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Bioequivalence or interaction trials are commonly studied crossover
design and can be analysed by nonlinear mixed effects modedsan

alternative to noncompartmental approach. We propose ateasion of the

population Fisher information matrix in nonlinear mixed efects models to
design crossover pharmacokinetic trials,using a lineat®n of the model
around the random effect expectation, including within-sjdet variability

and discrete covariates fixed or changing between periodse ge the
expected standard errors of treatment effect to compute plosver for the

Wald test of comparison or equivalence and the number of sdig needed
for a given power. We perform various simulations mimickingossover
two-period trials to show the relevance of these developteenWe then
apply these developments to design a crossover pharmaetkirstudy of
amoxicillin in piglets and implement them in the new versid2 of the R

function PFIM.
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1 Introduction

Pharmacokinetics (PKis the science of the kinetics of drug in an organism, gehebalsed on
drug plasma concentrations. Bioequivalence trials areopadd to compare the PK of two drug
formulations and interaction trials are performed to stimyeffect on the PK of another drug. The
most commonly used design for these trials is the cross@msgd, where measurements are made
at several occasions. Bioequivalence is tested from thealog of the geometric means of two PK
parameters: the area under the cund€ (') of the concentrations and the maximal concentrations
(Chaz) [1, 2]. Linear mixed effects models (LMEM) including trea¢nt effect are usually used to
analyse the log-transformedlU C' andC,,,... [3]. Bioequivalence tests are then performed on the
estimates of the treatment effect. The same testing meshaged for an assessment of the absence
of interaction. The tested end-poité/C andC,,., are usually estimated by non-compartmental
analysis (NCA) using the trapezoidal rule to evaluatéC' [4]. NCA needs few hypotheses but has
several limitations Although using sparse sampling in NCA is possible [5, 6, 7argé number

of samples per subject (usually between 10 and 20, as is tiahealthy volunteers) is however
needed when using this approach to be able to estimate méaa@ability of AUC' andC,,,,.. with

a good precisionNCA also does not take into account nonlinear pharmacoksetihich can bias
the bioavailability estimation [8] and may amplify smalkaability differences between drugs [9].
Alternatively, another approach to analyse PK data is thpjation approach based on nonlinear
mixed effects models (NLMEM) [10, 11], which is more comptéan NCA but benefits from the
knowledge accumulated about the drug and can charactead with few samples per subject,
enabling us to analysgudies in patients with more power than does NCA. These madal also
lead to a better understanding of the biological system atip to interpret ambiguous results.
However, the use of NLMEM is rather recent and still rare inyephases of drug development
and/or to analyse crossover studies in spite of its sevdrardages [12, 13, 14].

The work presented here focusses on crossover PK trialysataby NLMEM. Before the
modelling step, data needs to be collected and we have comsiyto define an appropriatke-
sign, which consists of determining a balance between the nuwftarbjects and the number of
samples per subject as well as the allocation of samplinggiatcording to experimental condi-
tions. The choice of design has an important impact on thadystesults, on the precision of the
parameter estimates and on the power of the tests [15, 16lridged, a bad choice of design can
lead to results which are difficult to interpret and minimile interest of the study. The main ap-
proach for design evaluation has been for a long time basatharations but it is a cumbersome
method, and thus the number of designs which can be evaligdtetdted. An alternative approach
has been described in the general theory of optimum expetahdesign used for classical non-
linear models [18, 19], relying on the inequality of Rao-Cramdich states that the inverse of
the Fisher information matrix/¥/ ) is the lower bound of the variance-covariance matrix of any
unbiased estimate of the parameters and its diagonal etsmenthe expected standard errors (SE)
of the parameters. Several criteria basedwdi have been developed to evaluate designs. One of
the criteria widely used is the criterion of D-optimalityresisting of maximising the determinant
of M . But since there is no analytical form of the likelihood in diamework, the determination
of the exact analytical expression B  is not possible. An approximation @i » was first pro-
posed by Mentr@t al [20] for NLMEM. Its evaluation was implemented in the R fuioct PFIM
[21] using first order linearisation of the model around taedom effect expectation. Evaluation
and optimisation of design have become a large field of rekeaith more and more publica-
tions on several extensions 8f - [22, 23, 24, 25, 26] as well as the creation of several so#war
besides PFIM by different research teams, implemented iTIM8 (MathWorks Inc., Natick,
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MA, USA) (PopDes, PopED, WIinPOPT). These softwares deelittd evaluating and optimising
designs were compared in an oral presentation by Mextted[27] at the meeting of Population
Approach Group in Europe (www.page-meeting.org). Howgetlerse expressions &/ » were
not yet applicable to crossover trials with models inclgdwithin subject variability (WSV) and
discretecovariateschanging between periods. It is important to model not osiween subject
variability (BSV) but also WSV when subjects have measuremanseveral periods, as accentu-
ated by Karlsson and Sheiner [28] and Panterdl [12]. The development oM - in NLMEM
under uni-response models with additional terms for WSV leasnlimplemented and illustrated on
a specific example of two occasions [29]. However, this hdyeabbeen generalised to crossover
designs for any number of periods and sequences, neithemded to include discrete covariates
which can change between periods. The prediction of poweh&\Wald test to detect a treatment
effect has been previously described by Rewtual [30] using the expected SE of the treatment
effect but only for an interaction study in a parallel growgsign, not yet for an equivalence study
in a crossover design. These developments would be verylsete to our knowledge, this is the
first proposed statistical method to predict power of testtarchoose optimal sampling times for
crossover bioequivalence or absence of interaction tisddysed by NLMEM.

