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Abstract

Geometric distortions are generally simple and effective attacks for many watermarking methods. They can make detection and

extraction of the embedded watermark difficult or even impossible by destroying the synchronization between the watermark reader

and the embedded watermark. In this paper, we propose a new watermarking approach which allows watermark detection and

extraction under affine transformation attacks. The novelty of our approach stands on a set of affine invariants we derived from

Legendre moments. Watermark embedding and detection are directly performed on this set of invariants. We also show how these

moments can be exploited for estimating the geometric distortion parameters in order to permit watermark extraction. Experimental

results show that the proposed watermarking scheme is robust to a wide range of attacks: geometric distortion, filtering, compression,

and additive noise.

Author Keywords Affine transformation ; geometric attacks ; image watermarking ; Legendre moment invariants.

Introduction

Image watermarking has been proposed to respond copyright protection concerns , . To be efficient, a watermarking scheme[1 ] [2 ]
must be robust against a wide variety of attacks. Among these attacks, geometric distortions are more difficult to tackle as they affect

synchronization between the watermark reader and the embedder.

A number of algorithms robust to rotation, scaling, translation (RST) have been reported in the literature . Ruanaidh [3 ]–[8 ] et al. [3 ]
utilize the Fourier Mellin transform so that the watermark signal is not impacted by geometric distortions. Image normalization has also

been proposed for watermark embedding/extraction in . In particular, Kim  watermark Zernike moments of the normalized[4 ]–[7 ] et al. [7 ]
image. Normalization allows scale and translation invariance while Zernike moments give robustness to rotation. But, as stated by the

authors, it seems not possible to watermark directly Zernike moments. They adopt an iterative procedure to construct the watermark from

the Zernike moments in the spatial domain in order to control watermark invisibility while imposing specific values to Zernike moments

for watermark detection. The resulting watermark is then added to the image pixels. This scheme is public as the original image is not

required for detection and has one bit capacity (see  for a recent survey). It should be noted that image normalization may increase the[8 ]
computation time and also induce errors in watermark detection/extraction due to image interpolation.

As a general case of RST transformation, affine transformation is more complex. In , a template constituted of local peaks at[9 ]
predefined position is embedded in the discrete Fourier transformed image for the purpose of detecting the affine transformation the

watermarked image undergone. An invariant watermark proposed by Alghoniemy  is based on affine geometric momentet al. [10 ]
invariants , . They modify moment values of the image so that a predefined function of its geometric moment invariants, a[11 ] [12 ]
weighted combination of them, lies within a predetermined value. This method is one bit watermarking and public. But, as for , a[7 ]
memory and time consuming exhaustive search is necessary to adapt the strength of the watermark, added in the spatial domain, while

preserving the output of the predefined function. In fact, moments and moment invariants used in above approaches cannot be

watermarked directly. Dong  exploited geometric moments and the corresponding central moments within an imageet al. [13 ]
normalization procedure. The image is normalized so that it meets a set of predefined moment s criteria. The normalized image is’
consequently invariant to affine geometric transform. This latter is spread spectrum watermarked before being denormalized. This scheme

is public and allows multi-bit watermarking but, as above, it may suffer of errors due to image interpolation.
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Most of these methods make use of geometric moments which are not orthogonal. However, orthogonal moments are better in terms of

image description and are more robust to noise . Consequently, it can be expected that a set of affine invariants derived from[14 ]–[17 ]
orthogonal moments will offer better performance in terms of robustness, and allows direct watermarking of invariants avoiding thus

iterative embedding. Although the orthogonal moments including pseudo-Zernike moments, Tchebichef moments and Krawtchouk

moments have been already used to image watermarking , none of them takes the affine transformation into consideration.[18 ]–[20 ]

In this paper, we present a new method robust to geometric distortion. It is based on a set of orthogonal Legendre moment invariants

we propose. The rest of this paper is organized as follows. Section II reviews the definition of Legendre moments and presents our set of

invariants to image affine transformation. Watermark embedding, detection, and extraction processes are given in Section III. Before

concluding, experimental results are provided in Section IV. They illustrate the overall performance of our approach.

