BQL data. This shows the good agreement 

between model prediction and observation for BQL data. 

Examples of individual fits taken from two studies with three doses are shown in Figure 4. The 

model describes the observed concentrations of free and bound aflibercept for all subjects quite 

well.   

Figure 5 presents the visual predictive checks for both free and bound aflibercept. The 80% 

prediction interval and median were obtained by simulating 500 datasets under the final model; in 

addition, we obtained the 90% prediction intervals around the median and the upper and lower 

boundaries of the interval. Concentrations lower than the LOQ simulated for free aflibercept at 
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the end of treatment were replaced by the LOQ (0.0156 µg/mL) in order to obtain a lower limit 

for the VPC plots in semi-logarithmic scale. The slight misfit for free aflibercept seen at the last 

time-point may be a consequence of the number of concentrations near the LOQ, since the 

median and upper boundary appear to be very well predicted by the model. For bound aflibercept, 

the model slightly underpredicted median concentration from day 21 onwards but correctly 

predicted the variability. Thus, the model described reasonably well the observed concentrations 

of both free and bound aflibercept. 

Discussion 

In this study, we report the development of a mechanism-based model to characterise the 

population PK of aflibercept after a single i.v. infusion of a 2 to 4 mg/kg dose to 56 healthy 

subjects. Free and bound aflibercept plasma concentrations were used in the modelling.  

We first modelled free aflibercept concentrations alone. Using standard compartmental PK 

models, we observed a decrease of clearance for higher concentrations. This is consistent with 

previous results from noncompartemental analyses, which demonstrated that the volume of 

distribution of free aflibercept was low and its clearance was dose-dependent. When dealing with 

saturable kinetics, the most common model to consider is MM elimination kinetics, which was 

retained as the final model for free aflibercept during model development. Although such a model 

has been successfully applied to describe nonlinear PK of free aflibercept, it does not well 

represent the underlying molecular events such as target binding, internalization and degradation 

of the drug. However, the modelling of free aflibercept helped us get general information about 

the model structure: two compartment kinetics and dose-dependent clearance. More complex 

models combining linear and nonlinear elimination were also tested. They adequately fitted the 
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data but were not retained as the final model of free aflibercept according to the statistical 

criteria.  

The next step of modelling was then to add bound aflibercept data, which serves as a marker of 

efficacy by representing the amount of VEGF bound to aflibercept. The mechanism of action of 

this drug suggested the use of TMDD model. Among several types, the MM approximation of 

TMDD model developed by Gibiansky et al proved the most appropriate to reflect the kinetics of 

aflibercept in our study as free aflibercept concentrations were much higher than target 

concentrations and their binding to VEGF resulted in a fully saturated target. The relatively low 

level of free circulating VEGF was confirmed by the range of 19-47 pg/ml of plasma VEGF 

levels observed in healthy subjects in a meta-analysis [17]. In order to model simultaneously both 

free and bound drug, the MM equation of bound aflbercept was added into the system of 

differential equations. Free aflibercept is therefore eliminated through two pathways: non 

saturable elimination from central compartment (kel) and a specific and saturable binding to 

VEGF, followed by internalization (kint) of bound aflibercept, which is its dominant elimination 

pathway. In addition, the formation of bound aflibercept could occur predominantly in central or 

peripheral compartment. The final PK model was an approximate TMDD model involving two 

compartments for free aflibercept and one compartment for bound aflibercept, with MM-type 

binding of free aflibercept to VEGF from the peripheral compartment. 

The first-order dissociation rate constant (koff) of the complex to give back free aflibercept was 

assumed to be negligible. Bound aflibercept might dominantly eliminate by internalization 

(kint>>koff). This assumption is reasonable and consistent with the study of Eppler et al on the 

development of a TMDD model for recombinant human VEGF (rhVEGF) after i.v. 

administration in patients with coronary artery disease [18]. VEGF binding to its high affinity 



19 
 

receptors was concluded as an essentially irreversible process in vivo. Aflibercept might have the 

same properties because this drug is produced from two high affinity receptors of aflibercept 

(VEGFR1 and 2).  

