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cells by E-selectin-induced activation of the
PI3K-NF�B survival axis downstream of Death
receptor-3
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Éric R Paquet1, Roscoe Klinck5, François A Auger4 and Jacques Huot1*

Abstract

Background: Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by
the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial
cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor,
interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic
properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the
activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we
investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a
survival advantage to colon cancer cells.

Methods: Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3
kinase/NF�B survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and
by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise
quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated
chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument.

Results: Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of
the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NF�B, is rapidly translocated to the
nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore,
inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin
and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly,
metastatic colon cancer cell lines such as HT29 and SW620 express higher levels of a splice variant of DR3 that has
no trans-membrane domain and no death domain.

Conclusion: Colon cancer cells acquire an increased capacity to survive via the activation of the PI3K/NF�B
pathway following the stimulation of DR3 by E-selectin. Generation of a DR3 splice variant devoid of death domain
can further contribute to protect against apoptosis.
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Background

The metastatic process consists of a number of sequen-

tial interrelated steps, all of which must be completed

successfully to give rise to a secondary tumor [1-3]. In

particular, the adhesion of cancer cells to endothelial

cells is a prerequisite for extravasation of circulating

cancer cells and for their metastatic dissemination. This

adhesive event requires specific interactions between

adhesion receptors present on vascular endothelial cells

and their ligands or counter-receptors on cancer cells.

E-selectin is a specific endothelial adhesion receptor that

is induced by pro-inflammatory stimuli. Its natural func-

tion is to mediate the adhesion of leukocytes to the

endothelium allowing their extravasation into inflamed

tissues [4]. Intriguingly, cancer cells hijack the inflam-

matory system and interact with E-selectin to extrava-

sate [5,6]. For example, colon carcinoma cells adhere to

and roll on both purified E-selectin and cytokine-stimu-

lated endothelial cells either in static or dynamic condi-

tions in vitro [7-9]. Moreover, several studies strongly

support the role of E-selectin-mediated adhesion of can-

cer cells to endothelial cells as an important determi-

nant of metastasis, especially of colon carcinoma cells.

In particular, the binding efficiency of clonal colon can-

cer cell lines to E-selectin is directly proportional to

their respective metastatic potential [10]. In contrast,

anti-E-selectin antibodies and antisense oligonucleotides

that inhibit E-selectin expression impair experimental

liver metastasis of murine and human tumor cells

[11,12]. Similarly inhibiting the expression of E-selectin

with cimetidine, an antagonist of histamine H2 recep-

tors, inhibits the adhesion of cancer to endothelial cells

and impairs metastatic dissemination [13].
The binding of cancer cells to E-selectin involves a

counter-receptor for E-selectin that is composed of sialyl

Lewis-a/x carbohydrate determinants that are borne by a

carrier protein or lipids on cancer cells. The binding is

Ca2+-dependent and is mediated through the N-terminal

lectin domain of E-selectin. Sialyl Lewis-a on carrier

proteins plays a major role in E-selectin binding of can-

cer cells derived from the lower digestive organs, such

as the colon and rectum, as well as from the pancreas

and biliary tract [14]. On the other hand, sialyl Lewis-x

is the representative carbohydrate involved in the E-

selectin binding of breast, ovarian and pulmonary cancer

cells [1]. Little is known about the proteins that bear

these carbohydrates and that serve as the E-selectin

counter-receptor backbone on cancer cells. LAMP-1,

LAMP-2, CD44, CEA and podocalyxin-like proteins

were all identified as E-selectin counter-receptors on

colon cancer cells [15-19]. However, the signaling events

that stem from these receptors in the cancer cells

bound to E-selectin are still ill defined. Several studies

have shown that the adhesion of cancer cells to E-

selectin initiates a reverse signaling in the cancer cells,

which raises the possibility that this signaling modulates

the metastatic potential of cancer cells [20-22]. We pre-

viously reported that Death receptor-3 (DR3) is a func-

tional and signaling sialylated ligand that binds E-

selectin on colon cancer cells [20,23]. The subsequent

DR3 activation induced by E-selectin increases the

motile potentials of the cancer cells through activation

of the p38 MAP kinase pathway [20,23].

DR3 is a member of the second group of the TNF

receptor (TNFR) superfamily that includes TNFR1, DR4,

DR5, DR6, and Fas [17]. These receptors contain a com-

mon 70- to 80-amino acid homologous region in the

cytoplasmic tail called the death domain [24]. The sig-

naling pathways leading to cell death in response to

these receptors are similar and rely on trimerization and

oligomerization of the receptors upon ligand binding

followed by the recruitment of death domain proteins,

such as TRADD, FAD, or RIP1, and subsequently, acti-

vation of the apoptotic cascade [25]. More recently, it

was reported that CD95/Fas, a member of the TNFR

family, induces signaling to phosphatidylinositol 3-kinase

(PI3K) via phosphorylation of Tyr residues present in its

death domain [26]. Several splice isoforms of DR3 exists,

some of which such as, isoforms 1, 2, 3, 4 and 7, contain

a death domain, while others, such as the truncated DR3

isoform 12, do not [27]. Among these variants, DR3 iso-

form 2 (DR3v2) is the major and parental member of

the family and is referred to hereafter as DR3. Interest-

ingly, the splicing profile of DR3 may be altered in can-

cer. Notably, DR3b differs from DR3 by the inclusion of

a 28 amino-acid stretch in the extracellular domain.