Affine Legendre Moment Invariants
Legendre Moments Definition

The 2-D (  ) th-order Legendre moment of an image function ( ) is defined as p + q f x, y [15 ]

where ( ) is the th-order orthonormal Legendre polynomial given byPp x p 

with

It can be deduced from ( ) that2 

where  ( ), 0    , is the inverse matrix of the lower triangular matrix  ( ). The elements of are given by DM = dp, k ≤ k ≤ p ≤ M CM = cp, k DM [21

]

Using the orthogonality property of Legendre moments, the image can be approximately reconstructed from a finite number moments

of order up to ( ) asM, M 

Legendre Moments of an Affine Transformed Image

In this subsection, we establish the relationship between the Legendre moments of an affine transformed image and those of the

original image. The affine transformation can be represented by [22 ]

where
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is called the homogeneous affine transformation matrix.

Translation invariance can be achieved by locating the origin of the coordinate system to the center of mass of the object such that 

. Thus, ( , ) can be ignored and only the matrix is taken into consideration in the remaining part of this paper. However, thisx 0 y 0 

simplification is not valid when considering image cropping attack as the center of mass will change (see Section IV).

The 2-D (  ) th-order Legendre moment of the affine transformed image g( , ) is defined byp + q x ′ y ′

where det ( ) denotes the determinant of the matrix .A A 

We can now link the Legendre moments of the affine transformed image given by ( ) with those of the original image. By replacing8 

the variable by  in ( ), we havex a 11 x + a 12 y 2 

Similarly

Substituting ( ) and ( ) into ( ) yields9 10 8 

Using ( ), we have4 

Substitution of ( ) into ( ) leads to12 11 

shows that one Legendre moment of the transformed image is a linear combination of those of the original image.Equation (13) 

Affine Legendre Moment Invariants (ALMIs)

Using ( ), we can derive a set of ALMIs but its direct use leads to a complex nonlinear system of equations. To reduce complexity,13 

we decompose the matrix into a product of simple matrices. Two kinds of decomposition known as XSR and XYS decompositions can be

used , . In this work, we adopt the XYS decomposition, which consists in decomposing the affine matrix into an -shearing, a [22 ] [23 ] A x y 

-shearing and an anisotropic scaling matrix, that is

where the coefficients , , , and are real numbers. α 0  δ 0  γ 0  β 0 
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Based on this decomposition and using ( ), we derive through the following theorems a first set of Legendre moment invariants 13 

 and  that are invariant to -shearing, -shearing and anisotropic scaling, respectively.x y 

Theorem 1

Let be an original image and its -shearing transformed version such as ( )  (  , ). Then the following  areg x g x, y = f x +  β 0 y y 

invariant to -shearingx 

where is a parameter associated with the image such that   The proof of Theorem 1 is given in the .βf f βf = βg +  β 0 appendix 

Theorem 2

Let be an original image and its -shearing transformed version such as ( )  (  ). Then the following  aref g y g x, y = f x,  γ 0 x + y 

invariant to -shearing:y 

where is a parameter associated with the image such that   Theorem proof is similar to that of Theorem 1 and is omittedγf f γf = γg +  γ 0 

here.

Theorem 3

Let and be two images having the same shape but distinct scale, i.e., ( )  ( , ). Then the following  are invariantf g g x, y = f  α 0 x  δ 0 y 

to anisotropic scaling

where and are two parameters associated with the image such that  and  . Theorem proof is given in the αf δf αf =  α 0 αg δf =  δ 0 δg 

.appendix 

Determination of the parameters , , and will be discussed in Section II-D.βf γf αf δf 

Notice that we can also derive the following theorem without proof.

Theorem 4

The Legendre moments of an image can be expressed through a linear combination of their invariants as follows:

As we will show in Section III, this last theorem will be of great interest for watermarking as it allows avoiding iterative embedding.

