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Abstract

Background: Prolonged opening of the mitochondrial permeability transition pore (PTP) leads to cell death. Various
ubiquinone analogs have been shown to regulate PTP opening but the outcome of PTP regulation by ubiquinone analogs
on cell fate has not been studied yet.

Methodology/Principal Findings: The effects of ubiquinone 0 (Ub0), ubiquinone 5 (Ub5), ubiquinone 10 (Ub10) and decyl-
ubiquinone (DUb) were studied in freshly isolated rat hepatocytes, cultured rat liver Clone-9 cells and cancerous rat liver
MH1C1 cells. PTP regulation by ubiquinones differed significantly in permeabilized Clone-9 and MH1C1 cells from that
previously reported in liver mitochondria. Ub0 inhibited PTP opening in isolated hepatocytes and Clone-9 cells, whereas it
induced PTP opening in MH1C1 cells. Ub5 did not affect PTP opening in isolated hepatocytes and MH1C1 cells, but it
induced PTP opening in Clone-9 cells. Ub10 regulated PTP in isolated hepatocytes, whereas it did not affect PTP opening in
Clone-9 and MH1C1 cells. Only DUb displayed the same effect on PTP regulation in the three hepatocyte lines tested.
Despite such modifications in PTP regulation, competition between ubiquinones still occurred in Clone-9 and MH1C1 cells.
As expected, Ub5 induced a PTP-dependent cell death in Clone-9, while it did not affect MH1C1 cell viability. Ub0 induced a
PTP-dependent cell death in MH1C1 cells, but was also slightly cytotoxic in Clone-9 by an oxidative stress-dependent
mechanism.

Conclusions/Significance: We found that various ubiquinone analogs regulate PTP in different ways depending on the cell
studied. We took advantage of this unique property to develop a PTP opening-targeted strategy that leads to cell death
specifically in cells where the ubiquinone analog used induces PTP opening, while sparing the cells in which it does not
induce PTP opening.
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Région Rhône-Alpes (programme Emergence). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: eric.fontaine@ujf-grenoble.fr

Introduction

Mitochondria are involved in several physiological processes

including energy metabolism, calcium homeostasis and pro-

grammed cell death [1,2,3]. Numerous mitochondrial proteins,

which have no pro-apoptotic activity when they remain inside

mitochondria, promote cell death once released into the cytosol

[4]. Both extra-mitochondrial and intra-mitochondrial signaling

pathways can trigger the release of the mitochondrial pro-

apoptotic proteins [2].

The mitochondrial permeability transition consists of a sudden

non-specific increase in the permeability of the inner membrane

[5,6]. A prolonged mitochondrial permeability transition results in

a drastic ATP synthesis inhibition through the collapse of the

proton-motive force, a dramatic increase in ROS production and

the release of the mitochondrial pro-apoptotic proteins [7,8,9].

Permeability transition is due to the opening of an inner

membrane channel [10]: the Permeability Transition Pore (PTP).

Matrix Ca2+ is the single most important factor for PTP

opening. The amount of matrix Ca2+ required to open the pore is

modulated by a number of factors. The ‘‘PTP-inhibitors’’ and the

other so-called ‘‘PTP-inducers’’ designate factors that increase and

decrease the amount of Ca2+ required to induce PTP opening [6].

Cyclosporin A (CsA) is the reference PTP inhibitor. It inhibits PTP

opening by detaching Cyclophilin D (CyP-D) from the other

components of the pore [11].

In primary and cultured cells, several drugs known to inhibit

PTP opening also decrease cell death in response to various

cytotoxic insults [12,13,14]. In animal models, the inhibition of

PTP opening by either CsA or genetic ablation of CyP-D provides

strong protection from reperfusion injury [15,16,17]. In humans,

the first clinical trial has recently shown that CsA treatment
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reduces infarct size after reperfusion of a coronary thrombosis

[18]. These data suggest that PTP inhibition can be beneficial in

particular pathological conditions, most likely through its effect on

cell death. On the other hand, resistance to Doxorubicin has been

shown to be related to PTP inhibition in a human chronic

myelogenous leukemia cell line [19], while hepatocarcinogenesis

with 2-acetylaminofluorene is preceded by PTP inhibition [20].

