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Bioequivalence or interaction trials are commonly studied in crossover
design and can be analysed by nonlinear mixed effects modelsas an
alternative to noncompartmental approach. We propose an extension of the
population Fisher information matrix in nonlinear mixed effects models to
design crossover pharmacokinetic trials,using a linearisation of the model
around the random effect expectation, including within-subject variability
and discrete covariates fixed or changing between periods. We use the
expected standard errors of treatment effect to compute thepower for the
Wald test of comparison or equivalence and the number of subjects needed
for a given power. We perform various simulations mimickingcrossover
two-period trials to show the relevance of these developments. We then
apply these developments to design a crossover pharmacokinetic study of
amoxicillin in piglets and implement them in the new version3.2 of the R
function PFIM.
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1 Introduction

Pharmacokinetics (PK)is the science of the kinetics of drug in an organism, generally based on
drug plasma concentrations. Bioequivalence trials are performed to compare the PK of two drug
formulations and interaction trials are performed to studythe effect on the PK of another drug. The
most commonly used design for these trials is the crossover design, where measurements are made
at several occasions. Bioequivalence is tested from the log ratio of the geometric means of two PK
parameters: the area under the curve (AUC) of the concentrations and the maximal concentrations
(Cmax) [1, 2]. Linear mixed effects models (LMEM) including treatment effect are usually used to
analyse the log-transformedAUC andCmax [3]. Bioequivalence tests are then performed on the
estimates of the treatment effect. The same testing method is used for an assessment of the absence
of interaction. The tested end-pointsAUC andCmax are usually estimated by non-compartmental
analysis (NCA) using the trapezoidal rule to evaluateAUC [4]. NCA needs few hypotheses but has
several limitations.Although using sparse sampling in NCA is possible [5, 6, 7], a large number
of samples per subject (usually between 10 and 20, as in trials on healthy volunteers) is however
needed when using this approach to be able to estimate mean and variability ofAUC andCmax with
a good precision.NCA also does not take into account nonlinear pharmacokinetics, which can bias
the bioavailability estimation [8] and may amplify small availability differences between drugs [9].
Alternatively, another approach to analyse PK data is the population approach based on nonlinear
mixed effects models (NLMEM) [10, 11], which is more complexthan NCA but benefits from the
knowledge accumulated about the drug and can characterise the PK with few samples per subject,
enabling us to analysestudies in patients with more power than does NCA. These models can also
lead to a better understanding of the biological system and help to interpret ambiguous results.
However, the use of NLMEM is rather recent and still rare in early phases of drug development
and/or to analyse crossover studies in spite of its several advantages [12, 13, 14].

The work presented here focusses on crossover PK trials analysed by NLMEM. Before the
modelling step, data needs to be collected and we have consequently to define an appropriatede-
sign, which consists of determining a balance between the numberof subjects and the number of
samples per subject as well as the allocation of sampling times according to experimental condi-
tions. The choice of design has an important impact on the study results, on the precision of the
parameter estimates and on the power of the tests [15, 16, 17]. Indeed, a bad choice of design can
lead to results which are difficult to interpret and minimisethe interest of the study. The main ap-
proach for design evaluation has been for a long time based onsimulations but it is a cumbersome
method, and thus the number of designs which can be evaluatedis limited. An alternative approach
has been described in the general theory of optimum experimental design used for classical non-
linear models [18, 19], relying on the inequality of Rao-Cramer which states that the inverse of
the Fisher information matrix (MF ) is the lower bound of the variance-covariance matrix of any
unbiased estimate of the parameters and its diagonal elements are the expected standard errors (SE)
of the parameters. Several criteria based onMF have been developed to evaluate designs. One of
the criteria widely used is the criterion of D-optimality, consisting of maximising the determinant
of MF . But since there is no analytical form of the likelihood in ourframework, the determination
of the exact analytical expression ofMF is not possible. An approximation ofMF was first pro-
posed by Mentréet al [20] for NLMEM. Its evaluation was implemented in the R function PFIM
[21] using first order linearisation of the model around the random effect expectation. Evaluation
and optimisation of design have become a large field of research with more and more publica-
tions on several extensions ofMF [22, 23, 24, 25, 26] as well as the creation of several software
besides PFIM by different research teams, implemented in MATLAB (MathWorks Inc., Natick,
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MA, USA) (PopDes, PopED, WinPOPT). These softwares dedicated to evaluating and optimising
designs were compared in an oral presentation by Mentréet al [27] at the meeting of Population
Approach Group in Europe (www.page-meeting.org). However, these expressions ofMF were
not yet applicable to crossover trials with models including within subject variability (WSV) and
discretecovariateschanging between periods. It is important to model not only between subject
variability (BSV) but also WSV when subjects have measurements at several periods, as accentu-
ated by Karlsson and Sheiner [28] and Panhardet al [12]. The development ofMF in NLMEM
under uni-response models with additional terms for WSV has been implemented and illustrated on
a specific example of two occasions [29]. However, this has not yet been generalised to crossover
designs for any number of periods and sequences, neither extended to include discrete covariates
which can change between periods. The prediction of power for the Wald test to detect a treatment
effect has been previously described by Retoutet al [30] using the expected SE of the treatment
effect but only for an interaction study in a parallel group design, not yet for an equivalence study
in a crossover design. These developments would be very useful since to our knowledge, this is the
first proposed statistical method to predict power of test and to choose optimal sampling times for
crossover bioequivalence or absence of interaction trialsanalysed by NLMEM.