Whereas DR3 is expressed in all cell lines and lym-

phoma samples tested, DR3b expression is restricted to

lymphoid T-cell and immature B-cell lines and to some

cases of follicular lymphoma. This suggests that several

receptor isoforms can participate in lymphoid cell

homeostasis [28]. The functions of DR3 in a physio-

pathologic context are unclear. However, its ectopic

expression in mammalian cells induces apoptosis or

activates the pro-survival transcription factor NF�B,

depending on the cytoplasmic effectors engaged in the

signaling complexes downstream of the death domain

[29,30]. Intriguingly, the activation of DR3 by TL1A/

VEGI, the cognate ligand for DR3 is not followed by

apoptosis in human erythroleukemic TF-1 cells. This is

presumably because it is associated with the expression

of the apoptosis-inhibiting protein c-IAP2 [31,32]. More

recently, we found that activation of DR3 by E-selectin

increased the survival of LoVo colon cancer cells, in

part by activating the ERK pathway [23].

In this study, we further investigated the mechanisms

by which activation of DR3 by E-selectin increases the

survival of colon carcinoma cells. Our major finding is
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that metastatic colon cancer cells do not enter into

apoptosis in response to E-selectin in part because they

bind to DR3 to activate the PI3K/NF�B survival pathway

and in part because they generate an alternative splice

variant of DR3 that lacks trans-membrane and death

domains, thus rendering it unable to induce apoptosis.

Methods

Reagents and antibodies

Recombinant human E-selectin/Fc (rhE-selectin/Fc) was

obtained from R&D Systems (Minneapolis, MN). Pheny-

lethylisothiocyanate (PEITC) and LY294002 were pur-

chased from Sigma (St Louis, MO). Calcein-AM was

obtained from Invitrogen-Molecular Probes (Burlington,

ON, Canada). Dimethylsulfoxyde was purchased from

Fisher (Montreal, QC, Canada). Protein G-sepharose was

purchased from GE Healthcare (Mississauga, ON,

Canada). PP2 and PD098059 were purchased from Calbio-

chem (Mississauga, ON, Canada). Rabbit anti-DR3 clone

H300 was obtained from Santa Cruz biotechnology,

mouse anti-DR3 extracellular domain (DR3ecd), mouse

anti-vinculin (hVIN-1), rabbit anti-active caspase 3, and

irrelevant mouse IgG1� (MOPC21) were purchased from

Sigma (St Louis, MO). Mouse anti-DR3 clone B65 was

obtained from Millipore (Nepean ON, Canada). Mouse

anti-DR3 (hDR3) was purchased from R&D Systems (Min-

neapolis, MN). Rabbit anti-phospho Akt (Ser 473), rabbit

anti-Akt, rabbit anti-NF�B p65 and mouse anti-caspase 8

(1C12) were all obtained from Cell Signaling Technology,

(Beverly, MA). Mouse anti-TATA Binding Protein (TBP)

antibody was purchased from AbCam (Cambridge, MA).

Goat anti-mouse IgG (H+L) and goat anti-rabbit IgG (H

+L) conjugated with horseradish peroxidase were from

Jackson Immunoresearch (West Grove, PA).

Cells

HT29 colorectal adenocarcinoma cells were cultivated in

McCoy 5A medium supplemented with 10% foetal bovine

serum (FBS) and antibiotics. HT29LMM (highly meta-

static HT29 cells) and Jurkat T cells were cultivated in

RPMI medium containing 10% FBS. Caco2 colorectal ade-

nocarcinoma cells were grown in DMEM high glucose

medium supplemented with 10% FBS and Glutamax 1X.

SW480 and SW620 are colorectal adenocarcinoma cells

isolated from the primary site and lymph node secondary

site from the same patient. They were cultivated in Leibo-

vitz medium L15 containing 10% FBS. LoVo colorectal

adenocarcinoma cells grade IV were grown in Ham F12K

medium supplemented with 10% FBS. HIEC cells are nor-

mal human intestinal epithelial cells that were cultivated

in OptiMEM containing 5% FBS and 5 ng/ml EGF [33].

HEK293, HeLa, MDA MB231 and MCF7 cells were culti-

vated in DMEM containing 10% foetal calf serum. All

these cell lines were obtained from ATCC.

Human umbilical vein endothelial cells (HUVEC) were

isolated by collagenase digestion of umbilical veins from

undamaged sections of fresh cords, as described [34].

