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Introduction

Image watermarking has been proposed to respond copyright protection concerns , . To be efficient, a watermarking scheme [START_REF] Petitcolas | Watermarking schemes evaluation[END_REF] [START_REF] Podilchuk | Digital watermarking: Algorithms and applications[END_REF] must be robust against a wide variety of attacks. Among these attacks, geometric distortions are more difficult to tackle as they affect synchronization between the watermark reader and the embedder.

A number of algorithms robust to rotation, scaling, translation (RST) have been reported in the literature . Ruanaidh

[3 ]- [START_REF] Zheng | A survey of RST invariant image watermarking algorithm[END_REF] et al. [START_REF] Ruanaidh | Rotation, scale, and translation invariant spread spectrum digital image watermarking[END_REF] utilize the Fourier Mellin transform so that the watermark signal is not impacted by geometric distortions. Image normalization has also been proposed for watermark embedding/extraction in . In particular, Kim watermark Zernike moments of the normalized [START_REF] Tang | A feature-based robust digital image watermarking scheme[END_REF]- [START_REF] Kim | Invariant image watermark using Zernike moments[END_REF] et al. [START_REF] Kim | Invariant image watermark using Zernike moments[END_REF] image. Normalization allows scale and translation invariance while Zernike moments give robustness to rotation. But, as stated by the authors, it seems not possible to watermark directly Zernike moments. They adopt an iterative procedure to construct the watermark from the Zernike moments in the spatial domain in order to control watermark invisibility while imposing specific values to Zernike moments for watermark detection. The resulting watermark is then added to the image pixels. This scheme is public as the original image is not required for detection and has one bit capacity (see for a recent survey). It should be noted that image normalization may increase the [START_REF] Zheng | A survey of RST invariant image watermarking algorithm[END_REF] computation time and also induce errors in watermark detection/extraction due to image interpolation.

As a general case of RST transformation, affine transformation is more complex. In , a template constituted of local peaks at [START_REF] Pereira | Robust template matching for affine resistant image watermarks[END_REF] predefined position is embedded in the discrete Fourier transformed image for the purpose of detecting the affine transformation the watermarked image undergone. An invariant watermark proposed by Alghoniemy is based on affine geometric moment et al. [START_REF] Alghoniemy | Geometric invariance in image watermarking[END_REF] invariants , . They modify moment values of the image so that a predefined function of its geometric moment invariants, a [11 ] [12 ] weighted combination of them, lies within a predetermined value. This method is one bit watermarking and public. But, as for , a [START_REF] Kim | Invariant image watermark using Zernike moments[END_REF] memory and time consuming exhaustive search is necessary to adapt the strength of the watermark, added in the spatial domain, while preserving the output of the predefined function. In fact, moments and moment invariants used in above approaches cannot be watermarked directly. Dong exploited geometric moments and the corresponding central moments within an image et al. [START_REF] Dong | Digital watermarking robust to geometric distortions[END_REF] normalization procedure. The image is normalized so that it meets a set of predefined moment s criteria. The normalized image is ' consequently invariant to affine geometric transform. This latter is spread spectrum watermarked before being denormalized. This scheme is public and allows multi-bit watermarking but, as above, it may suffer of errors due to image interpolation.

Most of these methods make use of geometric moments which are not orthogonal. However, orthogonal moments are better in terms of image description and are more robust to noise . Consequently, it can be expected that a set of affine invariants derived from [START_REF] Teague | Image analysis via the general theory of moments[END_REF]- [START_REF] Shu | Moment-based approaches in image part 2: invariance[END_REF] orthogonal moments will offer better performance in terms of robustness, and allows direct watermarking of invariants avoiding thus iterative embedding. Although the orthogonal moments including pseudo-Zernike moments, Tchebichef moments and Krawtchouk moments have been already used to image watermarking , none of them takes the affine transformation into consideration.