Recently, a new derivation of MM approximation of TMDD, called the irreversible binding MM 

model has been proposed by Gibiansky et al when the dissociation rate constant is negligible and 

the free target concentration is much smaller than the free drug concentration [19]. The developed 

model of aflibercept is therefore close to this new approximation of TMDD model. The only 

difference is that an extra differential equation was added to describe the evolution of bound 

drug. The MM parameters in the final model represent the combinations of the TMDD model 

parameters: Vmax=ksyn.VR and Km=KIB=kdeg/kon, where VR is the volume of distribution of target and 

KIB, ksyn, kdeg are the irreversible binding constant, target production rate and target degradation 

rate, respectively. Although these estimates are not sufficient for the complete description of the 

full TMDD model, they can provide useful information about the underlying kinetics of drug and 

target.  

During the model development, the general TMDD model with kon and koff was also 

implemented, assuming that the total target concentration was constant. Free VEGF was then the 

difference between total VEGF and VEGF in binding to aflibercept. This model showed that kon 

and koff could not be estimated separately with very small value of koff and its poor precision. 

Removing koff resulted in the model developed by Epper et al [18], but we obtained unsatisfying 

fits for bound aflibercept, either for central or peripheral binding to VEGF. A plateau phase after 

reaching the peak, instead of decreasing phase was predicted for bound aflibercept and the 

predicted peak was lower. 
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Alternatively, we also evaluated the linear central or peripheral binding models with a first-order 

association rate constant (kon) instead of Vmax and Km. These models did not describe the observed 

concentrations of bound aflibercept well, specifically the decreasing phase which illustrate the 

elimination of bound alibercept after reaching the peak was poorly approached. They were also 

found less appropriate by statistical criteria.  

The nonlinear peripheral binding model was found to better describe the kinetics of drugs than 

the central binding one, which is consistent with the previous studies on the distribution of VEGF 

in the body [17]. Large quantities of VEGF were reported in extravascular space of tumour and 

skeletal muscle [17], suggesting an important source of endogenous VEGF in peripheral 

compartment and supporting our choice of final model. The plasma concentrations of bound 

aflibercept in the data were assumed to be the same as those in peripheral compartment, with 

rapid transfer between extravascular and plasma space. 

In the final model, the clearance of bound aflibercept was found to be 6.3 times lower than that of 

free aflibercept from central compartment (0.14 L/day and 0.88 L/day, respectively). Both free 

and bound aflibercept eliminate quite slowly. The typical central volume of distribution of free 

aflibercept was 4.94 L, indicating that free aflibercept has a low level of tissue diffusion and it 

circulates mostly in the extravascular spaces. The volume of distribution of bound aflibercept was 

close to that of free aflibercept, which was observed in intermediate models and was fixed to the 

mean value of Vp in the final model due to the problem of identifiability. In the prior non 

compartmental analysis of free aflibercept, the average clearance was 0.97 L/day and the steady 

state volume of distribution was 5.98 L. These values were similar to those estimated by the 

modelling approach. Compared to a similar antiangiogenic agent, bevacizumab, the central 

volume of distribution is close but the clearance of total aflibercept is nearly 4 times faster than 
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that of total bevacizumab [20]. From MM parameters, the production rate of VEGF and the 

irreversible binding constant were calculated to be 0.99 mg/day and 2.91 µg/mL or 19909 pM, 

respectively. The irreversible binding constant is much larger than the in vitro binding affinity Kd 

observed for VEGF-A. Such a difference is due to the negligible value of koff in vivo and it means 

that the target degradation rate (kdeg) is significantly faster than the dissociation rate (koff).   

The advantage of this study is the availability of drug concentration data under free and bound 

forms since they were separately assayed, which is not the case for many antibody products. 