In this context, the first objective of this work is to extend the expression forMF in NLMEM
including WSV in addition to BSV and discrete covariates fixed or changing between periods in
crossover trials. Then, we also propose a computation of theexpected power for the Wald test
of comparison or equivalence and the number of subjects needed (NSN) for a given power. The
relevance of these developments is evaluated by simulations mimicking a PK crossover two-period
study of amoxicillin (an antibiotic widely used in bacterial infection treatment) in piglets. Finally,
we apply these extensions to design a future PK crossover study in piglets, based on the results of a
previous study inspiring our simulations, aiming to show the absence of interaction of a compound
X on the PK of amoxicillin. We wish, through this motivating example, to show how our statistical
methodology can be easily applied in practice, to choose optimal sparse sampling times with almost
no loss of power and to compute the NSN for a given power. The example also brings us to discuss
how different elements in a study design (number of subjects, of model parameters, of periods, etc.)
could influence the power and to investigate/confirm the advantage of crossover design compared
to parallel group design in bioequivalence trials.

We introduce some notation and present the new extension ofMF as well as the computation of
the power and NSN in Section 2. By simulation, we evaluate the relevance of these developments
in Section 3. An application of this extension to a real example is presented in Section 4, followed
by a discussion in Section 5.

2 Extension of population Fisher information matrix

2.1 Notations

2.1.1 Design

The elementary designξih of individual i (i = 1, . . . , N ) at periodh (h = 1, . . . , H) is defined
by the numbernih of samples and their allocation in time(tih1, . . . , tihnih

). The global elementary
designξi of individual i for H periods is defined asξi = (ξi1, . . . , ξiH), with a total number of
samplesni =

∑H
h=1 nih. Consequently, the population design forN individuals and forH periods

can be defined asΞ = {ξ1, . . . , ξN}. Usually, population designs are composed of a limited
numberQ of groups of individuals with identical designs in each group. Each of these groups is
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composed of a global elementary designξq and is performed in a numberNq of subjects. The
population design can thus be written asΞ = {[ξ1, N1]; . . . ; [ξQ, NQ]}.

2.1.2 Models

We denote byyih thenih-vector of observations for the individuali measured at periodh and byf
the known nonlinear function describing the nonlinear structural model. The NLMEM linkingyih

to the sampling timesξih = (tih1, . . . , tihnih
) can be written as

yih = f(φih, ξih) + ǫih (1)

f mapsφih, theP -vector of parameters for individuali at periodh and the setξih of nih sam-
pling times to a vector of which each element is a scalarf(φih, tihj), with j = 1, . . . , nih. ǫih is
the vector of random error which follows a normal distribution N (0,Σih) with Σih a nih × nih

diagonal matrix expressed as a function of(φih, σinter, σslope, ξih) such as each diagonal element
of Σih is (σinter + σslopef(φih, tihj))

2, with j = 1, . . . , nih. σinter andσslope are additional and
proportional parameters in the variance model of therandomerror. The case ofσslope = 0 returns
a homoscedastic error model, whereas the case ofσinter = 0 returns a constant coefficient of vari-
ation error model. The general case where the two parametersdiffer from 0 is called a combined
error model.

We denote byC the set of discrete covariates changing or not between periods,Kc is the set of
all possible categoriesk of the covariatec in C. We assume that the vectorφih of parameters for an
individual i at periodh can be expressed as a function of the covariatecih of individual i at period
h, which can be additive (for normal parameters):

φih = µ+
∑

c∈C

∑

k∈Kc

1cih=kβck
+ bi + κih (2)

or exponential (for lognormal parameters):

φih = µ⊗ exp(
∑

c∈C

∑

k∈Kc

1cih=kβck
)⊗ exp(bi + κih) (3)

Here,µ is theP -vector of fixed effects,βck
is theP -vector of fixed effects for categoryk

of covariatec (βck
= 0 if k is the category of reference) on theP parameters of the structural

model. bi is theP -vector of random effects of individuali, κih is theP -vector of random effects
of individual i for periodh.

cih can take any valuek in the setKc. 1cih=k is the indicator function of the categoryk in the
setKc, having the value 1 ifcih is in the categoryk, and having the value 0 if not. Consequently,
1cih=kβck

is equal toβck
if 1cih=k = 1 and to0 if 1cih=k = 0. exp with a vectorv as its argument

is the vector such as each element is the exponential of the corresponding element ofv. In (2),
theP -vectorφih is defined by addition of the vectors on the right side of the equation. In (3), the
symbol⊗ here means that each elementp (p = 1, . . . , P ) of φih is obtained by multiplication of the
pth elements(p = 1, . . . , P ) of the vectorsµ andexp(

∑
c∈C

∑
k∈Kc

1cih=kβck
) andexp(bi + κih).

It is assumed thatbi ∼ N (0,Ω) andκih ∼ N (0,Γ), with Ω andΓ defined as the diagonal
variance-covariance matrices of sizeP × P . Each elementωp of Ω andγp of Γ (p = 1, . . . , P )
represents, respectively, the variance of BSV for thepth component ofbi and the variance of WSV
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for thepth component ofκih. bi andκih are supposed to be independent. We denote byΩ
∗ the

diagonal matrix

Ω
∗ =

(
Ω

Γ
∗

)
(4)

whereΓ∗ is a block diagonal matrix composed ofH blocksΓ. The relation betweenφih and
(µ,β, bi,κih), with β regrouping all the fixed effects for discrete covariates, issummarised in
a functiong such asφi = g(θ,νi) whereφi = (φ′

i1, ...,φ
′

iH)
′ is the vector of parameters for

individuali for H periods,θ = (µ′,β′)′ is the vector of all fixed effects, andνi = (b′i,κ
′

i1, ...,κ
′

iH)
′

is the vector of all random effects forH periods. The vector of observations of individuali for H
periods,yi = (y′

i1, ...,y
′

iH)
′ can thus be written

yi = f(g(θ,νi), ξi) + ǫi (5)

whereξi = (ξi1, ..., ξiH) and ǫi = (ǫ′i1, ..., ǫ
′

iH)
′ ∼ N (0,Σi(θ,νi, σinter, σslope, ξi)). Σi is an

ni × ni diagonal matrix composed of each diagonal element ofΣih (h = 1, . . . , H). The following
assumptions are made:ǫi|νi are independent between subjects,ǫih|κih are independent between
periods, andǫi andνi are independent for each subject.