From that standpoint, by combining  that are, respectively, invariant to -shearing, -shearing, and anisotropic scaling,x y 

we can obtain our set of ALMIs. For an image ( ), we use the following process.f x, y 

Step 1

-shearing Legendre moment invariants  are calculated by ( ), where the Legendre moments  are computed with ( ).x 15 1 

Step 2
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The combined invariants with respect to -shearing and -shearing  are computed by ( ) where the Legendre moments on thex y 16 

right-hand side of ( ) are replaced by  computed in Step 1.16 

Step 3

The affine Legendre moment invariants  are calculated by ( ) where the Legendre moments on the right-hand side of ( ) are17 17 

replaced by  computed in Step 2.

Parameter Estimation

As described above, the parameters , , , and in ( ) ( ) are image dependant. We provide one way for estimating theseβf γf αf δf 15 – 17 

parameters. Considering an affine transform and its XYS decomposition, by setting  in ( ), we have15 

The parameter can then be determined by solving ( ).βf 21 

From ( ), we have16 

Letting , we obtain

Setting , we have

where

The parameters , , , and associated with the transformed image ( ) can also be estimated according to ( ), ( ), and (βg γg αg δg g x, y 21 23 

). It can be verified that the parameters provided by the above method satisfy the following relationships:   ,   ,  24 βf = βg +  β 0 γf = γg +  γ 0 αf =

and  , where , , , and are the coefficients of the affine transform applied to . Based on these relationships, α 0 αg δf =  δ 0 δg  α 0  δ 0  γ 0  β 0 f 

conditions given in theorems 1 to 3 are satisfied. It is worth noting that other choice of parameters can also be made to keep the invariance

of ( ) ( ) to image transformation. For a detailed discussion on the parameter selection methods, we refer the readers to  and .15 – 17 [23 ] [24 ]

Implementation Strategies
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In this section, we describe the different processes for watermark embedding, detection and extraction. Proposed ALMIs can be

watermarked directly and in different ways by applying spread spectrum or quantization index modulations. However, in order to conduct

a fair comparison with other methods based on image moments, we decided to follow the procedure proposed by Alghoniemy . et al [10 ]
for watermark detection. Our embedding procedure differs from their proposal as we can directly watermark image invariants contrarily to 

 where an iterative procedure is adopted.[10 ]

Watermark Embedding

Herein, watermark embedding is carried out in the Legendre moment invariants directly. To illustrate this, let us take the anisotropic

scaling invariants  as an example. The -shearing, -shearing and affine Legendre moment invariants  and  can bex y 

treated in a similar way.

As in , the watermark is generated from the Legendre moment invariants before being inserted in the invariant domain of the[10 ]
original image. Watermark embedding can be noted as follows

where  and  denote respectively the anisotropic scaling Legendre moment invariants of the original image and of itsf 

watermarked version , and are the parameters of strength which are selected to achieve the best tradeoff between robustness andh spq 

imperceptibility. In general, they are selected in a way such that the peak signal-to-noise ratio (PSNR) between the original image and thef 

watermarked image is larger than 40 dB in order to make the watermark invisible. The PSNR between and is defined ash f h 

where  is the image size.N × N 

In this paper, a simple choice of consists to take  for any and . It should be noticed that the watermark embedding methodspq spq = s p q 

proposed by Kim  corresponds to a special case of our method with   and  0 for other value of and .et al. [7 ] s 31 = s 42 = s spq = p q 

illustrates the watermarking of the reference image Lena see  using its 210 first image moments and  0.0214 forFig. 1(a) [ Fig. 2(a) ] s =
a PSNR of 40 dB. The difference of and , i.e., the watermark, is depicted in . Sample values of wereFigs. 2(a) 1(a) Fig. 1(b) Fig. 1(b) 

multiplied by 50 to enhance the difference.