In this context, the first objective of this work is to exteihe expression foM » in NLMEM
including WSV in addition to BSV and discrete covariates fixedlmanging between periods in
crossover trials. Then, we also propose a computation oéxipected power for the Wald test
of comparison or equivalence and the number of subjectsede@dSN) for a given power. The
relevance of these developments is evaluated by simutatimmmicking a PK crossover two-period
study of amoxicillin (an antibiotic widely used in bacténafection treatment) in piglets. Finally,
we apply these extensions to design a future PK crossowtty styiglets, based on the results of a
previous study inspiring our simulations, aiming to show éfbsence of interaction of a compound
X on the PK of amoxicillin. We wish, through this motivatingaanple, to show how our statistical
methodology can be easily applied in practice, to choosenapsparse sampling times with almost
no loss of power and to compute the NSN for a given power. Thengke also brings us to discuss
how different elements in a study design (number of subjeétmodel parameters, of periods, etc.)
could influence the power and to investigate/confirm the aidgge of crossover design compared
to parallel group design in bioequivalence trials.

We introduce some notation and present the new extensibfi 0as well as the computation of
the power and NSN in Section 2. By simulation, we evaluate élevance of these developments
in Section 3. An application of this extension to a real exEnppresented in Section 4, followed
by a discussion in Section 5.

2 Extension of population Fisher information matrix

2.1 Notations
2.1.1 Design

The elementary desig§,, of individual i (i = 1,..., N) at periodh (h = 1,..., H) is defined

by the number.;;, of samples and their allocation in tingg. . . ., tiw,,, ). The global elementary
design¢; of individual i for H periods is defined a§;, = (&,4,- .., &,5), With a total number of
samples; = Zle n;n. Consequently, the population design férnindividuals and forH periods
can be defined a8 = {&,,...,&y}. Usually, population designs are composed of a limited
number@ of groups of individuals with identical designs in each grotach of these groups is
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composed of a global elementary desgnand is performed in a numbeyY, of subjects. The
population design can thus be writtenZs= {[£,, V1]; .. .; [£q, Nol}-

2.1.2 Modes

We denote byy,, then;,-vector of observations for the individuaimeasured at periold and by f
the known nonlinear function describing the nonlinearcttrital model. The NLMEM linkingy,;,
to the sampling time§;, = (tin1, - - -, tinn,, ) C&N be written as

Yir, = f(Din, &) + €in (1)

f mapse,,, the P-vector of parameters for individualat periodh and the set;, of n;, sam-
pling times to a vector of which each element is a sc#l@s;;, t;;), With j = 1,... . n;. €5 iS
the vector of random error which follows a normal distribatiV (0, X;;,) with X, ang, x n,
diagonal matrix expressed as a function@f,,, oinzer, osiope; €;,) SUCh as each diagonal element
of Xin iS (Ginter + TstopeS (Pins ting))? With j = 1,...,ip. Ginter and o, are additional and
proportional parameters in the variance model ofrir@omerror. The case of,,. = 0 returns

a homoscedastic error model, whereas the casg,Qf = 0 returns a constant coefficient of vari-
ation error model. The general case where the two paranditesfrom O is called a combined
error model.

We denote by the set of discrete covariates changing or not betweengsq. is the set of
all possible categorigsof the covariate in C'. We assume that the vectgy, of parameters for an
individual; at periodh can be expressed as a function of the covarigtef individual ; at period
h, which can be additive (for normal parameters):

G =1+ D> Y Lo —iB, +bi + K 2)

ceC keK,

or exponential (for lognormal parameters):

bin=n@exp() D loy=kBe,) @ exp(bi + Kin) 3

ceC keK,

Here, u is the P-vector of fixed effects3,, is the P-vector of fixed effects for category
of covariatec (8., = 0 if k is the category of reference) on tiieparameters of the structural
model. b; is the P-vector of random effects of individua) &,;, is the P-vector of random effects
of individual i for periodh.

¢, can take any valug in the setk,. 1., is the indicator function of the categokyin the
set K., having the value 1 it;, is in the category:, and having the value O if not. Consequently,
le,,=k8., is equaltod,, if 1., = 1and to0 if 1., = 0. exp with a vectorv as its argument
is the vector such as each element is the exponential of thespmnding element af. In (2),
the P-vector¢,, is defined by addition of the vectors on the right side of thaagign. In (3), the
symbol® here means that each elempiip = 1,. .., P) of ¢,,, is obtained by multiplication of the
p" elementgp = 1,..., P) of the vectorgu andexp(}_ .o > yck. Len=kB.,) @andexp(b; + k).

It is assumed thab; ~ A(0,9) andk;, ~ N(0,T), with @ andT" defined as the diagonal
variance-covariance matrices of sifex P. Each elemeny, of Q2 and~, of I' (p = 1,..., P)
represents, respectively, the variance of BSV fortheeomponent ob; and the variance of WSV
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for the p'* component of<;,. b, andk,;, are supposed to be independent. We denot&byhe

diagonal matrix
. [ D
o (%) @

whereI™ is a block diagonal matrix composed éf blocksT'. The relation betweew,, and
(m, B, by, ki), With 3 regrouping all the fixed effects for discrete covariatessummarised in
a functiong such asp, = ¢(0,v;) wheregp, = (¢,,,...,d.5)" is the vector of parameters for
individuali for H periods@ = (', ') is the vector of all fixed effects, and = (b}, !y, ..., Kl

is the vector of all random effects f@f periods. The vector of observations of individudbr H
periodsy,; = (v, ..., ¥}y )’ can thus be written

Y, = f(9(0,v:),&) + & (5)
Whereéi - (&17 sy ng) and € = (6217 S 6{L'H)/ ~ N(07 21(07 Vi, Ointer; Oslopes 5@)) 21 is an
n; x n; diagonal matrix composed of each diagonal elemeipf(h = 1,..., H). The following

assumptions are made;|v; are independent between subjeets|x,;, are independent between
periods, and; andv; are independent for each subject.