Thus, PTP inhibition might in some cases hamper cancer

treatments or eventually participate in carcinogenesis.

Because prolonged PTP opening leads to cell death, the PTP

represents a cellular target for the commitment to cell death [21].

Indeed, pharmacological agents used in anti-cancer therapy have

been reported to target the PTP and to induce cell death via PTP

opening [1,21]. Ideally, drugs used for the treatment of

malignancies would be far more toxic for cancer cells than for

normal cells. However, a PTP-targeted drug able to selectively

open the PTP in cancerous cells only remains to be developed.

In a series of experiments conducted with isolated rat liver

mitochondria, we have shown that several ubiquinone analogs

regulate PTP opening [22,23,24,25]. Three functional classes of

quinones were defined, the PTP-inhibitory quinones, the PTP-

inducing quinones and the PTP-inactive quinones that counteract

the effects of both inhibitory and inducing quinones [24,25]. To

date, few studies have reported a preventive effect of ubiquinone

analogs in a model of cell death. DUb, a PTP-inhibitor quinone in

the liver, has been shown to prevent PTP opening-induced cell

death in HL 60 cells [26]. In contrast, although Ub0 is more

potent than CsA at PTP inhibition in liver and skeletal muscle

mitochondria [27], Ub0 was ineffective in preventing PTP

opening-induced cell death in HL 60 cells [26].

To clarify this issue, and because PTP regulation can vary

depending on the tissue studied [27], we have begun a

comprehensive study of PTP regulation in different cell lines.

This work presents the effect of four ubiquinone analogs on three

different rat liver cell lines. We confirm that ubiquinone analogs

regulate PTP opening in the different cells tested. However, we

found that a number of ubiquinone analogs may regulate PTP in

different ways depending on the cell studied. We took advantage of

this unique property to develop a PTP opening-targeted strategy

that leads to cell death specifically in cells where the ubiquinone

analog used induces PTP opening.

Materials and Methods

Cells
Clone-9 and MH1C1 cells are, respectively, non-cancerous and

cancerous rat hepatocyte cell lines. Clone-9 and MH1C1 cells

were maintained in exponential growth phase using Dulbecco’s

modified Eagle’s medium supplemented with 10% fetal bovine

serum for Clone-9, and Ham’s F12K medium supplemented with

2.5% fetal bovine serum and 15% horse serum for MH1C1. Both

media were supplemented with 2 mM glutamine, 1mM sodium

pyruvate, 1% non-essential amino acids, 50 units/ml penicillin,

and 50 mg/ml streptomycin. Hepatocytes were isolated according

to Berry and Friend’s methodology, modified by Groen et al [28].

Ca2+ retention capacity
Non confluent cultured cells, harvested by trypsinization,

washed with PBS or freshly isolated hepatocytes were permeabi-

lized immediately before use by incubation of 56106 cells under

agitation for 2 min at 25uC in a Ca2+ free medium (Chelex resin,

overnight, 4uC) containing 250 mM sucrose, 1 mM Pi-Tris,

10 mM Tris-MOPS (pH 7.4) and 50 mg/ml digitonin. Measure-

ments of Ca2+ were performed fluorimetrically at 25uC with a PTI

Quantamaster C61 spectrofluorometer equipped with magnetic

stirring and thermostatic controls. Extra-mitochondrial Ca2+ was

measured in the presence of 1 mM Calcium Green-5N with

excitation and emission wavelengths set at 506 and 530 nm,

respectively. The Ca2+ uptake and Ca2+ release of digitonin

permeabilized cells were measured by loading cells with trains of

Ca2+ pulses at constant time intervals.

ROS production
Cells were incubated in a medium containing 250 mM sucrose,

1 mM Pi-Tris, 10 mM Tris-MOPS, and 5 mM H2DCFDA.

Measurement of H2DCFDA oxidation were performed fluorime-

trically at 37uC (with excitation and emission wavelengths set at

506 and 521 nm, respectively) with a PTI Quantamaster C61

spectrofluorometer equipped with magnetic stirring and thermo-

static controls.