We can express the watermarked image as a function of the Legendre moment invariants of the original image. In fact, using ( ), (h 20 

) can be rewritten as26 

With the help of ( ), we have6 

where is the maximum moment or moment invariant order used for watermarked embedding, is the image associated with theM W 

watermark. The relationship between , and the PSNR is illustrated in . It can be seen that the PSNR obviously decreases withs M Fig. 3 

increasing values of while the order of moment invariants exploited for embedding has a little effect on the PSNR.s M 

In this experiment, the embedded watermark is completely dependent on the image without any random component; it can be easily

estimated from the watermarked image and removed. Thus the embedded watermark does not provide any security. However, this is only a

limitation of this experiment as the watermark can be defined more secretly. In fact, instead of deriving the watermark from the Legendre

moment invariants second term  in ( ) , one can use a secret watermark pattern. We illustrate that capability in Section III-C, by[ 26 ]
adding a logo to obtain the watermarked image (    ).B h = f +W = f + sB 

Watermark Detection

Watermark detection aims at determining if the received test image is watermarked or not in order to prove ownership. Herein, we

follow the same strategy as Alghoniemy . We use the distance between the two sets of moment invariants, i.e., between theet al. [10 ]
ALMIs of the watermarked image and those of the received image as detector. The distance between two images in the feature space is

measured by
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where ( ) and ( ) correspond to the result of a function applied to the ALMIs of the received and watermarked images,I t I h I 

respectively. As in , the function we retain is the mean function[10 ] I 

where is the total number of affine invariants used for detection.L 

The detection decision is then made by comparing the distance ( ) with a predefined threshold . If the value of ( ) isd t, h d th d t, h 

smaller than , the detected watermark is declared authentic; otherwise, it is declared unauthentic. As defined, the original image is notd th 

required for the watermark detection but as this later relies on ( ) (i.e., a digest of the watermarked image), this method is one bitI h 

watermarking and semi-blind.

Watermark Extraction

The procedure we follow in order to recover the watermark from a received image is given in . For simulating this, we considerFig. 4 

that a watermarked image has been affine attacked becoming a received image . To sum up, once the watermark detected in , weh t t 

estimate the affine transform coefficients , , , and . A restored image  can be derived from by inverting the estimated α 0  δ 0  γ 0  β 0 h ′ t 

transform. One has just to subtract the original image from  to get access to the watermark . Consequently and contrarily to thef h ′ W ′
detection process, the watermark extraction procedure is private, as it requires the original image.

Coefficients , , , and of the affine transform can be estimated in the following way. Let denote ( ) and ( ) be the α 0  δ 0  γ 0  β 0 M h M t 

parameter matrix associated to and , respectivelyh t 

( ) and ( ) parameters can be estimated through the procedure given in Section II-D, by making use of ( ) ( ). With theseM h M t 21 – 25 

notations, , , , and are directly given by the product ( ) and ( ). α 0  δ 0  γ 0  β 0 M h M 1 − t 

Experimental Results

Eight standard gray images of 256  256 pixels shown in were used to evaluate the performances of our scheme. For these× Fig. 2 

experiments, was set to 20 (i.e., 210 moments were used for embedding). For the comparison purpose, the same invariants  order wasM ’
considered in our scheme and the one proposed by Alghoniemy for embedding. Furthermore, for both methods, moment invariants ofet al. 

order up to three were used for watermark detection i.e.,  4 in ( ) . More clearly, , , , and were used since   [ L = 31 ] I 00 I 21 I 12 I 03 I 10 = I 01 = I 

  0 and   1 because of the value we retained for , , , and , and see algorithm of Section II-D ( ) ( ) .11 = I 30 = I 20 = I 02 = βf γf αf δf [ — 21 – 25 ]

In a first experiment, was set to 0.0214, 0.0192, 0.0189, 0.0198, 0.0192, 0.0237, 0.0179, and 0.0187 for Lena, Cameraman, Woman,