Let A = (w1, ...,Wp, V1, .o, VPs Tinter, Osiope)’ D€ the vector of variance terms, addbe the
vector of all population parameters to be estimated, so%hat (6’,\’). We also denote by
dim(0) the number of fixed effects antdm () the number of variance terms.

2.2 Population Fisher information matrix

We extend the expression &ff - in NLMEM for crossover trials using the first order Taylor ex-
pansion of the model as in Menteé al [20]. For simplicity, we omit the index for the individual

in this section. The elementaty! (¥, &) for an individual with elementary desighcomposed
of one or several periods is calculated by

(6)

Miw.g) - 1 (5

owov’

wherel(W¥, y) is the log-likelihood of the vector of observatiopf that individual for the pop-
ulation parameter®. There is no analytical expression fld&, y) because of the nonlinearity
of the structural modef. An approximation is possible using the first-order Taybgpansion of
f(g(0,v), &) around the expectation of the random effaets.e. 0. The statistical model can be
written as

df'(g(6,0),
y = f(9(6,0),8) + (W)Wﬂs (7)
and the log-likelihood is then approximated by
—20(¥,y) 2 nin27 + In|V|+ (y — E)V ' (y — E) (8)

wheren is the total number of observations of the individu&l;and V' are the approximated
marginal expectation and variancewpgiven by

E =E(y) = f(9(0,0),¢) (9)
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V Varty = (L0000 g (21000.0.8)

81/ 81/’ ) + 2(07 07 Ointer O-slopm E) (10)

We derive the expression of the log-likelihoddtaking into account WSV in addition to BSV
and fixed effects for discretes covariates changing betypeeiods. We obtain the elementary
M ;- depending onZ and V. Assuming thafV” does not or does depend on the fixed effects, the
elementaryM r is a block diagonal matrix or a full matrix. There is no cleansensus on what

Is the best approximation but here in our approach by lisatidn, we assume the choice of the
block diagonal expression [31]

e = (A0 e ) 1)

where
(AB. V), 25 v o (12)
(B(E, V) =tr (g)\—vmv—lg—xv—l) (13)

with r ands = 1, ...,dim(0); mandl = 1, ..., dim(X).
To define the population matrix, we use the fact théf (¥, =) for a population desigi is
defined by the sum of th& elementary matrice81 (¥, &,), so that

N
Mp(¥,2) = Mp(¥,¢) (14)

i=1

In the case of a limited numbé} of elementary designs, we have

Q
Mp(W,E) = N,Mp(¥,¢,). (15)

q=1

2.3 Computation of power and number of subjects needed

In this section, we consider the Wald tests of comparisonespivalence on a discrete covariate
effect fixed or changing between periods for the case of asokes trial. Here, these tests are
performed orthe estimator ofhe effects,,, of each category of each covariate for parametep,
noted@. Given a value3; of @ and from the square root of the diagonal terms of the inverse
of M r, we calculate the standard error @f. Then, we predict the power of the tests and also
compute the NSN to achieve a given power. Note that for soitpliwe omit indexc,p for 5 in

this section.

2.3.1 Comparison test

The null hypothesis for the Wald test of comparisoitfis: {5 = 0} while the alternative hypoth-
esis isH; : {# # 0}. Puttingg as the estimator of, then the statistic of the Wald test under the
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null hypothesis, is W = B/SE(B). With a type | errora, H, is rejected if{ V| > z_,/2, where
Z1-q/2 IS the(1 — a/2) quantile of the standard normal distribution.

We compute the power of the Wald test of comparison un‘ﬂlerwhenﬁ = p1 # 0. With
a given design and values of population parameters, we qir8di(/5;) using the extension of
M . UnderH,, W is asymptotically distributed with a normal distributioentred ats; /SE(/;).
Therefore, the power of the Wald test is

Pcomp =1-9 (Zl—a/Q - SEﬁ(lﬁl)> + @ (_Zl—a/Q - SE6<151)> (16)

where® is the cumulative distribution function of the standardmat distribution.

Using the predicted SE by the extension\df., we can also derive the NSN to achieve a power
P.omp 10 detect a covariate effect as in [30]. For that, we first cotaphe SE needed ¢h to obtain
the power ofP,,,,, called SENPF.,,,,), using the following relation

A

EN(P.opn) = 17
S ( CO! p) Zlfa/Q . (I)fl(l o Pcomp) ( )
We then compute the NSN to obtain a powerdf,,,, called NSN F,.,,) USING
SE(8) \?
NSN(P. = _—
Pl = 40 (SEN<Pcomp>) 1o

2.3.2 Equivalencetest

The null hypothesis for the Wald test of equivalencéfis: {5 < —§ or g > +4d} while the
alternative hypothesis iH; : {—0 < < +4}, where) is the equivalence limit. In the guidelines
for equivalence assessment [1, 2], it is recommendedithat0.2. H, is composed of two uni-
lateral hypothese&l, s : {8 < —d0} andH, s : {8 > +0}. Equivalence between two groups
on covariate effectl can be concluded if and only if the two hypothegés s and H, s are re-
jected. The equivalence Wald test using NLMEM has alreadntwkeveloped [32, 12], based on
the Schuirmann’s two one-sided tests (TOST) [33¢noting the estimator of by 5, the follow-
ing formulas defindV_s, the statistic of the unilateral test under the null hypstté, _;, and
W, the statistic of the unilateral test under the null hypeibh&,, ,s: W_; = (B+6)/SE(B) and
Wis = (3 — 6)/SE(§). With a type | errora, Hy is rejected ifiW_s > z_, andW.s < —z;_,,
wherez; _, is the(1 — «) quantile of the standard normal distribution.