Cells Staining
Clone-9 cells were labeled with the lipophilic dye PKH26

according to the manufacturer’s instructions. This non-toxic

fluorescent dye binds irreversibly to the cell membrane without

affecting cell growth. Therefore, upon cell division, the probe is

partitioned equally between each daughter cell, but does not

transfer to co-cultured cells [29].

Cells treatment and cell death analysis
Cells were exposed to the indicated concentrations of

ubiquinone analogs for 30 min at 37uC in a serum-free medium.

Cells were then harvested and incubated in a complete medium at

37uC for 24 h. Annexin V-positive cells were quantified by flow

cytometry using a FACSCan flow cytometer (Becton-Dickinson).

Cells (16106/ml) were exposed to 5% v/v annexin V-FluoProbes

Alexa 488 for 15 min at room temperature. For each sample, a

minimum of 10,000 events were analyzed.

Reagents
Ub0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone or coenzyme

Q0), Ub5 (2,3-Dimethoxy-5-methyl-6-(3-methyl-2-butenyl)-1,4-

benzoquinone or coenzyme Q1), Ub10 (2,3-Dimethoxy-5-methyl-

6-geranyl-1,4-benzoquinone or coenzyme Q2), DUb (2,3-Di-

methoxy-5-methyl-6-decyl-1,4-benzoquinone) and CsA were pur-

chased from Sigma. Calcium Green-5N, H2DCFDA and Annexin

V-FluoProbes Alexa 488 were purchased from Molecular Probes.

Ham’s F12K medium was purchased from Gibco, Fetal Bovine

Serum from Biotech and trypsin from Jacques Boy. The remaining

reagents were purchased from Sigma.

Statistics
Stastistical analyses were performed using two-tailed unpaired

Student’s t tests with equal variances.

Results

The Ca2+ retention capacity (CRC) represents the minimum

Ca2+ load required to induce PTP opening in an entire population

of mitochondria. Therefore, CRC measurement represents a

suitable method to quantify and compare the potency of different

PTP regulators. The CRC is measured by loading mitochondria

with train of Ca2+ pulses until a rapid Ca2+ release occurs. This

event is accompanied by mitochondrial swelling and membrane

depolarization, and is prevented by CsA [27].

The CRC measurement can be performed equally well in

isolated or in situ mitochondria (i.e. in digitonin permeabilized

cells). However, because PTP regulation may be very sensitive to
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the conditions of incubation used [27,30], we first checked

whether PTP regulation by ubiquinone analogs in permeabilized

rat hepatocytes was identical to that previously measured in

isolated rat liver mitochondria.

As shown in Figure 1A, Ub0 and DUb increased the CRC

(i.e. inhibited PTP opening) in rat hepatocytes in a concentra-

tion-dependent manner up to an optimal concentration beyond

which Ub0 and DUb became less potent at PTP inhibition.

Ub10 inhibited PTP opening at low concentrations, but

activated PTP opening at high concentration in rat hepatocytes.

Ub5 did not affect PTP regulation in rat hepatocytes. These

results are in total agreement with those previously found with

isolated rat liver mitochondria [23,24,25], indicating that the

model used (i.e. isolated mitochondria or in situ mitochondria)

did not influence the effect of the tested ubiquinone analogs at

PTP regulation.

We next studied the effects of Ub0, Ub5, Ub10 and DUb on the

CRC of two other digitonin permeabilized rat liver cells, namely

cultured rat liver Clone-9 cells and cancerous rat liver MH1C1

cells. As shown in Figure 1, PTP opening in the absence of

ubiquinone analogs occurred at approximately 60, 10 and

25 nmol Ca2+ per million cells in isolated hepatocytes, Clone-9

and MH1C1, respectively. Such differences in the basal CRC are

expected [31] and may be at least partly related to differences in

Figure 1. The regulation of PTP opening by ubiquinone analogs depends on the cell lines. The incubation medium contained 250 mM
sucrose, 1 mM Pi-Tris, 10 mM Tris-MOPS, 5 mM succinate-Tris, 50 mM digitonin and 1 mM Calcium Green-5N. The final volume was 2 ml, pH 7.4, 25uC.
Experiments were begun by the addition of 5.106 cells (isolated rat hepatocytes, MH1C1 or Clone-9) followed by the addition of ubiquinone 0 (Ub0),
ubiquinone 5 (Ub5), ubiquinone 10 (Ub10) or decyl-ubiquinone (DUb) at the indicated concentrations. After 2 min of incubation, the Ca2+ Retention
Capacity (CRC) was measured by adding Ca2+ pulses every 90 s until PTP opening. Results are mean 6 S.D. of at least four independent experiments.
doi:10.1371/journal.pone.0011792.g001
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the number of mitochondria per cell. Note, however, that CsA

inhibited PTP opening in the three different cell lines (data not

shown).