Boat, Gold Hill, Bridge, Harbor, and Girl images in order to achieve a PSNR of 40.00, 40.01, 40.02, 40.06, 40.00, 40.01, 40.02, and 40.01

dB, respectively. Parameters of  were fixed in order to get equivalent PSNR values. Four types of distortions have been considered:[10 ]
rotation, scaling, additive Gaussian noise and JPEG compression. For image rotation, we apply angles varying from 0 to 120 every 20. For

image scaling, we consider scale factor evolving from 0.1 to 0.6 with a step of 0.1. The standard deviation of the Gaussian noise varies

from 5 to 30 every 5 for the additive noise attack. The JPEG compression quality factor varies from 10 to 60 with a step of 10. We give the

average variation of the distance ( ) used in the detection process, i.e., the distance between ALMIs of the watermarked image and of30 h 

the received image , for the eight test images. It can be seen from that with respect to rotation, scaling, additive Gaussiant Fig. 5(a) (d) –
noise and JPEG compression our ALMIs have a better behavior than the affine geometric moment invariants (AGMIs) adopted by

Alghoniemy . ALMIs  variability is also smaller than AGMIs. In fact, we achieved an averaged standard deviation of 0.2  foret al. [10 ] ’ %
ALMIs against 2.6  for Alghoniemy s method in all these experiments.% ’

Considering the same test image set, we then compare detection performance of our scheme with  for different PSNR values and[10 ]
under various attacks including rotation, scaling, affine transformation, median filtering, Gaussian noise, salt and pepper noise, speckle



IEEE Trans Image Process . Author manuscript

Page /8 14

noise, small random distortions (SRD), JPEG compression, cropping, and histogram equalization. For that purpose, we used stirmark 4.0 1 

and Matlab 7.1. The threshold used to decide whether or not an image is watermarked was set to 0.02. The parameters of the two affine

transform attacks given in are  1.1,  0.2,  0.1,  0.8, and  1.2,  0.3,  0.4,  0.6,Table I a 11 = a 12 = a 21 = a 22 = a 11 = − a 12 = a 21 = a 22 = −

respectively. In average on the test image set, was set to 0.0250, 0.0199, 0.0110, and 0.0088 in order to achieve a PNSR of 38, 40, 45,s 

respectively. Results achieved with both methods are summarized in . Indicated values correspond to the detection rate, i.e., theTable I 

ratio between the number of correctly detected watermark and the number of tested image; and, the average detection distance for  and[10 ]
ALMIs see ( )  under the attacks described above. It can be seen that the proposed method achieves better results whatever the attack[ 30 ]
type. However, as  our scheme is not robust to cropping and histogram equalization attacks. This may be explained by the fact that: 1)[10 ]
we use the image center of mass as origin of the coordinate system, center of mass usually modified by such kind of modifications (see

Section II-A), and 2) changes of the image intensity more or less impact invariants  values.’

As shown in Section III-C, once the watermarked is detected, one can estimate the affine transform parameters allowing then the

watermark extraction. To illustrate the efficiency of our system in that situation, we use a logo image as watermark     B W: h = f + sB = f + W

, where , , and correspond to the watermarked, the original and the logo images, respectively (see Section III-A). is of sameh f B B 

dimensions than our test images, see  and was embedded in the four test images shown in using all image moments[ Fig. 6(a) ] Fig. 2(a) (d) –
(  255) and fixed to 0.005. Watermarked images were then attacked by an affine transformation as illustrated in . AffineM = s Fig. 6(b) (e) –
coefficients and their estimations based on ( ) ( ) are listed in . It can be seen that our method fits well the affine21 – 25 Table II 

transformation coefficients. Extracted watermarks are shown in . They are correctly recovered.Fig. 6(f) (i) –

Conclusion and Perspectives

The major contribution of this paper relies on two aspects. The first one is the derivation of a set of affine invariants based on

Legendre moments. Those invariants can be used for estimating the affine transform coefficients applied to one image. The second one is

the use of these affine Legendre moment invariants for watermark embedding, detection and extraction. It was shown that the proposed

method is more robust than others based on geometric moments.