We compute the power of the Wald test of equivalence umﬂerwhenﬁ = p € [-6,+4].
Usually we choos¢; = 0. From a given design and values of population parameterqredict
SE(p1) using the extension d¥{ . The power of the Wald test is then

B pr+9 .

Pequi =1-® (Zla — m) if 61 € [—(5, O] (19)
_ br—0o :

Pequi =9 (_Zla - SE(Bl)) if 61 € [07 +5] (20)

where® is defined as in Section 2.3.As expressed in (19) and (20), the power of the equivalence
test depends on the sign gf. Whenj; = 0, we can use any of the two equations to obtain the
power because in that case:

o gly) (i) e
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Using the predicted SE by the extensionf, we can also derive the NSN to achieve the
power F,,,; of showing the equivalence between two groups on covarfégetes,. For that, we
first compute the SE needed @Gnto obtain the power of.;, called SENPF, ), using

B —B1—0 .
SEN(Pos) = —— o101 7 if 1 € [6,0 (22)
SEN(Prgy) = — 110 if 81 € [0, 4] (23)

Zl—a + q)_l(Pequi)

We then compute the NSN to obtain the powePgf;, called NSN P, ;) using (18) WithSEN(P.qui)
instead of SENE,..p). If 51 < 0, we substitute (22) into (18); if; > 0, we substitute (23) into
(18); if 51 = 0, we can substitute either of (22) or (23) into (18) becaughancase:

-5 )
EN(P.oy) = = 24
S ( d ) —2l—« + CI)_l(l - Pequi) Zl—a + CI)_l(Peqm) ( )

3 Evaluation by ssimulations

The simulation model and design are based on a previous RIK B#V1 of amoxicillin in piglets,
conducted by the biotechnology company Da \olterra (Hitpwiv.davolterra.com) which will be
given in detail in Section 4.1.

3.1 Simulations

The PK model is a one compartment oral model with first ordeogition and first order linear
elimination. The observed amoxicillin concentration of subjeat sampling time of periodh is
modelled by a NLMEM as described in Section 2.1.2:

FD kaih
Cli, — Vi, kan

Yinjg = [(Pip, ting) + €iny = [e~Fain ting — o= (Clin/Vin) tini] 4 ¢, (25)
In (25), D is the dose,F’ the bioavailability,ka the absorption rate constarit] the clearance
of elimination of the drug and” the volume of distribution. After oral administration ontype
bioavailability can not be estimated and the veeftoof PK parameters iska, V/F,Cl/F). For
simplicity, this will be denoted subsequently bya, V, Cl) whereC'l andV are apparent parame-
ters.

We simulate crossover PK trials with two periods, one segeers in DAV1 study. In each
dataset/V = 40 subjects are allocated at period 1 to treatment 1, with Arplus placebo and then,
at period 2, to treatment 2, with the same drug A plus drug B.cAthpounds are administrated
orally once a day. The dose is fixed at 3@.kg ! for all subjects. The sampling times for all
subjects and both periods are similar and are taken from griantimes of the DAV1 study: 0.5,
1, 1.5, 2, 4, 6, and 8 h after dosing. The vector of fixed effacts composed of;, = 1.00h 1,
py =3.5Lkg™ !, uoy = 2L.h1 kg™!) for treatment 1 (the treatment of reference). We take into
account a treatment effegt; on Cl, characterising the interaction between A and Be relation
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between these parameters is expressed as in (3), so thaiat pe

[ka X exp(bf® + KL
¢y = My X exp(b}/ + “X) (26)
per x exp(bE! + kG

and at period 2,

fira X exp(bFe + Kk
Dy = py X exp(bY + k%) (27)
per % exp(Ber) x exp(b§' + k&)

We fix the variance of BS\w = (0.3)> = 0.09 and of WSV~ = (0.15)? = 0.0225 for the
three parametersiVe assume no correlation between PK parameters, so thenees@@variance
matrices2 andT are diagonal. The parameters of taedomerror model arer;,,;., = 0.1ng.L !
andog.,e = 0. For each subject of each simulated trial at periok, we simulate a vector of
random effectd; in N'(0,€2) and two vectors of random effects,, in A(0,T), one for each
period and then computg,, while taking into account the treatment effégt; using (26, 27) We
calculate the concentrations predicted by the PK modeldt sampling time. For each predicted
concentration, we generate the vector of taedomerror using the value of;,;... To get the
simulated concentrations, these errors are added to tlkcie concentrations. Then, we left-
censored them at 0.Gfg.L.~!, the limit of quantification (LOQ) in the DAV1 study.

We consider in the above simulation procedure differentesbf the treatment effect parameter
Ber such adog(0.8),log(1), log(1.1),log(1.2),log(1.25) andlog(1.5). The casei; = log(l) =0
corresponds to the null hypothesis of the comparison testreatment effect) while the cases
Ber = log(0.8) =~ —0.2 orlog(1.25) ~ 0.2 correspond to the null hypothesis of the equivalence test
(the two limits of equivalence). We also derive and study jaiineal sparse design of four samples
by optimising the rich one using the new extensionMf; with the Fedorov-Wynn algorithm
[34, 35]. For that, we use the same simulated values above meodel without treatment effect
then with different values of treatment effect parametéie dptimal sparse design obtained is the
same with or without treatment effect (0.5, 2, 6, 8 h aftelimg)s For each simulated scenario, we
simulate 1000 trials, using R 2.4.0.