[18 ]- [START_REF] Venkataramana | Image watermarking using Krawtchouk moments[END_REF] In this paper, we present a new method robust to geometric distortion. It is based on a set of orthogonal Legendre moment invariants we propose. The rest of this paper is organized as follows. Section II reviews the definition of Legendre moments and presents our set of invariants to image affine transformation. Watermark embedding, detection, and extraction processes are given in Section III. Before concluding, experimental results are provided in Section IV. They illustrate the overall performance of our approach.

Affine Legendre Moment Invariants

Legendre Moments Definition

The 2-D ( ) th-order Legendre moment of an image function ( ) is defined as p + q f x, y [START_REF] Teh | On image analysis by the method of moments[END_REF] where ( ) is the th-order orthonormal Legendre polynomial given by P p x p with It can be deduced from ( ) that 2 where ( ), 0 , is the inverse matrix of the lower triangular matrix ( ). The elements of are given by

D M = d p, k ≤ k ≤ p ≤ M C M = c p, k D M [21 ]
Using the orthogonality property of Legendre moments, the image can be approximately reconstructed from a finite number moments of order up to ( ) as M, M

Legendre Moments of an Affine Transformed Image

In this subsection, we establish the relationship between the Legendre moments of an affine transformed image and those of the original image. The affine transformation can be represented by [START_REF] Rothe | The method of normalization to determine invariants[END_REF] where is called the homogeneous affine transformation matrix.

Translation invariance can be achieved by locating the origin of the coordinate system to the center of mass of the object such that . Thus, ( , ) can be ignored and only the matrix is taken into consideration in the remaining part of this paper. However, this

x 0 y 0 simplification is not valid when considering image cropping attack as the center of mass will change (see Section IV).

The 2-D ( ) th-order Legendre moment of the affine transformed image g( , ) is defined by p + q x ′ y ′ where det ( ) denotes the determinant of the matrix .

A A

We can now link the Legendre moments of the affine transformed image given by ( ) with those of the original image. By replacing 8 the variable by in ( ), we have x a 11 x + a 12 y 2 Similarly Substituting ( ) and ( ) into ( ) yields 9 10 8

Using ( ), we have 4

Substitution of ( ) into ( ) leads to 12 11 shows that one Legendre moment of the transformed image is a linear combination of those of the original image. Equation ( 13)

Affine Legendre Moment Invariants (ALMIs)

Using ( ), we can derive a set of ALMIs but its direct use leads to a complex nonlinear system of equations. To reduce complexity, 13

we decompose the matrix into a product of simple matrices. Two kinds of decomposition known as XSR and XYS decompositions can be used , . In this work, we adopt the XYS decomposition, which consists in decomposing the affine matrix into an -shearing, a Based on this decomposition and using ( ), we derive through the following theorems a first set of Legendre moment invariants 13 and that are invariant to -shearing, -shearing and anisotropic scaling, respectively.

x y

Theorem 1

Let be an original image and its -shearing transformed version such as ( ) ( , ). Then the following are g x g x, y = f x + β 0 y y invariant to -shearing x

where is a parameter associated with the image such that The proof of Theorem 1 is given in the .

β f f β f = β g + β 0 appendix Theorem 2
Let be an original image and its -shearing transformed version such as ( ) ( ). Then the following are f g y g x, y = f x, γ 0 x + y invariant to -shearing: y

where is a parameter associated with the image such that Theorem proof is similar to that of Theorem 1 and is omitted

γ f f γ f = γ g + γ 0
here.

Theorem 3

Let and be two images having the same shape but distinct scale, i.e., ( ) ( , ). Then the following are invariant f g g x, y = f α 0 x δ 0 y to anisotropic scaling where and are two parameters associated with the image such that and . Theorem proof is given in the

α f δ f α f = α 0 α g δ f = δ 0 δ g . appendix
Determination of the parameters , , and will be discussed in Section II-D.

β f γ f α f δ f
Notice that we can also derive the following theorem without proof.