The cells used at passages ≤ 5 were grown to confluence

in gelatin-coated tissue culture flasks in medium 199

containing 20% heat-inactivated FBS, endothelial cell

growth supplement (60 μg/ml), glutamine (2 mM),

heparin (25000 IU). Human micro-capillary endothelial

cells (HMEC) were cultivated in MCDB medium con-

taining 10% FBS, 1 μg/ml hydrocortisone and 10 ng/ml

EGF. All cells lines were cultivated in the presence of

antibiotics and maintained at 37°C in a 5% CO2 humidi-

fied atmosphere.

Adhesion assays in a laminar flow chamber

HUVEC were trypsinized and grown for 24 hrs on gela-

tin-coated slides. These endothelial cells were treated

with 20 ng/ml IL-1b for 4 h to induce the expression of

E-selectin. The cultures were then placed in the laminar

flow chamber GlycoTech (Gaithersburg, MD, USA)

under a shear stress of 1 dyne/cm2. In certain experi-

ments, anti-human DR3 monoclonal Ab clone B65 or

MOPC21 irrelevant antibody were added in the culture

medium of HT29 cells, 30 min before their injection in

the chamber. In other experiments, a knockdown of

DR3 was performed by small interfering RNA, as pre-

viously described [9,23]. Briefly, HT29 cells were trans-

fected by electroporation with human DR3 siRNA

(siRNA; sense, 5’-CCGUCCAGUUGGUGGGUAA-3’,

and antisense, 5’-UUACCCACCAACUGGACGG-3’) or

control siRNA purchased from Qiagen (Mississauga,

ON, Canada). Tumor cells in suspension (2 × 106 per

assay) were labeled for 30 min with Calcein AM and

washed twice with M199 medium before being added

into the flow chamber. Videos were taken directly using

a camera mounted on a TE2000 fluorescence micro-

scope at ×20 magnification (Nikon, Melville, NY, USA).

Survival assay

Twenty-four hours after being plated, HT29 cells were

left to grow for 96 hours with or without E-selectin or

with the apoptosis inducer curcumin (75 μM) [35]. At

the end of the treatments, the cell survival was evaluated

with the Quick Cell Proliferation Assay Kit from BioVi-

sion (Mountain View, CA). The test evaluates the ability

of viable cells to convert tetrazolium salt into formazan

(WST-1 assay), which can be monitored at 450 nm.

PI3 kinase and NF�B activation

Cells were washed twice and incubated in serum-free

medium for 2 hours in the presence or not of the inhi-

bitors (LY294002 or PP2). Thereafter, rhE-selectin was

added for different periods of time. Cell extracts were

prepared and PI3K and NF�B activation were assayed in
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western blotting by determining the phosphorylation of

Akt at Ser 473 and nuclear translocation of p65NF�B,

respectively.

Extraction of nuclear proteins in denaturing conditions

The protocol was adapted from Andrews and Faller

[36]. Cells were washed 3 times in PBS and were re-sus-

pended in 1.6 ml of PBS. The cell suspension was briefly

vortexed and 100 μl of total extract were collected and

mixed in 20 μl of extraction buffer. The rest of the cell

suspension was centrifuged (16,000 × g) for 10 seconds

at 4°C, and the pellet was resuspended in 400 μl of buf-

fer A (10 mM HEPES-NaOH pH 7.9, 1.5 mM MgCl2,

10 mM KCl, 0.5 mM DDT, 0.2 mM PMSF). The extract

was left on ice for 10 min, vortexed for 10 seconds and

centrifuged for 10 seconds at 4°C. The supernatant was

removed and discarded, and the pellet was resuspended

in 70 μl of buffer C (20 mM HEPES-NaOH pH 7.9, 25%

glycerol, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA,

0.5 mM DDT, 0.2 mM PMSF). The samples were incu-

bated on ice for 20 minutes and centrifuged for 2 min

at 4°C. Extraction buffer was added in each extract

before heating. The amount of proteins was quantified

by the Lowry method.

DR3 sequencing

Total RNA was extracted from (1 × 106) cells using Qia-

gen RNeasy kit (Mississauga, ON, Canada). All RNA sam-

ples were stored at -80°C until assay. The mRNA was

reverse-transcribed with Qiagen Sensiscript reverse tran-

scription kit using random hexamers. Nested PCRs were

used to amplify a fragment of the tnfrsf25 gene using spe-

cific pairs of primers and the Qiagen Hotstart taq DNA

polymerase kit according to the manufacturer protocol

(PCR1-Forward primers: 5’-CGTCGGAGGGCTATG-

GAGCAGC-Reverse primers: 5’-GGCCGGCTG GTGC

TGCTACGC. PCR2-Forward primers: 5’-GAG GATC-

CATGCAGGGCGGCACTCGTAGC-Reverse primers: 5’-

ACCTCGAGTCACGGGCCGCGCTGCAG). PCR pro-

ducts were cloned in pcDNA3 (Invitrogen, Burlington

ON, Canada) vector and were sequenced by CRCHUQ/

CHUL sequencing platform (Québec Qc, Canada). The

DR3 sequences were compared with those found in the

BLAST database and analyzed with the Human Genome

Browser Gateway http://genome.ucsc.edu/cgi-bin/hgGate-

way and the AceView genes http://www.ncbi.nlm.nih.gov/

IEB/Research/Acembly/ databases.