In immortalized Clone-9 cells (Figure 1B), Ub0 and DUb were

PTP-inhibitors as observed in permeabilized hepatocytes, al-

though the optimal concentration varied with the cell line studied.

Surprisingly, contrary to what occurred in permeabilized hepato-

cytes, Ub5 favored PTP opening, whereas Ub10 was ineffective in

Clone-9 cells. In cancerous rat liver MH1C1 cells (Figure 1C), Ub0

favored PTP opening, Ub5 and Ub10 were ineffective, whereas

DUb inhibited PTP opening. These data indicate that the effects

of ubiquinone analogs on PTP regulation dramatically differed

according to the type of cell used.

In isolated rat liver mitochondria, we have shown that PTP-

inactive quinones were able to counteract the effects of both

inhibitory and inducing quinones, suggesting the existence of a

common site of action for which the ubiquinone analogs

compete [25]. In order to check whether these competitions

persist in cells in which PTP regulation differs from that

observed in liver mitochondria, permeabilized Clone-9 and

MH1C1 cells were exposed to a combination of PTP-active

plus PTP-inactive quinones. Results are presented in Figure 2.

In Clone-9, the PTP-inactive quinone Ub10 was able to

counteract the effect of the PTP- inhibitory Ub0 and of the

PTP-inducing Ub5. Similarly, in MH1C1, the PTP-inactive

quinone Ub5 was able to counteract the inducing effect of Ub0.

Therefore, despite the fact that PTP regulation by quinone

changes according to the cell studied, this data suggests that the

competition between 3 functionally classes of quinones is a

ubiquitous phenomenon.

Because PTP opening is expected to induce cell death, we next

verified whether the changes observed in PTP regulation were

associated with consecutive changes in cell death regulation. In

other words, we hypothesized that ubiquinone analogs were

capable of inducing cell death selectively in cells in which they

favored PTP opening.

In MH1C1 cells (Figure 3A), PTP-inducer Ub0 induced cell

death in a concentration-dependent manner. Moreover, Ub0-

induced cell death was prevented by PTP-inhibitor DUb

(Figure 3A) and by CsA (not shown), confirming that Ub0-induced

cell death was due to PTP opening in that cell line. As expected,

PTP-inactive Ub5 and PTP-inhibitor DUb did not induce any

significant toxicity.

In Clone-9 cells (Figure 3B), PTP-inducer Ub5 induced cell

death in a concentration-dependent manner. As expected, Ub5-

induced cell death was prevented by PTP-inhibitors DUb

(Figure 3B) and by CsA (not shown). Surprisingly, Ub0 and

DUb, which both inhibited PTP opening in that cell line (see

Figure 1), affected cell viability in a different manner. DUb did not

induce any significant toxicity, whereas Ub0 induced Clone-9 cell

death.

Ubiquinone analogs have been reported to either reduce or

increase reactive oxygen species (ROS) formation [25,26]. In

order to check whether Ub0-induced cell death in Clone-9 was

related to oxidative stress, we next measured H2DCFDA oxidation

(i.e., ROS production) in Clone-9 and MH1C1 cells before and

after the addition of Ub0, Ub5, Ub10 or DUb. As shown in

Figure 4A, Ub0 dramatically increased ROS production in Clone-

9, whereas it slightly decreased ROS production in MH1C1 cells.

Ub5 and Ub10 also acted as pro-oxidants in Clone-9 (although they

were less potent than Ub0), whereas they acted as antioxidants in

MH1C1. Only DUb was antioxidant in the two cell lines.

Confirming that Ub0 toxicity in Clone-9 was due to oxidative

stress, tocopherol or tiron hampered Ub0-induced cell death in

Clone-9 (Figure 4B).