3.2 Evaluation methods

Our aim is to evaluate and compare the predictions of thelatarerrors and test powers computed
by the extension oM  to the empirical ones obtained from simulations. For thett,fto obtain
these predictions, with the design and the population pat@nvalues of each simulated scenario
above, we compute the standard errors denoted by SE of epalagion parameter from thegjuare
root of the diagonal terms of the extend@d ;' or the relative SE denoted by RSE, defined as the
ratio of SE by the parameter simulated value. Then, from thef3reatment effect parameter, we
also predict the power of the Wald test of comparison andvatgnce. We consider a type | error
« = 0.05 and an equivalence limét= 0.2.

In parallel, the empirical values are calculated as folloach simulated data file of each sce-
nario with different values ofi; is analysed in MONOLIX 2.4 (http://www.monolix.org) by an
NLMEM including discrete covariate. We use the SAEM alduant[36, 37, 38, 39] implemented
in this software to estimate parameters. The data under L@Q@a&en into account in the anal-
ysis using the extension of the SAEM algorithm proposed ystaet al [40], which allows of
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handling the left-censored data in NLMEM as an exact Maxiniikelihood estimation method.
We then calculate the empirical SE, defined as the samplaagstiof the standard deviation from
the parameter estimates obtained with SAEM. Concerning dlaers, the observed power of the
Wald test of comparison and equivalence are calculatecegstiportion of trials for which the null
hypothesis is rejected. Finally, we compare the resul@inétl from simulations to the predictions.

We present in Section 3.3.1 the comparison of the predictdtltB$e empirical ones in each
simulated scenario. As the treatment effect is added'lorere are presented only the results for
the fixed effect, variances of BSV and WSV 0fi, as well as the for the parametey,,., of the
error model. Then, we focus on the comparison of the SE ofrtvexat effects;. The relevance of
this power computation using the extension\df: will be investigated in Section 3.3.2.

3.3 Results
3.3.1 Evaluation of the predicted standard errors

The RSE predicted by the extension/df - and the empirical ones calculated from simulations are
displayed in Figure 1. The predicted RSE are very close to itiy@recal ones in each simulated
scenario. Some RSE aséightly underestimated by -, especially foryc;, but the difference is
not clinically relevant € 10%). As expected, the RSE asi#ghtly higher in the sparse design than
in the rich design, but the differences are very small, extmpr; ;...

We now focus on the SE of treatment effégt. The distributions of the observed SE from each
simulated scenario are reported as boxplots in Figure 2. SH(@;) predicted by the extension
of M ;- are very close to the empirical ones. The &) areslightly higher in the rich design
compared to the sparse one but they remain very close. Thases\are reported in Table I. There
Is no important change of SE{;) when varyings;.

Although not all the predicted SE and RSE are reported hemee s these values are present
in the online supplementary evaluation output of the richigie! with 8o, = log(1.1). In this
example and for other scenarios including the ones witmagltdesigns as well, the RSE predicted
for the fixed effects are very close to each other and closé4o Bhe minimum values of RSE
of the log parameters can be approximated by the SE, in tleeafasrich design, ag/w/v/N (w
being here the variance of BSV). Hekglw/v/N are roughly 4.9% since we have fixed the same
w for the three PK paramete(sa, V, Cl). This means that the original design (seven samples) is
quite rich and the derived optimal design (four samples)ge@d design, allowing of estimating
well the parameters with good precision.

3.3.2 Evaluation of the predicted powers

With each scenario, the predicted power by the extensioMaf and the observed power from
simulations for the comparison test as well as for the edgi test are reported in Table I
and also as barplots in Figure 3. Note that whep(/5¢;) = 1 for the comparison test and when
exp(fBcr) = 0.8 orexp(fc;) = 1.25 for the equivalence test, we are under the null hysothso
the probability computed is not the test power but the typedre The predicted powers by the
extension ofM  and the observed powers from simulations are very closedtir bomparison
and equivalence tests. The powers obtained with the opSprise design are also close to the
ones obtained with the rich design.

1Supporting information may be found in the online versiomhig article.
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4 Application to a pharmacokinetic study in piglets

In this section, we apply the extensiondf » to design a subsequent study DAV2 of amoxicillin
in piglets based on the results of the previous study DAV Idaoected by the company Da Volterra
that inspired the simulations. DAV2 will be a one-way crossdrial. The piglets receive at period
1 amoxicillin plus placebo, at period 2 amoxicillin plus ammaound X developed by Da \olterra.
The objective of DAV2 is to show the absence of interactioX @n the AUC of amoxicillin con-
centrations. The direct relatioh/C' = dose/Cl implies the equality between the log parameter of
the treatment effect oAU C' and the one o'l [12, 13]. That is why we are interested particularly
in Cl. To design DAV2, we analyse the data of DAV1 then with the tlssabtained, we use the
extension ofM . to evaluate/optimise designs and to compute the NSN to shevalbsence of
interaction of X onC'l of amoxicillin with a power of 90%.

4.1 Analysisof DAV1 study
4.1.1 Materialsand methods

The DAV1 study is a one-way, two-period crossover trial wlihpiglets receiving amoxicillin and
placebo at period 1 and only amoxicillin at period 2. Amoliiciwas administrated orally with
a single dose of 3thg.kg~t. Plasma amoxicillin concentrations were collected at ssampling
times at each period: 0.5, 1, 1.5, 2, 4, 6, 8, 10 and 12 h. Figurepresents the individual
amoxicillin concentrationsnfg. L. —1) versus time of each period.