Let λ = (ω1, ..., ωP , γ1, ..., γP , σinter, σslope)
′ be the vector of variance terms, andΨ be the

vector of all population parameters to be estimated, so thatΨ = (θ′,λ′)′. We also denote by
dim(θ) the number of fixed effects anddim(λ) the number of variance terms.

2.2 Population Fisher information matrix

We extend the expression ofMF in NLMEM for crossover trials using the first order Taylor ex-
pansion of the model as in Mentréet al [20]. For simplicity, we omit the indexi for the individual
in this section. The elementaryMF (Ψ, ξ) for an individual with elementary designξ composed
of one or several periods is calculated by

MF (Ψ, ξ) = E

(−∂2l(Ψ,y)

∂Ψ∂Ψ′

)
(6)

wherel(Ψ,y) is the log-likelihood of the vector of observationsy of that individual for the pop-
ulation parametersΨ. There is no analytical expression forl(Ψ,y) because of the nonlinearity
of the structural modelf . An approximation is possible using the first-order Taylor expansion of
f(g(θ,ν), ξ) around the expectation of the random effectsν, i.e. 0. The statistical model can be
written as

y ∼= f(g(θ,0), ξ) +

(
∂f ′(g(θ,0), ξ)

∂ν

)
ν + ǫ (7)

and the log-likelihoodl is then approximated by

−2l(Ψ,y) ∼= nln2π + ln|V |+ (y −E)′V −1(y −E) (8)

wheren is the total number of observations of the individual;E andV are the approximated
marginal expectation and variance ofy given by

E = E(y) ∼= f(g(θ,0), ξ) (9)
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V = V ar(y) ∼=
(
∂f ′(g(θ,0), ξ)

∂ν

)
Ω

∗

(
∂f(g(θ,0), ξ)

∂ν ′

)
+Σ(θ,0, σinter, σslope, ξ) (10)

We derive the expression of the log-likelihoodl, taking into account WSV in addition to BSV
and fixed effects for discretes covariates changing betweenperiods. We obtain the elementary
MF depending onE andV . Assuming thatV does not or does depend on the fixed effects, the
elementaryMF is a block diagonal matrix or a full matrix. There is no clear consensus on what
is the best approximation but here in our approach by linearisation, we assume the choice of the
block diagonal expression [31]:

MF (Ψ, ξ) =
1

2

(
A(E,V ) 0

0 B(E,V )

)
(11)

where

(A(E,V ))rs = 2
∂E′

∂θr

V −1∂E
′

∂θs

(12)

(B(E,V ))ml = tr

(
∂V

∂λm

V −1∂V

∂λl

V −1

)
(13)

with r ands = 1, ..., dim(θ); m andl = 1, ..., dim(λ).
To define the population matrix, we use the fact thatMF (Ψ,Ξ) for a population designΞ is

defined by the sum of theN elementary matricesMF (Ψ, ξi), so that

MF (Ψ,Ξ) =
N∑

i=1

MF (Ψ, ξi) (14)

In the case of a limited numberQ of elementary designs, we have

MF (Ψ,Ξ) =

Q∑

q=1

NqMF (Ψ, ξq). (15)

2.3 Computation of power and number of subjects needed

In this section, we consider the Wald tests of comparison andequivalence on a discrete covariate
effect fixed or changing between periods for the case of a crossover trial. Here, these tests are
performed onthe estimator ofthe effectβckp of each categoryk of each covariatec for parameterp,
notedβ̂ckp. Given a valueβ1 of β̂ckp, and from the square root of the diagonal terms of the inverse
of MF , we calculate the standard error ofβ1. Then, we predict the power of the tests and also
compute the NSN to achieve a given power. Note that for simplicity, we omit indexckp for β in
this section.

2.3.1 Comparison test

The null hypothesis for the Wald test of comparison isH0 : {β = 0} while the alternative hypoth-
esis isH1 : {β 6= 0}. Puttingβ̂ as the estimator ofβ, then the statistic of the Wald test under the
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null hypothesisH0 is W = β̂/SE(β̂). With a type I errorα, H0 is rejected if|W | > z1−α/2, where
z1−α/2 is the(1− α/2) quantile of the standard normal distribution.

We compute the power of the Wald test of comparison underH1, when β̂ = β1 6= 0. With
a given design and values of population parameters, we predict SE(β1) using the extension of
MF . UnderH1, W is asymptotically distributed with a normal distribution centred atβ1/SE(β1).
Therefore, the power of the Wald test is

Pcomp = 1− Φ

(
z1−α/2 −

β1

SE(β1)

)
+ Φ

(
−z1−α/2 −

β1

SE(β1)

)
(16)

whereΦ is the cumulative distribution function of the standard normal distribution.
Using the predicted SE by the extension ofMF , we can also derive the NSN to achieve a power

Pcomp to detect a covariate effect as in [30]. For that, we first compute the SE needed onβ1 to obtain
the power ofPcomp, called SEN(Pcomp), using the following relation

SEN(Pcomp) =
β1

z1−α/2 − Φ−1(1− Pcomp)
(17)

We then compute the NSN to obtain a power ofPcomp, called NSN(Pcomp) using

NSN(Pcomp) = N ×
(

SE(β1)

SEN(Pcomp)

)2

(18)