One weak point of this algorithm is that the watermark detection is considered as a 1-bit watermarking system since the distance

between the affine invariants and the threshold is used. However, the proposed detection approach could be extended to a multi-bit

watermarking scheme by making use of spread spectrum techniques for example. This subject is currently under investigation. Another

limitation of the proposed algorithm is that it is not robust to image cropping and histogram equalization, a common problem for the

moment-based watermark algorithms.
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Appendix
Proof of Theorem 1

The Legendre moment invariants of the image intensity function ( ) is defined asg x, y 

Now we want to prove . To that end, we have

From ( ), we have13 
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where

Substitution of ( ) into ( ) yieldsA3 A2 

Note that we have shifted the indices in the last step of ( ). Using ( ), we haveA5 A4 

Since both and are lower triangular matrices, and is the inverse of matrix , we haveCM DM DM CM 
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Substituting ( ) into ( ) leads toA7 A6 

Using the relationship  , we obtainβf =βg +  β 0 

It can be deduced from ( ) and ( ) that .A9 A5 

Proof of Theorem 3

From ( ), we have13 

can be written in matrix form asEquation (17) 

can also be written in matrix form asEquation (A10) 

Substituting ( ) into ( ) and using the relationships  ,  and  where is the th order identity matrix, weA12 A11 D Cp p = Ip αf =  α 0 αg δf =  δ 0 δg Ip p 

obtain
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Thus, we have .

Footnotes:
1 Online . Available: [ ] http://www.petitcolas.net/fabien/watermarking/stirmark/index.html
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(a) Watermarked image with PSNR  40 dB. (b) Magnified watermark.=

Fig. 2
Original test images.
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Fig. 3
PSNR variation for the reference image Lena with respect to the parameter of strength ( ) and the invariants order ( ) used for embedding.s M 

Fig. 4
Watermark extraction procedure.
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Fig. 5
Variation in average of the distance between moment invariants with respect to our image test set and different image attacks: (a) rotation

attack; (b) scaling attack; (c) gaussian noise attack; (d) JPEG compression attack.

Fig. 6
(a) Logo used as watermark. (b) (e) Watermarked images under affine transformation. (f) (i) Extracted watermark from (b) (e).– – –
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TABLE I
Detection Rate (Det. Rate) and Invariants Distance in Average (Av. Dist.) of Alghoniemy s Method and Our Approach Based on Almis for the Test Image Set Considering Different PSNR Values and’
After Different Kind of Attacks

PSNR 38 dB PSNR 40 dB PSNR 45dB

Av. Dist. 10[ ]

(10 )2 −
Av. Dist. ALMIS

(10 )2 −
Det. rate [

10]
Det. rate
ALMIS

Av. Dist. 10[ ]

(10 )2 −
Av. Dist. ALMIS

(10 )2 −
Det. rate [

10]
Det. rate
ALMIS

Av. Dist. 10[ ]

(10 )2 −
Av. Dist. ALMIS

(10 )2 −
Det. rate [

10]
Det. rate
ALMIS

Affine1 0.084 0.12 1 1 0.083 0.12 1 1 0.086 0.12 1 1
Affine2 0.46 0.37 1 1 0.47 0.37 1 1 0.47 0.37 1 1

Rotation 45° 0.021 0.0096 1 1 0.022 0.010 1 1 0.022 0.0098 1 1

Scaling 0.8 0.052 0.036 1 1 0.051 0.035 1 1 0.051 0.037 1 1
Median filtering 4.67 1.73 0 0.75 4.69 1.74 0 0.75 4.73 1.75 0 0.75

JPEG 20% 0.051 0.070 1 1 0.13 0.10 1 1 0.058 0.066 1 1

Gaussian noise 0.058 0.027 1 1 0.043 0.029 1 1 0.033 0.045 1 1
Salt and pepper

noise
0.28 0.20 1 1 0.25 0.21 1 1 0.025 0.015 1 1

Speckle noise 1.47 1.26 0.625 0.75 1.68 1.56 0.625 0.75 1.79 1.72 0.5 0.625
SRD 1.82 0.77 0.625 1 2.33 1.03 0.375 0.875 2.87 1.06 0.25 0.875

Cropping 10% 48.71 18.53 0 0 48.64 18.59 0 0 48.58 18.75 0 0

Histogram
equalization

22.43 27.97 0 0 23.11 28.37 0 0 24.51 29.52 0 0

TABLE II

Parameter Estimation Results for the Images Depicted in Fig. 6(b) (e)–

Real transform

Estimated parameters


