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Abstract. In this paper, we build upon a new model, describing the
random motion of water molecules in fibrous tissues, to develop a mul-
tifiber deterministic tractography algorithm. We apply this algorithm to
track the corticospinal tract of the human brain, in both controls and
patients with tumors.

1 Introduction

Tractography of the corticospinal tract (CST) using diffusion-weighted MRI
(DW-MRI) is especially challenging, mostly due to the numerous fiber cross-
ings in the corona radiata. When classical diffusion models (e.g. single or mul-
tiple tensors) coupled with simple tractography algorithms (e.g. deterministic
streamline) are used, these crossings often make it impossible to track the most
lateral fibers of the CST [1]. These include especially important motor areas
such as the hand and the whole face, as shown by the homunculus of Penfield &
Rasmussen. The fact that HARDI sequences are prohibitively time-consuming
in case of patients with tumors makes it critically important to develop diffusion
models and/or tractography algorithms able to track these lateral fibers from
clinical (fast) diffusion sequences, having a small number of encoding gradients.
We recently proposed a diffusion model that seems to meet these requirements
even when using a simple deterministic streamline algorithm [2].

We briefly outline this new model in Section 2.1, the tractography algorithm
in Section 2.2, and the pipeline we used to extract the CST in Section 2.3. Finally,
we provide tractography results of the left and right CST on the two controls
and two patients of the challenge dataset in Section 3.

2 Methods

2.1 Diffusion Modeling

In each voxel, water molecules are assumed to be distributed in several compart-
ments. We first describe how we model the diffusion within a single compartment.



Then, we introduce our multi-compartment model, coined Diffusion Directions
Imaging (DDI), and finally we outline how to estimate its parameters.

Single-compartment Model The diffusion process induces, after a diffusion
time τ , a random displacement of water molecules from their initial position x0

to a random position x = x0+
√
2τw. Assuming a unique direction of diffusion,

we propose to model the random variable w as w = u+ v, where:

– u follows a von Mises & Fisher distribution parametrized by (i) the radius
R > 0 of the sphere on which it is defined, (ii) the spherical coordinates (θ, φ)
of its mean direction µ and (iii) its concentration parameter κ ≥ 0;

– v follows a centered Gaussian distribution parametrized by a cylindri-

cally constrained [3] covariance matrix D = R2

κ+1
(I + κµµ′), where I is the

identity matrix and {µ, κ, R} are the same parameters that characterize u;
– u and v are statistically independent.

In essence, (i) µ can be interpreted as the direction of the fibers which con-
strain the diffusion, (ii) R can be interpreted as the radial displacement along
the fiber direction µ and (iii) κ can be interpreted as a measure of anisotropy of
the diffusion. The latter can be related to the fractional anisotropy (FA) [4] as

FA = κ
[

(κ+ 1)
2
+ 2

]

−1/2

. We refer the reader to [2] for more details about the

motivations of such a parametrization.
The probability density function (pdf) of the molecular displacement x−x0

is then obtained by the convolution of the von Mises & Fisher pdf and the
Gaussian pdf, and is parametrized by the four parameters {θ, φ, κ,R}.

Multi-compartment Model Due to its low number of parameters, the single-
compartment model is particularly suited to be encompassed within a multi-
compartment model, which can account for more than one fiber direction within
each voxel. We thereby model the pdf of molecular displacements as a mixture
of pdfs having the common parametric form proposed in the previous section.

We assume m compartments associated with m different fiber directions µi

(i = 1, . . . ,m). In each compartment, the diffusion is modeled according to
the previously described pdf with parameters {µi, κi, Ri} and mixture weight
FAi/m. We also include an additional pdf in the mixture, with weight 1 −
∑m

i=1
FAi/m to account for isotropic diffusion; this pdf follows the general form

with κ = 0, so that the unique remaining parameter to estimate is R0. Fur-
thermore, we set R2

i = (κi + 1)λ, ∀i ∈ J1,mK, where λ > 0 is the transverse
diffusivity assumed identical in each compartment. For more details about the
above described parametrization, we invite the reader to see [2]. Considering m
putative fiber directions with this parametrization yields a m-compartment DDI
model with 3m+ 1 parameters.