2.3.2 Equivalence test

The null hypothesis for the Wald test of equivalence isH0 : {β ≤ −δ or β ≥ +δ} while the
alternative hypothesis isH1 : {−δ < β < +δ}, whereδ is the equivalence limit. In the guidelines
for equivalence assessment [1, 2], it is recommended thatδ = 0.2. H0 is composed of two uni-
lateral hypothesesH0,−δ : {β ≤ −δ} andH0,+δ : {β ≥ +δ}. Equivalence between two groups
on covariate effectβ can be concluded if and only if the two hypothesesH0,−δ andH0,+δ are re-
jected. The equivalence Wald test using NLMEM has already been developed [32, 12], based on
the Schuirmann’s two one-sided tests (TOST) [33].Denoting the estimator ofβ by β̂, the follow-
ing formulas defineW−δ, the statistic of the unilateral test under the null hypothesisH0,−δ, and
W+δ, the statistic of the unilateral test under the null hypothesisH0,+δ: W−δ = (β̂ + δ)/SE(β̂) and
W+δ = (β̂ − δ)/SE(β̂). With a type I errorα, H0 is rejected ifW−δ ≥ z1−α andW+δ ≤ −z1−α,
wherez1−α is the(1− α) quantile of the standard normal distribution.

We compute the power of the Wald test of equivalence underH1, whenβ̂ = β1 ∈ [−δ,+δ].
Usually we chooseβ1 = 0. From a given design and values of population parameters,we predict
SE(β1) using the extension ofMF . The power of the Wald test is then

Pequi = 1− Φ

(
z1−α − β1 + δ

SE(β1)

)
if β1 ∈ [−δ, 0] (19)

Pequi = Φ

(
−z1−α − β1 − δ

SE(β1)

)
if β1 ∈ [0,+δ] (20)

whereΦ is defined as in Section 2.3.1.As expressed in (19) and (20), the power of the equivalence
test depends on the sign ofβ1. Whenβ1 = 0, we can use any of the two equations to obtain the
power because in that case:

Pequi = 1− Φ

(
z1−α − δ

SE(β1)

)
= Φ

(
−z1−α − (−δ)

SE(β1)

)
(21)
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Using the predicted SE by the extension ofMF , we can also derive the NSN to achieve the
powerPequi of showing the equivalence between two groups on covariate effect β1. For that, we
first compute the SE needed onβ1 to obtain the power ofPequi, called SEN(Pequi), using

SEN(Pequi) =
−β1 − δ

−z1−α + Φ−1(1− Pequi)
if β1 ∈ [−δ, 0] (22)

SEN(Pequi) =
−β1 + δ

z1−α + Φ−1(Pequi)
if β1 ∈ [0,+δ] (23)

We then compute the NSN to obtain the power ofPequi, called NSN(Pequi) using (18) withSEN(Pequi)
instead of SEN(Pcomp). If β1 < 0, we substitute (22) into (18); ifβ1 > 0, we substitute (23) into
(18); if β1 = 0, we can substitute either of (22) or (23) into (18) because inthat case:

SEN(Pequi) =
−δ

−z1−α + Φ−1(1− Pequi)
=

δ

z1−α + Φ−1(Pequi)
(24)

3 Evaluation by simulations

The simulation model and design are based on a previous PK study DAV1 of amoxicillin in piglets,
conducted by the biotechnology company Da Volterra (http://www.davolterra.com) which will be
given in detail in Section 4.1.

3.1 Simulations

The PK model is a one compartment oral model with first order absorption and first order linear
elimination.The observed amoxicillin concentration of subjecti at sampling timej of periodh is
modelled by a NLMEM as described in Section 2.1.2:

yihj = f(φih, tihj) + ǫihj =
F D kaih

Clih − Vih kaih
[e−kaih tihj − e−(Clih/Vih) tihj ] + ǫihj (25)

In (25), D is the dose,F the bioavailability,ka the absorption rate constant,Cl the clearance
of elimination of the drug andV the volume of distribution. After oral administration only, the
bioavailability can not be estimated and the vectorφ of PK parameters is(ka, V/F,Cl/F ). For
simplicity, this will be denoted subsequently by(ka, V, Cl) whereCl andV are apparent parame-
ters.

We simulate crossover PK trials with two periods, one sequence as in DAV1 study. In each
dataset,N = 40 subjects are allocated at period 1 to treatment 1, with drug A plus placebo and then,
at period 2, to treatment 2, with the same drug A plus drug B. Allcompounds are administrated
orally once a day. The dose is fixed at 30mg.kg−1 for all subjects. The sampling times for all
subjects and both periods are similar and are taken from among the times of the DAV1 study: 0.5,
1, 1.5, 2, 4, 6, and 8 h after dosing. The vector of fixed effectsµ is composed of(µka = 1.00h−1,
µV = 3.5L.kg−1, µCl = 2 L.h−1.kg−1) for treatment 1 (the treatment of reference). We take into
account a treatment effectβCl onCl, characterising the interaction between A and B.The relation
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between these parameters is expressed as in (3), so that at period 1,

φi1 =




µka × exp(bkai + κka
i1 )

µV × exp(bVi + κV
i1)

µCl × exp(bCl
i + κCl

i1 )


 (26)

and at period 2,

φi2 =




µka × exp(bkai + κka
i2 )

µV × exp(bVi + κV
i2)

µCl × exp(βCl)× exp(bCl
i + κCl

i2 )


 (27)

We fix the variance of BSVω = (0.3)2 = 0.09 and of WSVγ = (0.15)2 = 0.0225 for the
three parameters.We assume no correlation between PK parameters, so the variance-covariance
matricesΩ andΓ are diagonal. The parameters of therandomerror model areσinter = 0.1ng.L−1

andσslope = 0. For each subjecti of each simulated trial at periodh, we simulate a vector of
random effectsbi in N (0,Ω) and two vectors of random effectsκih in N (0,Γ), one for each
period and then computeφih while taking into account the treatment effectβCl using (26, 27). We
calculate the concentrations predicted by the PK model at each sampling time. For each predicted
concentration, we generate the vector of therandomerror using the value ofσinter. To get the
simulated concentrations, these errors are added to the predicted concentrations. Then, we left-
censored them at 0.05ng.L−1, the limit of quantification (LOQ) in the DAV1 study.