Theorem 4

The Legendre moments of an image can be expressed through a linear combination of their invariants as follows:

As we will show in Section III, this last theorem will be of great interest for watermarking as it allows avoiding iterative embedding.

From that standpoint, by combining that are, respectively, invariant to -shearing, -shearing, and anisotropic scaling, x y we can obtain our set of ALMIs. For an image ( ), we use the following process. f x, y

Step 1 -shearing Legendre moment invariants are calculated by ( ), where the Legendre moments are computed with ( ). x 15 1

Step 2

The combined invariants with respect to -shearing and -shearing are computed by ( ) where the Legendre moments on the x y 16

right-hand side of ( ) are replaced by computed in Step 1. 16

Step 3

The affine Legendre moment invariants are calculated by ( ) where the Legendre moments on the right-hand side of ( ) are 17 17 replaced by computed in Step 2.

Parameter Estimation

As described above, the parameters , , , and in ( ) ( ) are image dependant. We provide one way for estimating these

β f γ f α f δ f 15 -17
parameters. Considering an affine transform and its XYS decomposition, by setting in ( ), we have 15

The parameter can then be determined by solving ( ). The parameters , , , and associated with the transformed image ( ) can also be estimated according to ( ), ( ), and (

β g γ g α g δ g g x, y 21 23 
). It can be verified that the parameters provided by the above method satisfy the following relationships: , , 24

β f = β g + β 0 γ f = γ g + γ 0 α f =

and

, where , , , and are the coefficients of the affine transform applied to . Based on these relationships,

α 0 α g δ f = δ 0 δ g α 0 δ 0 γ 0 β 0 f
conditions given in theorems 1 to 3 are satisfied. It is worth noting that other choice of parameters can also be made to keep the invariance of ( ) ( ) to image transformation. For a detailed discussion on the parameter selection methods, we refer the readers to and . 15 -17 [START_REF] Zhang | On the choice of consistent canonical form during moment normalization[END_REF] [24 ]

Implementation Strategies

In this section, we describe the different processes for watermark embedding, detection and extraction. Proposed ALMIs can be watermarked directly and in different ways by applying spread spectrum or quantization index modulations. However, in order to conduct a fair comparison with other methods based on image moments, we decided to follow the procedure proposed by Alghoniemy . et al [START_REF] Alghoniemy | Geometric invariance in image watermarking[END_REF] for watermark detection. Our embedding procedure differs from their proposal as we can directly watermark image invariants contrarily to where an iterative procedure is adopted.

[10 ]

Watermark Embedding

Herein, watermark embedding is carried out in the Legendre moment invariants directly. To illustrate this, let us take the anisotropic scaling invariants as an example. The -shearing, -shearing and affine Legendre moment invariants and can be x y treated in a similar way.

As in , the watermark is generated from the Legendre moment invariants before being inserted in the invariant domain of the [START_REF] Alghoniemy | Geometric invariance in image watermarking[END_REF] original image. Watermark embedding can be noted as follows where and denote respectively the anisotropic scaling Legendre moment invariants of the original image and of its f watermarked version , and are the parameters of strength which are selected to achieve the best tradeoff between robustness and h s pq imperceptibility. In general, they are selected in a way such that the peak signal-to-noise ratio (PSNR) between the original image and the f watermarked image is larger than 40 dB in order to make the watermark invisible. The PSNR between and is defined as

h f h
where is the image size. N × N In this paper, a simple choice of consists to take for any and . It should be noticed that the watermark embedding method s pq s pq = s p q proposed by Kim corresponds to a special case of our method with and 0 for other value of and . et al. [START_REF] Kim | Invariant image watermark using Zernike moments[END_REF] s 31 = s 42 = s s pq = p q illustrates the watermarking of the reference image Lena see using its 210 first image moments and 0.0214 for Fig. 1 We can express the watermarked image as a function of the Legendre moment invariants of the original image. In fact, using ( ), (