Analysis of DR3 variants

Total RNA was extracted from (1 × 106) cells using Qia-

gen RNeasy kit and one μg was used for a reverse tran-

scription using Omniscript reverse transcriptase

(Qiagen). Then, the full length DR3 was amplified by

PCR using Qiagen Hotstart polymerase and the

following primers: 5’-CGTCGGAGGGCTATGGAG-

CAGC and 5’-GGCCGGCTGGTGCTGCTACGC fol-

lowing the manufacturer’s instructions. Thereafter, the

region from exon 5 to exon 7 of DR3 was amplified by

PCR, as previously described, using DR3 full length PCR

product as a template and the following primers: 5’-

CCCGCAGA GATACTGACTGTGGGAC and 5’-

GTAGCCAGGGG TCCAGCTGTTACC. The resulting

products were separated by agarose gel electrophoresis.

For more precise quantification, targeted PCR reac-

tions were carried out, and the amplified products were

analyzed by automated chip-based microcapillary elec-

trophoresis on an Agilent 2100 Bioanalyzer instrument

(Agilent Technologies, Santa Clara, CA) as previously

described [37]. Amplicon sizing and relative quantifica-

tion was performed by the manufacturer’s software. The

primers used were Forward: 5’-TTCCCGCAGAGA TA

CTGACTG and Reverse: 5’-AGCACCTGG ACCCA

GAACA.

Western blotting

Cells lysis was done at 4°C in extraction buffer (60 mM

Tris-base, pH 6.8, 10% glycerol, and 3% sodium dodecyl

sulphate) added with 5% b-mercaptoethanol just before

use. Then, lysates were boiled, vortexed twice and cen-

trifuged at 13,000 g for 5 minutes. Proteins were sepa-

rated by SDS-PAGE and transferred to a nitrocellulose

membrane. Each antibody was used according to the

manufacturer’s protocol. Blots were then revealed with

Super signal West pico kit obtained from Pierce Bio-

technology Inc (Rockford IL). If necessary, the mem-

brane was reprobed for normalization.

Apoptosis evaluation

1) by DNA fragmentation. HT29 cells were treated with

rhE-Selectin/Fc at 10 μg/ml for 4 hours or 24 hours, or

were treated with phenethyl isothiocyanate at 50 μM for

24 hours. Cells were washed twice with PBS, fixed with

3,7% formaldehyde and stained with Hoechst for 60 min

at room temperature in the dark. The cells were exam-

ined with a Nikon Eclipse 800 equipped with a 40 ×

objective lens. 2) by caspase activation. Caspase 8 and 3

activities were evaluated by western blotting using anti-

caspase 8 and anti active-caspase-3 antibodies. The

assays were performed on pools of cells containing both

floating and adhering cells.

Results and Discussion

Death receptor-3 mediates the adhesion of colon cancer

cells to endothelial cells expressing E-selectin under flow

conditions

We previously reported that the adhesion of HT29

colon cancer cells to endothelial cells under static con-

ditions is mediated by the binding interaction between
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DR3 expressed by cancer cells and E-selectin expressed

by endothelial cells [23,38]. Considering that the adhe-

sion of cancer cells to the endothelium in vivo occurs

under flow and shear stress conditions, we ascertained

the role of DR3 in mediating adhesion of colon cancer

cells to E-selectin under flow conditions using a laminar

flow chamber.

HUVEC forming a tight monolayer on gelatin-coated

glass slides were treated or not for 4 hours with IL-1b

to induce the expression of E-selectin. Then, the cul-

tures were placed in a laminar flow chamber in which

medium circulated under a flow that gave a physiologi-

cal shear stress of 1 dyne/cm2 [9]. Live HT29 cells (2 ×

106 per assay) stained with Calcein AM and pre-treated

or not with anti-DR3 antibody or an siRNA that knocks

down the expression of DR3 were injected in the flow

system and video sequences were taken at 25 minute

intervals. The cells attached to the endothelium were

counted in more than 5 fields per condition. Results

showed that, after the first 25 min, no HT29 cancer cell

adhered to endothelial cells that did not express E-selec-

tin. However, they adhered in a time-dependent manner

to HUVEC expressing E-selectin and the adhesion was

blocked by treating the endothelial layer with an anti-

Eselectin antibody (data not shown and [9]). These find-

ings clearly indicated that the adhesion of HT29 cells to

endothelial cells was E-selectin-dependent. As shown in

Figure 1A-F(and additional files 1, 2, 3 and 4), the adhe-

sion was also DR3-dependent given that inhibiting DR3

with the anti-DR3 antibody or knocking down its

expression with siRNA led to a 7-fold reduction of the

adhesion of HT29 cells to HUVEC expressing E-selectin.