Because Ub5 induced cell death in Clone-9 but not in

MH1C1, we next measured the toxicity of Ub5 in co-cultures of

MH1C1 plus Clone-9 cells. In order to distinguish the two

populations of cells, Clone-9 were labeled with the fluorescent

lipophilic dye PKH-26 before being co-cultured with MH1C1 in

a complete F12K medium. In preliminary experiments, we first

checked that PKH-26 did not affected PTP regulation or cell

viability (data not shown). As shown in Figure 5A, Ub5 induced

cell death in the Clone-9 population, but it spared the MH1C1

population.

Because a same concentration of Ub0 was more cytotoxic in

cells in which it induced PTP opening (i.e. MH1C1) than in cells

where it inhibited PTP opening (i.e. Clone-9), we also measured

Figure 2. Competition between PTP-inactive and PTP-active ubiquinone analogs on PTP regulation in Clone-9 and MH1C1 cells. The
Ca2+ Retention Capacity was measured as in Fig. 1. When indicated, 20 mM Ub0, 100 mM Ub5 or 100 mM Ub10 were added. The results represent the
means 6 S.D. of three independent experiments. *, p#0.05; **, p#0.01, unpaired Student’s t test.
doi:10.1371/journal.pone.0011792.g002
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the toxicity of Ub0 in co-cultures of MH1C1 plus Clone-9 cells.

As shown in Figure 5B, Ub0 induced cell death in the two

populations but with a higher percentage of cell death in MH1C1

cells.

Discussion

In this work we have shown that several ubiquinone analogs

are able to regulate PTP opening according to the cell type.

Therefore, an important and practical conclusion of this work is

that PTP regulation by ubiquinones is an unpredictable

phenomenon that cannot be extrapolated from results observed

with isolated liver mitochondria. However, this remarkable

property led us to develop a PTP-oriented strategy that allows

a selective death in cells in which the ubiquinone induces PTP

opening, while sparing totally (Ub5 in MH1C1) or partially (Ub0

in Clone-9) the cells in which the ubiquinone does not induce

PTP opening. If every PTP inhibiting ubiquinone did not

necessarily prevent cell death, all the PTP inducing ubiquinones

induced cell death, confirming that PTP opening triggers the cell

suicide program.

Another important finding of this work is that ubiquinone

analogs are able to modulate ROS production in different way

according to the cell type. Note however that within a given cell

line, the way a ubiquinone analog modulates ROS production

does not correlate with the way it regulates PTP opening (compare

Figures 1 and 4). Indeed, ubiquinone analogs can (i) inhibit PTP

opening and stimulate ROS production (Ub0 in Clone-9), (ii) favor

PTP opening and inhibit ROS production (Ub0 in MH1C1 cells),

(iii) favor both PTP opening and ROS production (Ub5 in Clone-

9), (iv) inhibit both PTP opening and ROS production (DUb in

Clone-9 and MH1C1 cells), (v) modify ROS production without

obvious effect on PTP regulation (Ub5 and Ub10 in MH1C1 cells,

Ub10 in Clone-9). Therefore, the effects of the ubiquinone analogs

on ROS production cannot account for the effects on PTP

opening, and vice versa.

Figure 3. Effect of ubiquinone analogs on MH1C1 and Clone-9 viability. MH1C1 and Clone-9 cells were exposed for 30 min to serum-free
culture medium supplemented or not with the indicated concentrations of Ub0 or Ub5 (left and right panels). When used in combination (middle
panels), the concentrations were 20 mM for Ub0, 50 mM Ub5 and 100 mM for DUb. Cells were then incubated in normal medium for 24 h. The
percentage of mortality represents the proportion of Annexin V-positive cells measured by flow cytometry. The results represent the means 6 S.D of
at least four independent experiments. **, p#0.01; ***, p#0.001, unpaired Student’s t test. In preliminary experiments, we found that Annexin V-
positive cells were mostly Propidium iodide positive.
doi:10.1371/journal.pone.0011792.g003
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Despite the fact that Ub0 is the most potent PTP inhibitor

discovered so far in rat liver mitochondria [27], this work shows

that Ub0 favors PTP opening in MH1C1 cells or induces oxidative

stress in Clone-9 cells. It has been reported that Ub0 was

ineffective in preventing cell death in HL 60 cells [26]. This may

be easily explained hypothesizing that Ub0 may not inhibit PTP

opening or may induce oxidative stress in HL 60 cells.