Generally, only total drug, representing the sum of free and bound was assayed [20-22]. The 

pharmacokinetic analysis of total form could not provide a good explanation of the mechanism of 

action of the drug, including the binding to the target; neither was it able to well characterise its 

pharmacokinetic profile. For example, a simple model of two-compartment infusion with first-

order elimination was published for bevacizumab and squalamine, two antiangiogenic agents 

dosed in total form [20, 21]. The availability of complex data, for aflibercept, helps us 

characterise both the linear and nonlinear elimination pathways, as well as the complex 

internalization, and estimate the mechanistic parameters of TMDD system; this could not be 

achieved using a classical MM model of free drug alone.  The concentrations of bound 

aflibercept could be considered as pharmacodynamic data information of this drug. Our model 

development was in agreement with the guidelines of modelling for drugs with TMDD properties 

as mentioned by Yan et al [23]. To our knowledge, the model that we developed is the first 

mechanism-based population pharmacokinetic model for an anti-VEGF drug.   

In conclusion, the present PK model for aflibercept well characterises the underlying mechanism 

of disposition of aflibercept, where a saturable, high-affinity binding of the aflibercept to its 

pharmacologic target (VEGF) is responsible for the observed nonlinear pharmacokinetic 
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behaviour of the free drug. Although further studies will be needed to assess the influence of 

covariates because of the limited size of the present sample, this model helps to better understand 

the properties of aflibercept and provides a useful support for further studies in patients during 

the clinical development, in particular the determination of therapeutic doses using bound 

aflibercept concentrations as a marker of VEGF inhibition.  
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APPENDIX:   Model development  

General peripheral model of target-mediated drug disposition [10,11]: 
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where Cp, Ct, Cb, R: the concentrations of free drug in central and peripheral compartment, 

complex (bound drug) and target; Vp, Vt,: volume of distribution of free drug in central and 

peripheral compartment; VR, Vb: volume of distribution of target and bound drug in peripheral 

compartment. kel: elimination rate of free drug from central compartment; kon, koff: association and 

dissociation rate constant; kint: internalization rate constant of complex; ksyn, kdeg: target production 

and degradation rate.   
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To write this general model, we did not assume that the drug, the target and the bound drug have 

the same volume of distribution, and we assume that the amount of bound drug created during a 

unit of time, produced in the compartment of distribution of the target, is kon.R.Ct.VR [10,11]. 

When the free drug concentrations are much higher than target concentrations (C>>R) and their 

binding results in a fully saturated target, the full TMDD can be replaced by the Michaelis-

Menten-type (MM) approximations of TMDD model following the suggestions of Gibiansky et al 

[13,19]. We explain these approximations for peripheral TMDD models. 

Approximation 1: 

The first MM approximation of TMDD model was proposed in case of reversible binding, basing 

on the assumptions that the drug-target complex is in a quasi-steady-state or the derivative of the 

complex concentration, dCb/dt, is zero [13]. VR and Vb were assumed to be equal to Vt. 

(A2) 

(A3) 

(A4) 

where Rtot is the total concentration of target (Rtot=R+Cb)  

We can rearrange the equation for dCt/dt, by expressing Cb as a function of Ct and using the 

expression of Kss, yielding the following equaation: 

(A5) 
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                       Vmax= Rtot. kint  ;            Km=Kss=(kint+koff)/kon                                      (A6) 

If, in addition, the total target concentration Rtot can be considered constant, Vmax is a constant 

parameter of the system. The TMDD equation system then results in two following equations: 

 

(A7) 

 

Approximation 2: 

When the binding is irreversible, the dissociation binding rate constant koff=0 then the TMDD 
equations simplify: 

 
 
 
 
 
(A8) 
 
 

 

 

The second MM approximation of TMDD models was proposed in the case of irreversible 

binding. It is based on the assumption that the target is in a quasi-steady-state so that the derivative 

of target concentration, dR/dt, is zero [19].  
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where KIB is the irreversible binding constant (KIB = kdeg /kon) and R0 is the target concentration at 

baseline (R0=ksyn/kdeg), which can be obtained assuming steady-state in the differential equation for 

R in the absence of drug. 

Using this expression for R and noticing that R0.KIB.kon=ksyn, we can simplify the equation for 

dCt/dt to: 

(A11) 

Aslo, generally, only free drug is measured, so that in their model, Gibiansky et al did not take 

into account the evolution of the complex (dCb/dt) [19]. The TMDD equation system therefore 

includes only two equations: 

 

(A12) 

 

Application to our study: 
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Substituting the expression for                             derived from the second assumption of TMDD 

model, we find the following expression: 

 

(A13) 

 

Again, we notice a Michaelis-Menten elimination for equation dCt/dt, which enters the equation of 

dCb/dt as a saturable input. 