These results suggest that the adhesion of colon cancer

cells in blood circulation relies mainly on DR3/E-selectin

interaction. In a previous study, we described three dis-

tinct mechanisms by which circulating cancer cells inter-

act with E-selectin to initiate transendothelial migration:

formation of a mosaic between cancer cells and endothe-

lial cells, paracellular diapedesis at the junction of three

endothelial cells, and transcellular diapedesis [9]. The

results of the present study now suggest that DR3

expressed by colon cancer cells is a major partner of E-

selectin in inducing these mechanisms of diapedesis in

vivo. In particular, it is possible that DR3 binding to E-

selectin is the initial event that activates E-selectin oligo-

merization and thereby ERK-mediated disruption of the

adherent junctions and diapedesis [38]. Another possibility

is that the DR3/E-selectin binding triggers the release of

chemokines or cytokines, such as VEGF, by endothelial

cells or cancer cells, which later triggers diapedesis [39,40].

E-selectin does not induce apoptosis in HT29 cells

DR3 is a member of the TNF receptor family whose

activation is typically associated with apoptosis [24].

Along these lines, the ectopic expression of DR3 in

HEK293 or HeLa cells induced marked apoptosis [30].

Accordingly, we next investigated whether the activation

of DR3 by E-selectin triggers apoptosis. We found that

chimeric rhE-selectin/Fc taken as ligand did not induce

apoptosis in HT29 cells, even at concentrations twice as

those required to induce DR3-mediated activation of

p38 [23]. This is illustrated in Figure 2A-C which shows

that rhE-selectin/Fc at a concentration of 10 μg/ml did

not induce nuclear fragmentation even after 24 h expo-

sure. In contrast, phenylethyl isothiocyanate, a death

receptor-independent inducer of apoptosis in these cells

exerted a strong apoptotic response [41,42] (Figure 2D).

Consistent with these findings, we found that E-selectin,

in contrast to curcumin, did not reduce cell survival

even after 96 h of exposure, as determined by the

WST-1 assay (Figure 2E). In the in vivo context, these

results suggest that the DR3-mediated adhesion of colon

cancer cells to endothelial cell E-selectin may trigger

activation of survival pathways in cancer cells that

impair apoptosis.

E-selectin-induced activation of Death receptor-3 triggers

the activation of PI3K in a Src kinase-dependent manner

Inhibition of ERK is associated with a weak increase in

the activation of caspase-3 in LoVo colon cancer cells

treated by rhE-selectin/Fc [23]. This suggests that

another pathway is involved in conferring resistance to

apoptosis to colon cancer cells adhering to E-selectin.

We thus evaluated the contribution of the PI3K pathway

given that it is a major pro-survival pathway. By measur-

ing the phosphorylation of AKT at Ser473 (Figure 3A),

we found that exposure of HT29 cells to rhE-selectin/Fc

induced a time-dependent activation of PI3K which

peaked at 15 min. The activation of PI3K by E-selectin

is dependent on DR3 activation given that it was abol-

ished by two DR3 neutralizing antibodies (Figure 3B).

Interestingly, the E-selectin-induced phosphorylation of

Akt at Ser473 was sensitive to LY294002, a well-known

inhibitor of PI3K activity (Figure 3C). In line with the

findings that showed that PI3K activation was down-

stream of Src in response to different cytokines includ-

ing TNFa, we found that the phosphorylation of Akt at

Ser473 was also sensitive to Src inhibition by the pan

Src inhibitor PP2 (Figure 3D)[43,44]. Interestingly, DR3

contains an ITAM motif within its death domain that

harbors two tyrosine residues (Y376 and Y394) that

have been suggested to be phosphorylated via Src activa-

tion [45]. In light of our results, it is thus possible that

Src-dependent activation of the PI3K pathway may ori-

ginate from an Src-mediated phosphorylation of one of

these tyrosines. Hence, these findings suggest that E-

selectin-mediated activation of Src may trigger phos-

phorylation of DR3 which would converge on the
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activation of the PI3K pathway, a major regulator of cell

survival [46]. Accordingly, we next investigated the sig-

naling events by which the activation of PI3K down-

stream of DR3 may mediate the survival of colon cancer

cells.

The activation of PI3K downstream of DR3 induces the

activation of NF�B

Earlier findings have highlighted the point that, depend-

ing on cell types and cellular context, DR3 activation

was associated either with apoptosis following the

recruitment of the apoptotic cascade on the death

domain, or survival following activation of the pro-survi-

val factor NF�B [31]. Hence, we next investigated the

status of NF�B following activation of DR3 by E-selec-

tin. As shown in Figure 4, we found that E-selectin

induced a LY294002-sensitive and thereby PI3K-depen-

dent activation of NF�B, as evaluated by the transloca-

tion of NF�B-p65 subunit into the nucleus (Figure 4).