To describe the pharmacokinetics of amoxicillin, we analisntly the data of both periods
for all piglets using MONOLIX 2.4 with an NLMEM and the SAEM gdrithm for estimating
parameters. At 8, 10 and 12 h, respectively, 21.9%, 68.8%8artb% of observations of both
periods are below LOQ (0.0bg.L~1). The very high proportions of data below LOQ especially
at 10 h and 12 h justify the choice of excluding these two sampl the simulations previously.
Here, MONOLIX 2.4 allows of taking into account the data belbOQ [40]. A one compart-
ment oral model with first order absorption, first order linelmination and the presence of a lag
time adequately describes the amoxicillin concentratiartbis study. The fixed effects are then
(tlag, ka, CL/F,V/F) but denoted for simplicity bytlag, ka, Cl,V'). A treatment effecti, is
added orlog(C1) and is estimated. We consider log parameters and assumbdive of diago-
nal matrice<2 andI'. To choose the error model, we compare the Bayesian Infasm&lriteria
(BIC) between the homoscedastic,(,. = 0), proportional ;... = 0), and combined models. We
examine the SAEM convergence graph and the goodness-ddtittp evaluate the chosen model.

412 Results

We choose a homoscedastic error model with,. = 0. With respect to the model of random
effects, when estimating,;,, andw;, the obtained variabilities are very low and their RSE very
high. Consequently, we fix,;,, = we; = 0 for €2 and do not estimate these two variances. With the
chosen model, the algorithm converges and the goodnefiisptifits are satisfactory. The popula-
tion parameter estimates with this model are reported iteTédb Because the dose areiing kg !,

the unit of the parametersi andV are also expressed by their usual units per kg. The estimatio
of most of these parameters is good because the RSE are &atigfaxcept forw,, and~y, of
which the RSE are, respectively, 144% and 121%. We note thaethariabilities are low and are

consequently difficult to be precisely estimated. V\ﬁ/ﬁa =0.06 andSE(Bgl) =0.16, we perform,
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using the formulas in Section 2.3, the Wald tests of equnadavith the equivalence limit = 0.2
and the type | errorr = 0.05. The 90% confidence interval for treatment effectiéns [-0.198;
0.318] and not included in [-0.2, 0.2]. Consequently, we cansmow a significant equivalence
between the two treatment groups.

4.2 Designing of DAV 2 study
421 Methods

We evaluate and optimise the design for the DAV2 study, udiegnodel selected and the values
of population parameters estimated from the DAV1 studyhulite estimated treatment effect =
0.06 (cf. Table II). We first evaluate for the next study dréaesign with two periods which is the
original design of the DAV1 study (0.5, 1, 1.5, 2, 4, 6, 8 haftesing) with same sampling times at
each period. We do not consider the samples 10 h and 12 h leechiire high proportions of data
below LOQ as there is no way presently to incorporate thigrmftion in the computation a¥7 ..
Consequently, this population design involves a total nunob@24 samples to be performed in
16 piglets. We omit subsequently the parameleg because its estimated value is small (roughly
0.37 h) whereas the first sampling time of the study is givebea@fter 0.5 h. We also derive a
two-period optimal design with a constraint of four poinds €ach period (same samples at each
period) from the rich one using the extensiondf and the Fedorov-Wynn algorithm as in the
simulations. Thus, the optimal design involves a total nemdf 128 samples to be performed in
16 piglets. We evaluate the values of SE and RSE for all passiahd examine the critetion value
computed from the extension a4 -, defined as the determinant®f - normalised by the inverse
of the total number of parameters to be estimated with NLMEM 6ize ofM ). The ratio of the
two criteria expresses the relative efficiency betweenwlosdesigns and evaluates the factor of the
mean estimation variance decrease when changing the design

Then, we compute, with the extension®f ., the predicted power of the Wald test assessing
the equivalence on the paramete between the two groups: amoxicillin + placebo (AP) group
(treatment 1) versus amoxicillin + compound X (AX) grougeétment 2) from the expected SE of
Ber and with the same number of pigletS € 16) as in DAV1. We examine different given values
of B¢;: 0 as is usually done in equivalence assessment, 0.06 asv &d 0.1, for the rich design
as well as for the sparse design. We predict the NSN to achipegver of 90% for the equivalence
test with an equivalence limit of 0.2. The computations ams performed for a design with two
periods AP/AX then with four periods AP/AX/AP/AX.

422 Results

The evaluation results for the two-period design of DAV istare reported in Table IV with the
predictions of the RSE (or SE f@;,) for each parameter and the criterion value of both the aigi
and optimal design composed of (0.5, 2, 4, 6 h) at each pefibd.original design gives correct
RSE and SE for all parameters exceptdgy and~;, as in DAV1. We note also that the RSE and
SE of the sparse design algghtly higher than those given by the rich design but they are s v
close. The criterion value decreases slightly when thexdess sampling times per subject. The
efficiency of the sparse design compared to the rich onedsilzdéd as the ratio of the two criterion
values 32.71/39.04 = 0.82. Concequently, the choice of aimdmples as DAV1 is acceptable for
DAV2, giving the correct SE for most of the population paréeng The sparse design is efficient
while allowing us to perform fewer samples per subject.
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The results for power and NSN computation are reported ineTeb We observe a lack of
power for the design with two periods and an increase of péovdour periods to show equivalence
between two treatment groups with 16 subjects per grougedddwithj5-;, = 0.06 as estimated in
the DAV1 study and a rich design, we predict 128 subjects imageriod trial (involving a total
number of 1792 samples to be performed) and 67 subjects inrgoriod trial (1876 samples)
needed to achieve a power of 90%. With the sparse design,etlecpl 31 subjects in a two-period
trial (1048 samples) and 69 subjects in a four-period tlia0@ samples) needed to achieve a power
of 90%.