We consider in the above simulation procedure different values of the treatment effect parameter
βCl such aslog(0.8), log(1), log(1.1), log(1.2), log(1.25) andlog(1.5). The caseβCl = log(1) = 0
corresponds to the null hypothesis of the comparison test (no treatment effect) while the cases
βCl = log(0.8) ≈ −0.2 or log(1.25) ≈ 0.2 correspond to the null hypothesis of the equivalence test
(the two limits of equivalence). We also derive and study an optimal sparse design of four samples
by optimising the rich one using the new extension ofMF with the Fedorov-Wynn algorithm
[34, 35]. For that, we use the same simulated values above fora model without treatment effect
then with different values of treatment effect parameter. The optimal sparse design obtained is the
same with or without treatment effect (0.5, 2, 6, 8 h after dosing). For each simulated scenario, we
simulate 1000 trials, using R 2.4.0.

3.2 Evaluation methods

Our aim is to evaluate and compare the predictions of the standard errors and test powers computed
by the extension ofMF to the empirical ones obtained from simulations. For that, first, to obtain
these predictions, with the design and the population parameter values of each simulated scenario
above, we compute the standard errors denoted by SE of each population parameter from thesquare
root of the diagonal terms of the extendedM−1

F or the relative SE denoted by RSE, defined as the
ratio of SE by the parameter simulated value. Then, from the SE of treatment effect parameter, we
also predict the power of the Wald test of comparison and equivalence. We consider a type I error
α = 0.05 and an equivalence limitδ = 0.2.

In parallel, the empirical values are calculated as follows. Each simulated data file of each sce-
nario with different values ofβCl is analysed in MONOLIX 2.4 (http://www.monolix.org) by an
NLMEM including discrete covariate. We use the SAEM algorithm [36, 37, 38, 39] implemented
in this software to estimate parameters. The data under LOQ are taken into account in the anal-
ysis using the extension of the SAEM algorithm proposed by Samsonet al [40], which allows of
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handling the left-censored data in NLMEM as an exact MaximumLikelihood estimation method.
We then calculate the empirical SE, defined as the sample estimate of the standard deviation from
the parameter estimates obtained with SAEM. Concerning the powers, the observed power of the
Wald test of comparison and equivalence are calculated as the proportion of trials for which the null
hypothesis is rejected. Finally, we compare the results obtained from simulations to the predictions.

We present in Section 3.3.1 the comparison of the predicted RSE to the empirical ones in each
simulated scenario. As the treatment effect is added onCl, here are presented only the results for
the fixed effect, variances of BSV and WSV onCl, as well as the for the parameterσinter of the
error model. Then, we focus on the comparison of the SE of treatment effectβCl. The relevance of
this power computation using the extension ofMF will be investigated in Section 3.3.2.

3.3 Results

3.3.1 Evaluation of the predicted standard errors

The RSE predicted by the extension ofMF and the empirical ones calculated from simulations are
displayed in Figure 1. The predicted RSE are very close to the empirical ones in each simulated
scenario. Some RSE areslightly underestimated byMF , especially forγCl, but the difference is
not clinically relevant (< 10%). As expected, the RSE areslightly higher in the sparse design than
in the rich design, but the differences are very small, except for σinter.

We now focus on the SE of treatment effectβCl. The distributions of the observed SE from each
simulated scenario are reported as boxplots in Figure 2. TheSE(βCl) predicted by the extension
of MF are very close to the empirical ones. The SE(βCl) areslightly higher in the rich design
compared to the sparse one but they remain very close. These values are reported in Table I. There
is no important change of SE(βCl) when varyingβCl.

Although not all the predicted SE and RSE are reported here, some of these values are present
in the online supplementary evaluation output of the rich design 1 with βCl = log(1.1). In this
example and for other scenarios including the ones with optimal designs as well, the RSE predicted
for the fixed effects are very close to each other and close to 5%. The minimum values of RSE
of the log parameters can be approximated by the SE, in the case of a rich design, as

√
ω/

√
N (ω

being here the variance of BSV). Here,
√
ω/

√
N are roughly 4.9% since we have fixed the same

ω for the three PK parameters(ka, V, Cl). This means that the original design (seven samples) is
quite rich and the derived optimal design (four samples) is agood design, allowing of estimating
well the parameters with good precision.

3.3.2 Evaluation of the predicted powers

With each scenario, the predicted power by the extension ofMF and the observed power from
simulations for the comparison test as well as for the equivalence test are reported in Table II
and also as barplots in Figure 3. Note that whenexp(βCl) = 1 for the comparison test and when
exp(βCl) = 0.8 orexp(βCl) = 1.25 for the equivalence test, we are under the null hypothesis so
the probability computed is not the test power but the type I error. The predicted powers by the
extension ofMF and the observed powers from simulations are very close for both comparison
and equivalence tests. The powers obtained with the optimalsparse design are also close to the
ones obtained with the rich design.

1Supporting information may be found in the online version ofthis article.
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4 Application to a pharmacokinetic study in piglets

In this section, we apply the extension ofMF to design a subsequent study DAV2 of amoxicillin
in piglets based on the results of the previous study DAV1 conducted by the company Da Volterra
that inspired the simulations. DAV2 will be a one-way crossover trial. The piglets receive at period
1 amoxicillin plus placebo, at period 2 amoxicillin plus a compound X developed by Da Volterra.
The objective of DAV2 is to show the absence of interaction ofX on the AUC of amoxicillin con-
centrations. The direct relationAUC = dose/Cl implies the equality between the log parameter of
the treatment effect onAUC and the one onCl [12, 13]. That is why we are interested particularly
in Cl. To design DAV2, we analyse the data of DAV1 then with the results obtained, we use the
extension ofMF to evaluate/optimise designs and to compute the NSN to show the absence of
interaction of X onCl of amoxicillin with a power of 90%.