Previous studies have reported that NF�B was activated

by DR3 and other TNFR following the activation of

NF�B-inducing kinase downstream of the recruitment

of TRAF2 to the receptor death domain [47,48]. In turn,

this leads to increased survival [29,31,49]. Here our

Figure 1 DR3 mediates the adhesion of colon cancer cells to E-selectin-expressing endothelial cells in a laminar flow chamber. A to C.
HUVECs were stimulated with 20 ng/mL of IL-1b for 4 h. Live HT29 cells (2 × 106 per assay) stained with Calcein AM were treated with anti-DR3
blocking antibody (B65) or with a control irrelevant antibody (Ctrl: MOPC21) for 30 min prior to being introduced in the circulating medium. D
to F. The knockdown of DR3 expression in HT29 was performed by small interfering RNA (siDR3). siRNA targeting unrelated mRNAs was used as
control (Ctrl). Following treatment, HT29 cells were placed in a laminar flow chamber under a shear stress of 1 dyne/cm2 as in A. In A and D,
the cells attached to the endothelium were counted after 25 min in more than 5 fields per condition. *p < 0.01 (Student t test using the IL-1b
condition as reference). In B, C, E and F, representative fields are shown.
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findings suggest that the activation of NF�B down-

stream of DR3 may be independent of the TRAF2 path-

way and would depend on the activation of the PI3K/

Akt pathway, presumably downstream of a Src-depen-

dent tyrosine phosphorylation of DR3 within the ITAM

motif [50,51]. This possibility is in line with the finding

that cell survival downstream of CD95/Fas is associated

with its tyrosine phosphorylation, upstream of the acti-

vation of the PI3K/AKT pathway [26]. Consistent with a

role of PI3K/NF�B pathways in protecting HT29 cells

from apoptosis in response to E-selectin, we further

found that the inhibition of PI3K by LY294002 increased

the cleavage of caspase 8 in response to E-selectin (Fig-

ure 5A). We previously reported that ERK contributes

to protect colon cancer cells from apoptosis following

activation of DR3 by E-selectin [23]. Accordingly, the

co-inhibition of both ERK and PI3K, respectively by

PD098059 and LY294002, was associated with a

Figure 2 E-selectin does not induce apoptosis in HT29 cells. A to D, HT29 cells were left untreated (A) or were treated with E-selectin at 10
μg/ml for 4 hours (B) or 24 hours (C), or were treated with phenethyl isothiocyanate at 50 μM for 24 hours (D). Cells were fixed and stained
with Hoechst dye and examined for nuclear fragmentation. In E, 24 hours after being plated, HT29 cells were left to grow for 96 hours with or
without E-selectin or the apoptosis inducer curcumin (75 μM). At the end of the treatments, the cell survival was evaluated by their ability to
convert tetrazolium salt into formozan (WST-1 assay), which was monitored at 450 nm.

Porquet et al. BMC Cancer 2011, 11:285

http://www.biomedcentral.com/1471-2407/11/285

Page 7 of 12



synergistic activation of both caspase-8 and caspase-3 in

response to E-selectin (Figure 5B). This result indicates

that both ERK and the PI3K/Akt//NF�B axis contribute

to confer apoptosis resistance to colon cancer cells in

Figure 3 E-selectin mediates Src kinase-dependent

phosphorylation of Akt through DR3. A) HT29 cells were left
untreated or treated for different periods of time (5, 10,15 and 20
min) with rhE-selectin/Fc (5 μg/ml). The proteins were extracted and
separated by SDS-PAGE and transferred onto a nitrocellulose
membrane. Akt activation was analysed by western blotting with
specific anti-phospho (Ser 473)-Akt antibody. The blots was then
stripped and reprobed with antibody recognizing total Akt as
loading control. B) HT29 cells were pre-incubated or not for 30
minutes with anti-DR3 (hDR3) or anti-DR3 (DR3ecd) before being
incubated with rhE-selectin/Fc (5 μg/ml for 15 min). The proteins
were extracted and processed as in A. C) HT29 cells were pre-
treated for 2 hours with DMSO (0.1%) or LY249002 (20 μM) before
being incubated with rhE-selectin/Fc (5 μg/ml for 15 min). The
proteins were extracted and processed as in A. D) HT29 cells were
pretreated for 2 hours with DMSO (0.08%) or PP2 (10 μM) to inhibit
Src family kinases. Thereafter, the cells were left untreated or treated
with E-selectin (5 μ/ml for 15 min). The proteins were extracted and
processed as in A.

Figure 4 DR3 activation triggers NF�B activation through PI3K.
HT29 cells were pre-treated for 2 hours with PI3K inhibitor
LY294002 (20 μM) or DMSO as vehicle (0.1%) and treated or not
with rhE-selectin/Fc (5 ng/ml for 15 min). Nuclear proteins were
extracted and processed for western blotting using specific
antibodies for total p65 NF�B or for TATA binding protein (TBP)
used as nuclear protein control.

Figure 5 PI3K and ERK activation impairs caspase activation. A)
HT29 cells were pre-treated for 30 minutes with DMSO (0.1%) or LY
249002 (20 μM) before being incubated with rhE-selectin/Fc (5 μg/
ml for 24 hours). The proteins were extracted and were separated
by SDS-PAGE and transferred onto a nitrocellulose membrane.
Caspase-8 cleavage/activation was analysed by western blotting
using specific anti-caspase-8 antibody. B) HT29 cells were pre-
treated with MEK inhibitor PD059098 (50 μM for 60 min) with or
without PI3K inhibitor LY294002 (20 μM for 30 min) or DMSO as
vehicle (0.1% for 60 min) and treated or not with rhE-selectin/Fc (5
ng/ml for 24 hours). The proteins were extracted and were
separated by SDS-PAGE and transferred onto a nitrocellulose
membrane. Caspase-3 activation was analysed by western blotting
using a specific anti-active-caspase-3 antibody and a specific
antibody against vinculin as loading control.
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response to E-selectin. In addition, it confirms the pro-

survival function of the ERK pathway downstream of

DR3, as we previously reported [23].