Some tissue-specificities in PTP regulation have been previously

reported. For example, CsA does not inhibit PTP opening in a

particular line of K562 cell resistant to doxorubicin [19]. The

inhibition of respiratory chain complex 1 inhibits PTP opening in

U937, KB and HMEC cells [31,32,33], whereas it does not have

this effect in rat liver or rat heart mitochondria [6]. However, to

the best of our knowledge, this is the first piece of evidence

showing that a drug can regulate PTP opening in contradictory

ways which are dependent on the cell line.

In previous works conducted with isolated rat liver mitochon-

dria, we proposed that ubiquinone analogs might regulate PTP via

a common site. This hypothesis was sustained by the fact that

inactive quinones were able to counteract the effects of both

inhibitory and inducing quinones. At that time, the biphasic effect

of some quinones (inhibitory at low concentration and inactive or

even activating at high concentration) was explained by hypoth-

esizing (i) that quinones formed aggregates at high concentrations

and (ii) that these aggregates were either inactive or activating

compounds able to compete with the monomeric-inhibiting

quinone.

The observation that the same concentration of ubiquinone

analog can inhibit or activate PTP opening according to the cell

line used no longer supports this model. These data are now more

consistent with another proposed model [25] involving two

regulatory sites: one responsible for inhibition and one for

activation. The occupancy of a site by an active compound

would, in turn, modulate PTP opening through secondary changes

in the PTP Ca2+ binding affinity, whereas binding by an inactive

compound would not. In this model, the biphasic response

observed with some quinones could easily be explained through

the assumption that these quinones may bind the two sites: the

inhibitory site with high affinity and the inducing site with a lower

affinity.

Because the effect of some ubiquinone analogs depends on the

cell line, we propose that the affinity of these sites for one

particular quinone, as well as the secondary changes in the PTP

Ca2+ binding affinity, may change according to the cell line.

These changes would depend on genetic or metabolic differences.

Note, however, that the observed changes were not due to

differences in the growth media (Figure 4), and that the CRC

experiments were performed in the same experimental condition

(Figure 1). Therefore, the putative modifications may directly

affect the PTP.

This study constitutes the first report of a PTP-targeted strategy

able to selectively open the PTP and consecutively provoke cell

death in some cells whilst sparing others. Therefore, this work

should be viewed as the first proof of concept suggesting that the

PTP is a key target for selecting cells that will commit the cell

death program. Finding compounds that open PTP in one

cancerous cell line (without any side effect on normal cells) needs

further studies. This will benefit from an improved knowledge of

Figure 4. The effect of ubiquinone analogs on ROS production depends on the cell lines. A - The incubation medium contained 250 mM
sucrose, 1 mM Pi-Tris, 10 mM Tris-MOPS, and 5 mM H2DCFDA. The final volume was 2 ml, pH 7.4, 37uC. Experiments were begun by the addition of
5.106 cells (MH1C1 or Clone-9) followed by the addition of 20mM Ub0, 100mM Ub5, 100mM Ub10 or 100mM DUb. FUb/F0 represents the change in
fluorescence during 5 min after the addition of ubiquinone analog divided by the change in fluorescence during 5 min before the addition of
ubiquinone analog. Results are mean 6 S.D. of at least three independent experiments. B - Clone-9 cells were exposed for 30 min to serum-free
culture media supplemented or not with 20 mM Ub0, 200 mM tocopherol or 1 mM tiron. Cells were then incubated in normal medium for 24 h. The
percentage of mortality represents the proportion of Annexin V-positive cells measured by flow cytometry. The results represent the means 6 S.D of
at least three independent experiments. *, p#0.05; **, p#0.01, unpaired Student’s t test.
doi:10.1371/journal.pone.0011792.g004
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the molecular nature of the PTP, which in turn will deepen our

understanding of why PTP-regulation by quinones (and probably

other compounds) changes according to the cell line.
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