Estimation of the DDI Parameters The theoretical diffusion weighted inten-
sities are the modulus of the Fourier transform of the pdf of molecular displace-
ments which can be analytically derived under the assumption of the DDI model



[2]. The 3m+1 unknown parameters of the m-compartment DDI model are then
estimated using a least squares fitting on the raw diffusion weighted intensi-
ties, and this optimization is performed using the derivative-free NEWUOA
optimization algorithm [5]. The different compartments are sorted in decreasing
order according to their κ. The model selection is performed according to the
procedure described in [2].

2.2 Tractography Algorithm

Our goal is to track the fibers linking multiple regions of interest (ROIs). To this
end, we developed a deterministic streamline algorithm, which can be viewed as
an extension of the original FACT method [6], adapted to the DDI model, using
a breadth-first-type search.

Starting from one of the ROIs, we define one starting point at each voxel of
the ROI. Given one point along its path, we build the main fiber iteratively as
follows:

1. If the number of putative fiber directions m = 0, we stop the tracking.
2. If m = 1, we compute FA1 and the angle α1 between the input direction

and µ1. If α1 < αt and FA1 > FAt, then we follow the single putative fiber
direction µ1 with a step size of l millimeters. Else, we stop the tracking.

3. If m = 2, we compute FA1, FA2, the angle α1 (resp. α2) between the input
direction and µ1 (resp. µ2). If:

– αt < α1, α2: we stop the tracking.
– α1 < αt < α2: cf. the case m = 1.
– α2 < αt < α1: if FA2 > FAt, then we follow the direction µ2 with a step

size of l millimeters, else we stop the tracking.
– α1, α2 < αt: if FA2 < FAt, then cf. the case m = 1; else if κ2 > r × κ1

then we sort the two fibers in ascending order according to the angles
αi. We follow the new direction µ1 with a step size of l millimeters and
we record the second putative fiber direction µ2 (branch) for future use,
as it can be indicative of crossing/kissing/merging/diverging fibers.

Once we have tracked this main fiber, we perform the same tracking from all
the possible branching points that we have recorded along its path. Importantly,
for these trackings, the stepping rule and stopping criteria are identical as those
for the main fiber, but we do not record any possible mixed fiber configuration
along these secondary paths, for which we only follow the main direction µ1 at
each step. We then lead the same tracking from the other ROIs. We only keep
the tracts going through all the seeding ROIs for further analysis. In practice, we
choose the parameters l = 1, r = 0.8, αt = 60 degrees (maximal angle between
two successive directions along the fiber) and FAt = 0.5 (minimal FA along the
fiber). During the tracking, when a point is not on the grid of the DW-MR
images, we compute the DDI model using a trilinear interpolation directly on
the model parameters.



2.3 Tractography Pipeline Applied to the Challenge Datasets

We utilize the following processing pipeline to extract the CST for the challenge
datasets. An expert neuroanatomist (Romuald Seizeur) delineated two ROIs on
each side (left and right) of the original T1-weighted images. One is located in
the posterior limb of the internal capsule and the other in the superior part of the
mesencephalon. In addition, since crossing fiber tracts such as the association
or commissural fiber tracts may be considered as bifurcations of the CST by
the tractography algorithm, the same expert also delineated regions through
which the tracts are not allowed. On the patients’ datasets, the same ROIs were
delineated with some modifications to account for the deformations caused by
the tumor (e.g. in patient 1 the internal capsule on the left side is compressed
by the infiltrating tumor).

All datasets were then processed in three steps:

1. Diffusion-weighted MRI denoising: DW-MRI is subject to random noise
yielding measures that are different from their real values, and thus bias-
ing the subsequently estimated diffusion models. We filtered the diffusion-
weighted MR images with the Rician-adapted Non-Local Means filter [7],
which has been shown to efficiently denoise such images while preserving
fine anatomical structures. In particular, this filter has also been shown to
preserve the angular resolution of q-ball ODF models estimated from HARDI
data [8].