Metastatic colon cancer cells express transmembrane and

cytoplasmic deletants of DR3

Next, we verified whether a mutation in DR3 could

further contribute to the lack of apoptosis induced by E-

selectin. By using PCR approach, we cloned and

sequenced DR3 cDNA, and we found major variations

in the expression profile of DR3. From 36 different

clones, we discovered that, in addition to the full-length

version of DR3, HT29 cells expressed splice variants of

DR3. One of them is characterized by a loss of exon 6

(DR3∆6) (Additional file 5). The joint between the last

two nucleotides of exon 5 and the first two nucleotides

of exon 7 leads to a shift in the reading frame introdu-

cing a premature stop codon, located at the beginning

of exon 8 (Figure 6A). This variant codes for a new pro-

tein whose last 37 amino acids are not found in any of

the known variants of DR3. This protein has no trans-

membrane and death domain (Figure 6B) and thus is

Figure 6 Colon carcinoma cells HT29 express a splice variant of DR3 missing the exon 6. A) Schematic representation of the normal
splicing and the splicing associated with the loss of exon 6 within DR3v2. B) Predicted amino acids sequence of DR3v2 deleted of exon 6. The
transmembrane domain is shown in the black box and the black line represents the death domain. Identical amino acid sequences are in black
and non-identical are in red. GeneBank sequence NP_003781.1 was used as reference for DR3v2. C) Total RNA from different cell lines were
extracted and were amplified by reverse transcriptase. Primers were designed to amplify by PCR the region from exon 5 to exon 7 of DR3v2.
The resulting products were run through agarose gel. D) Total RNA from SW480 or SW620 cell lines were extracted and were amplified by
reverse transcriptase. PCR reactions were carried out using specific primers amplifying region around exon 6 which produce a 97bp band for the
DR3v2∆6. Automated sizing and relative quantification of the amplicon versus total amplicons was performed using the manufacturer’s software.
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unable to trigger apoptosis. Interestingly, by PCR ampli-

fication of the region around exon 6, we found that the

relative proportion of DR3∆6 was higher in metastatic

colon cancer cells (HT29, HT29LMM, SW620) in com-

parison to normal colon epithelial cells (HIEC) and

endothelial cells (HUVEC, HMEC), as well as in meta-

static cancer cells that are not of colon origin (Jurkat,

Hela, MCF7, MDAMB231) (Figure 6C). Notably, it is

particularly clear that the relative level of of DR3∆6 to

full length DR3 is higher in metastatic SW620 cells rela-

tive to non-metastatic SW480 cells taken from the pri-

mary tumor site of the same patient. In fact, more

precise quantification by targeted PCR reactions and

analysed of the amplified products by chip-based micro-

capillary electrophoresis indicated that the ratio of

DR3∆6 to full length DR3 doubled in SW620 cells rela-

tive to SW480 (Figure 6D). These findings strongly sug-

gest that the expression of DR3∆6 is associated with a

metastatic phenotype in colon cancer. In turn, this raises

the possibility that, during the acquisition and progres-

sion of malignancy, colon cancer cells evolved to

develop alternative splicing mechanisms favoring the

shifting of a death-receptor toward a survival receptor.

Along these lines, it was shown that a variant of DR3,

(DR3b), differs from the described DR3 isoform 2 by the

inclusion of a 28 amino-acid stretch in the extracellular

domain. Whereas DR3 was expressed in all the cell lines

and lymphoma samples tested, DR3b expression was

restricted to lymphoid T-cell and immature B-cell lines

and to some cases of follicular lymphoma. This is con-

sistent with our finding that different isoforms of DR3

can contribute to cancer [28]. It is difficult at present to

fully understand the mechanism of alternative splicing

regulation acting on DR3. One possibility relies on the

phosphorylation of serine-arginine rich proteins (SRPs)

known to be major regulators of alternative splicing in

colon cancer cells [52]. This is further supported by the

fact that PI3K which is activated by E-selectin-mediated

stimulation of DR3 also regulates the phosphorylation of

SRPs [53]. Interestingly, death decoy receptor-3 (DcR3),

another member of the TNF receptor superfamily, is a

soluble receptor that is highly expressed in various

tumors including colon cancer and that act as a negative

regulator of DR3[54]. Although, DR3∆6 differs in

sequence from DcR3, it is possible that it also acts as a

decoy receptor for the activation of DR3 by E-selectin.