5 Discussion

In this paper, we proposed the expression\f- for crossover trials analysed with NLMEM in-
cluding WSV, in addition to BSV, and with discrete covariatdsak can change between periods.
It is an extension of the developments proposed in [20], 8] [21], using a linearisation of the
model around the expectation of random effects. Simulatieith various scenarios showed the
correctness of the predictions of the SE and power for thepaoison or equivalence Wald tests
computed byM . In spite of a slight underestimation of RSE B ;- for some parameters, which
respects the Rao-Cramer inequality, the discrepancy is ntriant & 10%); indeed, when exper-
imenters design population studies, it is more the amitfdRSE than the exact value that they
are looking for. This extension @¥/ » can be concluded as relevant while saving lots of computa-
tion time compared to extensive simulations. We also ddrareoptimal sparse design and showed
that it had power very close to that of the rich design, eveh fewer samples per subject. This can
be explained by the fact that there are only three paramietdre PK model, so a lower number of
parameters compared to the number of samples in the spasigm dur samples per period). It
is also what we obtained in our application example, whiawsd the importance of the number
of subjects for the power of tesiVe notice that in the application, the covariate effégt was
estimated from the data of the DAV1 study between two peraditi®ugh in that design, the piglets
received amoxicillin plus placebo at the first period and =icithn alone at the second period. So
Ber expressed something other than a treatment effect, peehppsod or a placebo effect. We
chose however to include this discrete covariate in thessitatl model as a treatment effect and to
estimate this parameter because our objective in thisagin is to design the subsequent study
DAV2 where there will really be a treatment effect from thengmund X co-administrated with
amoxicillin at the second period and similarly we assuméettiere will be no effect of drug X (not
more than placebo). Then as presented in section 4.2, wexdmot only the estimated value of
B as in DAV but also different ones to predict the power and N@NDAV2. In this application,
more than 16 piglets were needed in a one-way, two-periossok@r design to show an absence
of interaction of compound X on the PK of amoxicillin, whichrcbe explained by the important
standard deviation of WSV o@'l (,/7 = 0.45). Increasing the number of periods improved the
power of the study because the variance of the treatmermt gléeameter was reduced.

The extension oM - provides a useful tool to study the influence of the numbeleoials, of
subjects or the effect size of a discrete covariate. We cneasily examine how the power would
vary with different ratios between the BSV and WSV in a crossadesign, and to compare these
results to those obtained from a parallel group design. @imghasises the advantage of crossover
design compared to parallel group design in bioequivalénalks except when WSV is the total
variability and BSV = 0. It would also be interesting to inctuith the model a period or sequence
effect and to consider different ratios between BSV and WS\é&its influence on the results.
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These extensions were implemented in the new version 3.ZF\ Pavailable freely since
January 2010 at www.pfim.biostat.fr, with several new fegun terms of model specification and
of M - expression. An output example of PFIM 3.2 for design evanaif a two-way, two-period
crossover trial is shown in the Supplementary Matetialhis new mathematical development of
M - is applicable to single or multiple response models, formnyber of periods and sequences,
with different designs at each period. However, the presepkementation ofM - in PFIM was
performed only for the case of trials with the same samplimgs$ in each period, which is the
design of our motivating example.

In our present work, we omitted the parametkrg when designing the DAV2 study. But
the fact thatt/ag was not taken into account in design optimisation has no itapb influence
on the optimal design, all the more justified as its value iy &mnall (= 0.37h), and before the
first sampling time (0.5h) of the study. However, it would seful, when the value dflag is
important, to evaluatd1 - in the presence of this parameter. In addition, data belowQ vire
omitted for design evaluation in this extension but it wob&linteresting to derive an expression
of M including these left-censored data. An ad hoc method woeltbliake into account the
percentage of data below LOQ at each sampling time, evaligtsimulation, in the evaluation of
M r. It would be also interesting to consider the contributibthas information to the likelihood
as proposed in [40]. Also, here we considered only diagbhahdI" matrices but one may want
to allow correlations between parameters. The expressiav g for the full 2 matrix has been
developed by [20] but has not been yet implemented in PFIM.

In this work, the development d¥1 » was based on an approximation by linearisation of the
model using the Taylor expansion. In our linearised catoutawe chosdo assume independence
between the variance of the observations and the fixed eféecin a linear mixed model, which
leads to a block diagonal expression/f . Retout and Mentré [29] and other authors [22, 24,
25, 41] have also proposed an expression\f- taking into consideration the dependence of
the observations on the parameters of the model, leadingctorglete M » with an additional
off-diagonal blocC. There is no clear consensus on what is the best approximiagiowe think
that the block diagonal expression is better. Indeed, ptgs&lielke and Schwabe [31] in addition
showed that an approach with block diagoiél- was more reliable than the one with the M ..

In the software MONOLIX, the observelll - calculated by linearisation of the model around the
individual parameter estimate has also a block diagonalessmpn. Also, the method presented
here was shown to be relevant by simulation for the presearhpile and in others [26, 42]. This
can be perhaps explained by the fact thdt- calculation is based on derivations of the model.
The linearisation could perhaps introduce potential gotd when the model is very nonlinear or
very complex and written in differential equations. Consadly, one of the perspectives of this
work would be to propose a computation &1 » without model linearisation using a stochastic
approach.