This equation system can be written with MM parameters, which represents our final model: 

 

(A14) 

 

 

  where     Vmax=ksyn .VR=Asyn    and      Km= KIB  

For parameter estimation, the micro constants (kel, kpt, ktp) can be replaced by the macro constants: 

Q=ktp.Vt=kpt.Vp and CL=kel.Vp; where CL is the clearance of free drug from central compartment 

and Q is the intercompartment clearance of free drug. 
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List of abbreviations 

PK:  pharmacokinetics  

VEGF: vascular endothelial growth factor  

TMDD: target-mediated drug distribution  

PlGF: Placental Growth Factor  

QE: quasi equilibrium  

QSS: quasi steady state  

MM: Michaelis-Menten 

i.v. : intravenous  

s.c. : subcutaneous  

LOQ: limit of quantification  

GOF: goodness-of-fit  

NPDE: normalised prediction distribution error  

BQL: below the quantification limit  

VPC: visual predictive check 
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Tables 

 
Table 1-Parameter estimates for the best free and bound model 
 

Fixed effects 
Interindividual 

variability 
Residual variability 

Parameter 
Estimate 
(RSE%) ω (%) (RSE%)  σa (µg/mL) 

(RSE%) 
σp(%) 

(RSE%) 
CL (L/day) 0.88 (4.0) 28.0 (10) Free aflibercerpt 0.05 (9.0) 17.1(3.0) 

Vp (L) 4.94 (4.0) 27.3 (10) Bound aflibercept - 12.6 (4.0) 
Q (L/day) 1.39 (9.0) 49.8 (14)    

Vt (L) 2.33 (7.0) 39.8 (14)    
Vb (L) 4.94 (=Vp) -    

Vmax (mg/day) 0.99 (5.0) 13.6 (17)    
Km (µg/mL) 2.91 (11) 45.6 (15    
kint (day-1) 0.028 (5.0) -    
CL: Clearance of free aflibercept from central compartment (CL=kel.Vp) 
Q:  Intercompartment clearance of free aflibercept (Q=ktp.Vt=kpt.Vp) 
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Figure legends 

Figure 1 

Observed concentrations of free aflibercept (µg/mL) and bound aflibercept (µg.eq/mL) versus 

time. 

 
Figure 2  

Proposed structural models for free and bound aflibercept (2 compartments for free aflibercept, 1 

compartment for bound aflibercept) with binding to VEGF occurring in the peripheral 

compartment. 

 
Figure 3  

 
Diagnostic goodness-of-fit plots for the model of free and bound aflibercept, showing observed 

versus population predicted concentrations (PRED), observed versus individual predicted 

concentrations (IPRED) and normalized prediction distribution error (NPDE) versus population 

predicted concentrations. The lower limit of quantification for bound aflibercept was 43.9 ng/mL 

(0.0314 µg.eq/mL). BQL observations were removed from the plots. 

 
Figure 4 

Examples of individual fits for 4 representative individuals. From left to right: study 1 with dose 

of 2 mg/kg, study 2 with dose of 1, 2, 4 mg/kg. Fits for free aflibercept are presented in the top, 

bound afibercept in the middle, and the first 24h fits of bound aflibercept in the bottom. Observed 

data are plotted using a circle (◦) and BQL data are plotted using a star (*). The line (−) represents 

the prediction of model. 
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Figure 5 

Visual predictive check (VPC) of free aflibercept in semi-logarithmic scale (top), and bound 

afibercept in linear scale (bottom) for the final model. Observed data are plotted using a solid 

circle (•) and censored data are plotted using a star (*). The shaded area and the dotted lines 

represent the 90% prediction interval and the predicted median of 10th, 50th and 90th percentiles of 

simulated data (n=500). The solid lines represent the 10th, 50th and 90th percentiles of observed 

data.  
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Figures 

 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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