Conclusion

Overall, our study reveals that activation of DR3 by E-

selectin in HT29 cells leads to the activation of the

PI3K/NF�B survival pathway. This results in cells that

are both resistant to apoptosis and which have acquired

an increased capacity to survive. We also found that

HT29 cells have developed alternative splicing

mechanisms that favor the shift of DR3 from a full

length signaling receptor to deletants devoid of death

domain and thus unable to trigger apoptosis. This is the

first time that such a bi-functional insidious mechanism

is reported to confer metastatic properties to colon can-

cer cells.

Additional material

Additional file 1: An irrelevant antibody to DR3 does not influence

the adhesion of colon cancer cells to E-selectin-expressing

endothelial cells in a laminar flow chamber. HUVECs were trypsinized
and grown for 24 hrs on gelatin-coated slides. These endothelial cells
were treated with 20 ng/ml IL-1b for 4 h to induce the expression of E-
selectin. The endothelial cell cultures were then placed in a laminar flow
chamber under a shear stress of 1 dyne/cm2. Live HT29 cells (2 × 106 per
assay) stained with Calcein AM were treated with a control irrelevant
antibody (Ctrl: MOPC21) for 30 min prior to being introduced in the
medium circulating over endothelial cells. Videos were taken directly
using a camera mounted on a TE2000 fluorescence microscope at ×20
magnification to follow the adhesion of HT-29 cells to HUVECs.

Additional file 2: An anti-DR3 blocking antibody impairs the

adhesion of colon cancer cells to E-selectin-expressing endothelial

cells in a laminar flow chamber. HUVECs were trypsinized and grown
for 24 hrs on gelatin-coated slides. These endothelial cells were treated
with 20 ng/ml IL-1b for 4 h to induce the expression of E-selectin. The
endothelial cell cultures were then placed in a laminar flow chamber
under a shear stress of 1 dyne/cm2. Live HT29 cells (2 × 106 per assay)
stained with Calcein AM were treated with an anti-DR3 blocking
antibody (B65) for 30 min prior to being introduced in the medium
circulating over endothelial cells. Videos were taken directly using a
camera mounted on a TE2000 fluorescence microscope at ×20
magnification to follow the adhesion of HT-29 cells to HUVECs.

Additional file 3: An irrelevant control siRNA does not influence the

adhesion of colon cancer cells to E-selectin-expressing endothelial

cells in a laminar flow chamber. HUVECs were trypsinized and grown
for 24 hrs on gelatin-coated slides. These endothelial cells were treated
with 20 ng/ml IL-1b for 4 h to induce the expression of E-selectin. The
endothelial cell cultures were then placed in a laminar flow chamber
under a shear stress of 1 dyne/cm2. Live HT29 cells were transfected by
electroporation with control siRNA purchased from Qiagen. Tumor cells
in suspension (2 × 106 per assay) were labeled for 30 min with Calcein
AM and washed twice with M199 medium before being added in the
medium circulating over endothelial cells. Videos were taken directly
using a camera mounted on a TE2000 fluorescence microscope at ×20
magnification to follow the adhesion of HT-29 cells to HUVECs.

Additional file 4: Knocking down the expression of DR3 with a

human DR3 siRNA impairs the adhesion of colon cancer cells to E-

selectin-expressing endothelial cells in a laminar flow chamber.
HUVECs were trypsinized and grown for 24 hrs on gelatin-coated slides.
These endothelial cells were treated with 20 ng/ml IL-1b for 4 h to
induce the expression of E-selectin. The endothelial cell cultures were
then placed in a laminar flow chamber under a shear stress of 1 dyne/
cm2. Live HT29 cells were transfected by electroporation with human
DR3 siRNA purchased from Qiagen. Tumor cells in suspension (2 × 106

per assay) were labeled for 30 min with Calcein AM and washed twice
with M199 medium before being added in the medium circulating over
endothelial cells. Videos were taken directly using a camera mounted on
a TE2000 fluorescence microscope at ×20 magnification to follow the
adhesion of HT-29 cells to HUVECs.

Additional file 5: Sequence alignment between Dr3v2 and splice

variant of DR3 missing the exon 6. Total RNA from HT29 cells were
extracted and were amplified by reverse transcriptase. The resulting
cDNAs were amplified by PCR using primers that bind to all DR3
isoforms outside of the reading frame. A second round of PCR was done
using a 3’ primer outside the reading frame and a 5’ primer just inside
the reading frame. These final cDNAs were cloned and then sequenced.
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The sequence for the DR3v2 deleted of exon 6 is shown below the
reference sequence NM_003790.2. Grey colored box sequences and
blank sequences represent alternating exons.

List of abbreviations used

Akt: v-akt murine thymoma viral oncogene homologue 1; DR3: death
receptor 3; ERK: extracellular-signal regulated kinase; FADD: Fas-associated
protein with death domain; MAPK: mitogen-activated protein kinase; NFkB:
nuclear factor kappa light chain in activated B cells; RIP: receptor-interacting
protein; PI3K: phosphatidylinositol-3 kinase; TL1A: TNF ligand-related
molecule 1a; TNF: tumor necrosis factor; TRADD: tumor necrosis factor
receptor type 1-associated DEATH domain protein; VEGI: vascular endothelial
growth inhibitor.
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