4.1 Analysis of DAV1 study

4.1.1 Materials and methods

The DAV1 study is a one-way, two-period crossover trial with16 piglets receiving amoxicillin and
placebo at period 1 and only amoxicillin at period 2. Amoxicillin was administrated orally with
a single dose of 30mg.kg−1. Plasma amoxicillin concentrations were collected at samesampling
times at each period: 0.5, 1, 1.5, 2, 4, 6, 8, 10 and 12 h. Figure4 represents the individual
amoxicillin concentrations (ng.L−1) versus time of each period.

To describe the pharmacokinetics of amoxicillin, we analyse jointly the data of both periods
for all piglets using MONOLIX 2.4 with an NLMEM and the SAEM algorithm for estimating
parameters. At 8, 10 and 12 h, respectively, 21.9%, 68.8% and87.55% of observations of both
periods are below LOQ (0.05ng.L−1). The very high proportions of data below LOQ especially
at 10 h and 12 h justify the choice of excluding these two samples in the simulations previously.
Here, MONOLIX 2.4 allows of taking into account the data below LOQ [40]. A one compart-
ment oral model with first order absorption, first order linear elimination and the presence of a lag
time adequately describes the amoxicillin concentrationsin this study. The fixed effects are then
(tlag, ka, CL/F, V/F ) but denoted for simplicity by(tlag, ka, Cl, V ). A treatment effectβCl is
added onlog(Cl) and is estimated. We consider log parameters and assume the choice of diago-
nal matricesΩ andΓ. To choose the error model, we compare the Bayesian Information Criteria
(BIC) between the homoscedastic (σslope = 0), proportional (σinter = 0), and combined models. We
examine the SAEM convergence graph and the goodness-of-fit plots to evaluate the chosen model.

4.1.2 Results

We choose a homoscedastic error model withσslope = 0. With respect to the model of random
effects, when estimatingωtlag andωCl, the obtained variabilities are very low and their RSE very
high. Consequently, we fixωtlag = ωCl = 0 forΩ and do not estimate these two variances. With the
chosen model, the algorithm converges and the goodness-of-fit plots are satisfactory. The popula-
tion parameter estimates with this model are reported in Table III. Because the dose are inmg.kg−1,
the unit of the parametersCl andV are also expressed by their usual units per kg. The estimation
of most of these parameters is good because the RSE are satisfactory except forωka andγka of
which the RSE are, respectively, 144% and 121%. We note that these variabilities are low and are
consequently difficult to be precisely estimated. WitĥβCl = 0.06 andSE(β̂Cl) = 0.16, we perform,
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using the formulas in Section 2.3, the Wald tests of equivalence with the equivalence limitδ = 0.2
and the type I errorα = 0.05. The 90% confidence interval for treatment effect onCl is [-0.198;
0.318] and not included in [-0.2, 0.2]. Consequently, we can not show a significant equivalence
between the two treatment groups.

4.2 Designing of DAV2 study

4.2.1 Methods

We evaluate and optimise the design for the DAV2 study, usingthe model selected and the values
of population parameters estimated from the DAV1 study, with the estimated treatment effect =
0.06 (cf. Table III). We first evaluate for the next study a rich design with two periods which is the
original design of the DAV1 study (0.5, 1, 1.5, 2, 4, 6, 8 h after dosing) with same sampling times at
each period. We do not consider the samples 10 h and 12 h because of the high proportions of data
below LOQ as there is no way presently to incorporate this information in the computation ofMF .
Consequently, this population design involves a total number of 224 samples to be performed in
16 piglets. We omit subsequently the parametertlag because its estimated value is small (roughly
0.37 h) whereas the first sampling time of the study is given tobe after 0.5 h. We also derive a
two-period optimal design with a constraint of four points for each period (same samples at each
period) from the rich one using the extension ofMF and the Fedorov-Wynn algorithm as in the
simulations. Thus, the optimal design involves a total number of 128 samples to be performed in
16 piglets. We evaluate the values of SE and RSE for all parameters and examine the critetion value
computed from the extension ofMF , defined as the determinant ofMF normalised by the inverse
of the total number of parameters to be estimated with NLMEM (the size ofMF ). The ratio of the
two criteria expresses the relative efficiency between the two designs and evaluates the factor of the
mean estimation variance decrease when changing the design.

Then, we compute, with the extension ofMF , the predicted power of the Wald test assessing
the equivalence on the parameterCl between the two groups: amoxicillin + placebo (AP) group
(treatment 1) versus amoxicillin + compound X (AX) group (treatment 2) from the expected SE of
βCl and with the same number of piglets (N= 16) as in DAV1. We examine different given values
of βCl: 0 as is usually done in equivalence assessment, 0.06 as in DAV1 and 0.1, for the rich design
as well as for the sparse design. We predict the NSN to achievea power of 90% for the equivalence
test with an equivalence limit of 0.2. The computations are first performed for a design with two
periods AP/AX then with four periods AP/AX/AP/AX.