2. ROI alignment on B0 images: we registered the ROIs on the B0 images
according to the following steps:

– global affine registration of the T1-weighted images to the B0 images [9];

– cropping of the affine-registered T1-weighted images using the mask of
the B0 images;

– constrained non-rigid registration [10] of the masked T1-weighted images
to the B0 images;

– application of the obtained transformations to the ROIs.

3. Extraction of the left and right CST using the aligned ROIs and the DDI
estimated from the DWI.

3 Results

The MICCAI DTI tractography challenge consists of two groups of data: two
healthy subjects acquired using a multiple b-values scheme and two patients
acquired using a more standard acquisition protocol. For each of the two healthy
subjects, DW-MRI data were acquired repeatedly (ten repetitions) so that the
reproducibility of the tractography method may be evaluated. On the other
hand, the tumors of the two patients were delineated so that we could produce
combined views to help the surgeon, for example when planning a tumor removal
surgery.



3.1 Tractography on Healthy Subjects

For each of the repetitions of each subject, the left and right CST were computed
utilizing the aligned ROIs (see Section 2.3). We display the tractography of one
volume of each of the two subjects in Fig. 1.

(a) (b)

Fig. 1. Illustration of CST on Healthy Subjects. Representative examples of
obtained fiber tracts for healthy subject 1 (a) and 2 (b) (T1 images are in radiological
conventions, i.e. the left hemisphere is on the right side of the image). To see the full
extent of fiber spreading, all 3D fiber tracts are displayed. This explains why they may
not seem to match exactly the background T1 image.

This figure illustrates that we are able to cover the full extent of the CST for
these healthy subjects, from the face area to the hand area to the medial part of
the CST. This demonstrates that our diffusion model enables the tractography
algorithm to follow bifurcations in the white matter fiber tracts. For each subject,
estimating the DDI models from the DWI took approximately 40 minutes (single-
threaded), while the tractography of the left and right CST took less than ten
minutes.

3.2 Tractography on Patients

We also report results for the CST of each patient on the side of the tumor
(all fiber bundles are provided in supplemental material). The images processed
here had a larger resolution than the healthy subjects and the estimation of
the DDI models from the DWI took approximately 3 hours (single-threaded).
However, this step of the tractography pipeline may be computed offline leaving
only the tractography to perform online (about five minutes for each CST) when
performing the tractography for surgery planning.

We focus on the qualitative evaluation of the obtained tracks and their close-
ness to the tumor (it should be noted that the tumor regions were not used in



(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of CST on Patients. Combined views of the obtained fiber
tracts for patients 1 (a,b,c) and 2 (d,e,f), illustrating the proximity of the tumor to
crucial motor pathways. Surfaces for the first patient correspond to the necrotic part of
the tumor (red), the active part of the tumor (yellow) and the edema (orange). For the
second patient, each ROI corresponds to a specific tumor. Images (a,d) show overall
3D views and (b,c,e,f) show the tracts and regions of interest going through a specific
2D slice to better illustrate their proximity.

any way to constrain the tractography algorithm), and on providing the neuro-
surgeon with helpful views for neurosurgery planning. To this end, we present
in Fig. 2 views (made using the MedINRIA software [11]) combining the fiber
tracts, the tumor ROIs provided by the organizers, all on top of the patient’s T1
image. More illustrations are available in supplemental material.

We can observe on this figure that, although the tumor delineation was not
used in the algorithm, no fibers are going through the tumor area on patient 1.
Instead, the CST is going through the most central part of the edema (see images
(b,c) on Fig. 2). This indicates that the fibers were pushed by the tumor mass
effect, which is a valuable indication when planning the surgery. Overall, this
figure demonstrates the close proximity of the tumors and of the CST for both
patients. This is an important insight as the neurosurgeon will be able to plan
the tumor removal in the optimal way, so as to minimize the possible handicap
for the patient after surgery.
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