Studies analysed through NLMEM can be perfomed with optispalrse simpling times with
almost no loss of power. This requires the knowledge of thdehand its parameters, a limitation
also present in the approach by simulatioBensitivity analyses with respect to the model and
the parameter values would be necessary and interestingtuify how the results possibly vary.
However, at the designing step in a PK equivalence or intierastudy of a drug, one can usually
use the results of a previous study on the same drug so th&khaf the drug is already well
known, and the model has already been evaluatésh, this method allows of reducing the number
of samples per subject, which can be ethically and prattieaty important for performing studies

2Supporting information may be found in the online versionhi$ article.
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in patients. In conclusion, we have shown the relevanceegitension ofM » in NLMEM for
crossover trials. The approach by NLMEM is an appropriateraative to NCA in the case of
trials in patients. The implementation of these new devaleqmts in PFIM provides a useful tool
to design bioequivalence/interaction studies as well lasrdtinds of longitudinal studies, avoiding
extensive simulations.
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Table | — Predicted and empirical standard error&B(for each design and value 6§;.

Design exp(Bci) Predicted SE{¢;) [x10?] Empirical SEG¢;) [ x10?]
rich 0.8 3.401 3.290
(0.5,1,1.5,2,4,6,8h) 1 3.404 3.297
1.1 3.405 3.300
1.2 3.406 3.305
1.25 3.407 3.308
15 3.410 3.320
Sparse 0.8 3.443 3.357
(0.5,2,6,8h) 1 3.454 3.372
1.1 3.459 3.377
1.2 3.462 3.390
1.25 3.463 3.397

15

3.467

3.423
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Table Il — Predicted powers (%) and observed powers (%) fon easign and value gi¢;.

Design exp(Ber) Comparison test Equivalence test
Predicted power Observed power Predicted power Obserwgerpo

rich 0.8 100 100 5.00 5.60

(05,1,1.5,2,4,6,8h) 1 5.00 5.30 100.00 100.00
1.1 79.92 82.80 98.25 98.90
1.2 99.97 99.90 32.76 32.00
1.25 100 100 5.00 4.30
15 100 100 NC NC

sparse 0.8 100 100 5.00 5.60

(0.5,2,6,8h) 1 5.00 5.10 100.00 100.00
1.1 78.69 79.80 97.99 98.20
1.2 99.95 99.80 32.08 34.10
1.25 100 100 5.00 4.70
15 100 100 NC NC

(NC

: not computed becausk;; is not underH.)
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Table Il — Population pharmacokinetic parameters of aritixi and and standard errors (SE) as
well as relative standard errors (RSE) of parameter estsritdONOLIX 2.4 for DAV1 study.

Parameters Estimates SE RSE (%)

tlag (h) 0.37 0.03 7

ko (h71) 0.81 0.13 16

V (Lkg™) 286 0.85 30
Cl(L.h tkg™) 299 0.35 12

Be 0.06 0.16 265
Wilag 0 - -
Wha 0.10 0.14 144
wy 0.79 0.51 64
wer 0 - -
Vilag 0.083 0.04 42
Yo 010 012 121
Vv 0.73 0.34 46
ole! 0.19 0.06 28

omier (NQ.L7) 031 19.00 6
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Table IV — Relative standard error (RSE; %) and standard esi6y predicted by new extension

ofMF for all the population parameters and criterion valoeaading to each two-period crossover
design of DAV2 studly.

Rich design Sparse design

RSE(a) 23.7 26.4
RSE() 36.0 37.9
RSE(C]) 11.2 11.2
SE(Bc) 0.157 0.158

RSE(us.) 230.2 282.5
RSE(y) 65.6 68.5
RSE(ci) - -
RSE()) 177.7 205.7
RSEfy) 40.9 43.7
RSEf(c) 18.4 18.6

RSE@inier) 5.9 10.2

Criterion value 36.55 30.01
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Table V — Prediction of power for the Wald test of equivaleand of NSN to achieve a power of
90% computed by PFIM 3.2 for each design of DAV2 study.

Design Bei Two periods AP/AX Four periods AP/AX/AP/AX

Predicted power (%) NSNfora Predicted power (%) NSN for a
with N=16 piglets power of 90% witlv= 16 piglets power of 90%

rich 0 41.0 68 64.3 34
(0.5,1,1.5,2,4,6,8h) 0.06 27.0 128 41.3 67
0.10 19.3 209 27.7 124
sparse 0 40.5 70 63.7 35
(0.5,2,4,6h) 0.06 26.7 131 40.8 69

0.10 19.1 213 27.4 126
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Figure 1 — Barplots of predicted (hatched bar) and empirfalrf bar) RSE (%) for the fixed
effect, the between subject variability, the within subjariability onC'l and for therandomerror
parameten;,., for different values ofs for the rich (white bar) or the sparse (grey bar) design
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Figure 2 — Boxplots of the observed SE for treatment effecpater in each simulated scenario.
(+) represents the value of the SE predicted by the extensidd pfand (x) represents the
empirical SE for the rich (white bar) or the sparse (grey dasign.
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Figure 3 — Barplots of predicted (hatched bar) and obserdath(par) power (%) for different
values offi¢; for the rich (white bar) or the sparse (grey bar) design ferdbmparison test (left)

and for the equivalence test (right)
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Figure 4 — Spaghetti plots of plasma amoxicillin concertret of DAV1 study.
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