4.2.2 Results

The evaluation results for the two-period design of DAV2 study are reported in Table IV with the
predictions of the RSE (or SE forβCl) for each parameter and the criterion value of both the original
and optimal design composed of (0.5, 2, 4, 6 h) at each period.The original design gives correct
RSE and SE for all parameters except forωka andγka as in DAV1. We note also that the RSE and
SE of the sparse design areslightly higher than those given by the rich design but they are still very
close. The criterion value decreases slightly when there are less sampling times per subject. The
efficiency of the sparse design compared to the rich one is calculated as the ratio of the two criterion
values 32.71/39.04 = 0.82. Concequently, the choice of similar samples as DAV1 is acceptable for
DAV2, giving the correct SE for most of the population parameters. The sparse design is efficient
while allowing us to perform fewer samples per subject.
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The results for power and NSN computation are reported in Table V. We observe a lack of
power for the design with two periods and an increase of powerfor four periods to show equivalence
between two treatment groups with 16 subjects per group. Indeed, withβCl = 0.06 as estimated in
the DAV1 study and a rich design, we predict 128 subjects in a two-period trial (involving a total
number of 1792 samples to be performed) and 67 subjects in a four-period trial (1876 samples)
needed to achieve a power of 90%. With the sparse design, we predict 131 subjects in a two-period
trial (1048 samples) and 69 subjects in a four-period trial (1104 samples) needed to achieve a power
of 90%.

5 Discussion

In this paper, we proposed the expression ofMF for crossover trials analysed with NLMEM in-
cluding WSV, in addition to BSV, and with discrete covariates which can change between periods.
It is an extension of the developments proposed in [20], [29]and [21], using a linearisation of the
model around the expectation of random effects. Simulations with various scenarios showed the
correctness of the predictions of the SE and power for the comparison or equivalence Wald tests
computed byMF . In spite of a slight underestimation of RSE byMF for some parameters, which
respects the Rao-Cramer inequality, the discrepancy is not important (< 10%); indeed, when exper-
imenters design population studies, it is more the amplitude of RSE than the exact value that they
are looking for. This extension ofMF can be concluded as relevant while saving lots of computa-
tion time compared to extensive simulations. We also derived an optimal sparse design and showed
that it had power very close to that of the rich design, even with fewer samples per subject. This can
be explained by the fact that there are only three parametersin the PK model, so a lower number of
parameters compared to the number of samples in the sparse design (four samples per period). It
is also what we obtained in our application example, which showed the importance of the number
of subjects for the power of test.We notice that in the application, the covariate effectβCl was
estimated from the data of the DAV1 study between two periodsalthough in that design, the piglets
received amoxicillin plus placebo at the first period and amoxicillin alone at the second period. So
βCl expressed something other than a treatment effect, perhapsa period or a placebo effect. We
chose however to include this discrete covariate in the statistical model as a treatment effect and to
estimate this parameter because our objective in this application is to design the subsequent study
DAV2 where there will really be a treatment effect from the compound X co-administrated with
amoxicillin at the second period and similarly we assume that there will be no effect of drug X (not
more than placebo). Then as presented in section 4.2, we examined not only the estimated value of
βCl as in DAV1 but also different ones to predict the power and NSNfor DAV2. In this application,
more than 16 piglets were needed in a one-way, two-period crossover design to show an absence
of interaction of compound X on the PK of amoxicillin, which can be explained by the important
standard deviation of WSV onCl (

√
γ = 0.45). Increasing the number of periods improved the

power of the study because the variance of the treatment effect parameter was reduced.
The extension ofMF provides a useful tool to study the influence of the number of periods, of

subjects or the effect size of a discrete covariate. We can also easily examine how the power would
vary with different ratios between the BSV and WSV in a crossover design, and to compare these
results to those obtained from a parallel group design. Thisemphasises the advantage of crossover
design compared to parallel group design in bioequivalencetrials except when WSV is the total
variability and BSV = 0. It would also be interesting to include in the model a period or sequence
effect and to consider different ratios between BSV and WSV to see its influence on the results.
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These extensions were implemented in the new version 3.2 of PFIM, available freely since
January 2010 at www.pfim.biostat.fr, with several new features in terms of model specification and
of MF expression. An output example of PFIM 3.2 for design evaluation of a two-way, two-period
crossover trial is shown in the Supplementary Material2. This new mathematical development of
MF is applicable to single or multiple response models, for anynumber of periods and sequences,
with different designs at each period. However, the presentimplementation ofMF in PFIM was
performed only for the case of trials with the same sampling times in each period, which is the
design of our motivating example.

In our present work, we omitted the parametertlag when designing the DAV2 study. But
the fact thattlag was not taken into account in design optimisation has no important influence
on the optimal design, all the more justified as its value is very small (≈ 0.37h), and before the
first sampling time (0.5h) of the study. However, it would be useful, when the value oftlag is
important, to evaluateMF in the presence of this parameter. In addition, data below LOQ were
omitted for design evaluation in this extension but it wouldbe interesting to derive an expression
of MF including these left-censored data. An ad hoc method would be to take into account the
percentage of data below LOQ at each sampling time, evaluated by simulation, in the evaluation of
MF . It would be also interesting to consider the contribution of this information to the likelihood
as proposed in [40]. Also, here we considered only diagonalΩ andΓ matrices but one may want
to allow correlations between parameters. The expression of MF for the full Ω matrix has been
developed by [20] but has not been yet implemented in PFIM.

In this work, the development ofMF was based on an approximation by linearisation of the
model using the Taylor expansion. In our linearised calculation, we choseto assume independence
between the variance of the observations and the fixed effects as in a linear mixed model, which
leads to a block diagonal expression ofMF . Retout and Mentré [29] and other authors [22, 24,
25, 41] have also proposed an expression ofMF taking into consideration the dependence of
the observations on the parameters of the model, leading to acompleteMF with an additional
off-diagonal blocC. There is no clear consensus on what is the best approximation but we think
that the block diagonal expression is better. Indeed, presently, Mielke and Schwabe [31] in addition
showed that an approach with block diagonalMF was more reliable than the one with the fullMF .
In the software MONOLIX, the observedMF calculated by linearisation of the model around the
individual parameter estimate has also a block diagonal expression. Also, the method presented
here was shown to be relevant by simulation for the present example and in others [26, 42]. This
can be perhaps explained by the fact thatMF calculation is based on derivations of the model.
The linearisation could perhaps introduce potential problems when the model is very nonlinear or
very complex and written in differential equations. Consequently, one of the perspectives of this
work would be to propose a computation ofMF without model linearisation using a stochastic
approach.

Studies analysed through NLMEM can be perfomed with optimalsparse simpling times with
almost no loss of power. This requires the knowledge of the model and its parameters, a limitation
also present in the approach by simulation.Sensitivity analyses with respect to the model and
the parameter values would be necessary and interesting to quantify how the results possibly vary.
However, at the designing step in a PK equivalence or interaction study of a drug, one can usually
use the results of a previous study on the same drug so that thePK of the drug is already well
known, and the model has already been evaluated.Also, this method allows of reducing the number
of samples per subject, which can be ethically and practically very important for performing studies

2Supporting information may be found in the online version ofthis article.
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in patients. In conclusion, we have shown the relevance of the extension ofMF in NLMEM for
crossover trials. The approach by NLMEM is an appropriate alternative to NCA in the case of
trials in patients. The implementation of these new developments in PFIM provides a useful tool
to design bioequivalence/interaction studies as well as other kinds of longitudinal studies, avoiding
extensive simulations.
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Table I – Predicted and empirical standard error SE(βCl) for each design and value ofβCl.

Design exp(βCl) Predicted SE(βCl) [×102] Empirical SE(βCl) [×102]

rich 0.8 3.401 3.290
(0.5, 1, 1.5, 2, 4, 6, 8 h) 1 3.404 3.297

1.1 3.405 3.300
1.2 3.406 3.305
1.25 3.407 3.308
1.5 3.410 3.320

sparse 0.8 3.443 3.357
(0.5, 2, 6, 8 h) 1 3.454 3.372

1.1 3.459 3.377
1.2 3.462 3.390
1.25 3.463 3.397
1.5 3.467 3.423
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Table II – Predicted powers (%) and observed powers (%) for each design and value ofβCl.

Design exp(βCl) Comparison test Equivalence test

Predicted power Observed power Predicted power Observed power

rich 0.8 100 100 5.00 5.60
(0.5, 1, 1.5, 2, 4, 6, 8 h) 1 5.00 5.30 100.00 100.00

1.1 79.92 82.80 98.25 98.90
1.2 99.97 99.90 32.76 32.00
1.25 100 100 5.00 4.30
1.5 100 100 NC NC

sparse 0.8 100 100 5.00 5.60
(0.5, 2, 6, 8 h) 1 5.00 5.10 100.00 100.00

1.1 78.69 79.80 97.99 98.20
1.2 99.95 99.80 32.08 34.10
1.25 100 100 5.00 4.70
1.5 100 100 NC NC

(NC: not computed becauseβCl is not underH1.)
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Table III – Population pharmacokinetic parameters of amoxicillin and and standard errors (SE) as
well as relative standard errors (RSE) of parameter estimates by MONOLIX 2.4 for DAV1 study.

Parameters Estimates SE RSE (%)

tlag (h) 0.37 0.03 7
ka (h−1) 0.81 0.13 16

V (L.kg−1) 2.86 0.85 30
Cl (L.h−1.kg−1) 2.99 0.35 12

βCl 0.06 0.16 265

ωtlag 0 - -
ωka 0.10 0.14 144
ωV 0.79 0.51 64
ωCl 0 - -

γtlag 0.083 0.04 42
γka 0.10 0.12 121
γV 0.73 0.34 46
γCl 0.19 0.06 28

σinter (ng.L−1) 0.31 19.00 6
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Table IV – Relative standard error (RSE; %) and standard error (SE) predicted by new extension
ofMF for all the population parameters and criterion value according to each two-period crossover
design of DAV2 study.

Rich design Sparse design

RSE(ka) 23.7 26.4
RSE(V ) 36.0 37.9
RSE(Cl) 11.2 11.2
SE(βCl) 0.157 0.158

RSE(ωka) 230.2 282.5
RSE(ωV ) 65.6 68.5
RSE(ωCl) - -

RSE(γka) 177.7 205.7
RSE(γV ) 40.9 43.7
RSE(γCl) 18.4 18.6

RSE(σinter) 5.9 10.2

Criterion value 36.55 30.01
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Table V – Prediction of power for the Wald test of equivalenceand of NSN to achieve a power of
90% computed by PFIM 3.2 for each design of DAV2 study.

Design βCl Two periods AP/AX Four periods AP/AX/AP/AX

Predicted power (%) NSN for a Predicted power (%) NSN for a
with N= 16 piglets power of 90% withN= 16 piglets power of 90%

rich 0 41.0 68 64.3 34
(0.5, 1, 1.5, 2, 4, 6, 8 h) 0.06 27.0 128 41.3 67

0.10 19.3 209 27.7 124

sparse 0 40.5 70 63.7 35
(0.5, 2, 4, 6 h) 0.06 26.7 131 40.8 69

0.10 19.1 213 27.4 126
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Figure 1 – Barplots of predicted (hatched bar) and empirical (plain bar) RSE (%) for the fixed
effect, the between subject variability, the within subject variability onCl and for therandomerror
parameterσinter for different values ofβ for the rich (white bar) or the sparse (grey bar) design
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Figure 3 – Barplots of predicted (hatched bar) and observed (plain bar) power (%) for different
values ofβCl for the rich (white bar) or the sparse (grey bar) design for the comparison test (left)
and for the equivalence test (right)
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Figure 4 – Spaghetti plots of plasma amoxicillin concentrations of DAV1 study.