) can be rewritten as 26

With the help of ( ), we have 6

where is the maximum moment or moment invariant order used for watermarked embedding, is the image associated with the M W watermark. The relationship between , and the PSNR is illustrated in . It can be seen that the PSNR obviously decreases with s Fig. 3 increasing values of while the order of moment invariants exploited for embedding has a little effect on the PSNR. s M

In this experiment, the embedded watermark is completely dependent on the image without any random component; it can be easily estimated from the watermarked image and removed. Thus the embedded watermark does not provide any security. However, this is only a limitation of this experiment as the watermark can be defined more secretly. In fact, instead of deriving the watermark from the Legendre moment invariants second term in ( ) , one can use a secret watermark pattern. We illustrate that capability in Section III-C, by adding a logo to obtain the watermarked image ( ).

B h = f +W = f + sB

Watermark Detection

Watermark detection aims at determining if the received test image is watermarked or not in order to prove ownership. Herein, we follow the same strategy as Alghoniemy . We use the distance between the two sets of moment invariants, i.e., between the et al. [START_REF] Alghoniemy | Geometric invariance in image watermarking[END_REF] ALMIs of the watermarked image and those of the received image as detector. The distance between two images in the feature space is measured by where ( ) and ( ) correspond to the result of a function applied to the ALMIs of the received and watermarked images, I t I h I respectively. As in , the function we retain is the mean function [START_REF] Alghoniemy | Geometric invariance in image watermarking[END_REF] I where is the total number of affine invariants used for detection. L

The detection decision is then made by comparing the distance ( ) with a predefined threshold . If the value of ( ) is d t, h d th d t, h smaller than , the detected watermark is declared authentic; otherwise, it is declared unauthentic. As defined, the original image is not d th required for the watermark detection but as this later relies on ( ) (i.e., a digest of the watermarked image), this method is one bit I h

watermarking and semi-blind.

Watermark

The procedure we follow in order to recover the watermark from a received image is given in . For simulating this, we consider Fig. 4 that a watermarked image has been affine attacked becoming a received image . To sum up, once the watermark detected in , we h t t estimate the affine transform coefficients , , , and . A restored image can be derived from by inverting the estimated

α 0 δ 0 γ 0 β 0 h ′ t
transform. One has just to subtract the original image from to get access to the watermark . Consequently and contrarily to the

f h ′ W ′
detection process, the watermark extraction procedure is private, as it requires the original image.

Coefficients , , , and of the affine transform can be estimated in the following way. Let denote ( ) and ( ) be the

α 0 δ 0 γ 0 β 0 M h M t
parameter matrix associated to and , respectively h t ( ) and ( ) parameters can be estimated through the procedure given in Section II-D, by making use of ( ) ( ). With these M h M t 21 -25 notations, , , , and are directly given by the product ( ) and ( ).

α 0 δ 0 γ 0 β 0 M h M 1 -t

Experimental Results

Eight standard gray images of 256 256 pixels shown in were used to evaluate the performances of our scheme. For these × Fig. 2 experiments, was set to 20 (i.e., 210 moments were used for embedding). For the comparison purpose, the same invariants order was M ' considered in our scheme and the one proposed by Alghoniemy for embedding. Furthermore, for both methods, moment invariants of et al.

order up to three were used for watermark detection i.e., 4 in ( ) . More clearly, , , , and were used since 

β f γ f α f δ f [ -21 -25 ]
In a first experiment, was set to 0.0214, 0.0192, 0.0189, 0.0198, 0.0192, 0.0237, 0.0179, and 0.0187 for Lena, Cameraman, Woman, Boat, Gold Hill, Bridge, Harbor, and Girl images in order to achieve a PSNR of 40.00, 40.01, 40.02, 40.06, 40.00, 40.01, 40.02, and 40.01 dB, respectively. Parameters of were fixed in order to get equivalent PSNR values. Four types of distortions have been considered: [START_REF] Alghoniemy | Geometric invariance in image watermarking[END_REF] rotation, scaling, additive Gaussian noise and JPEG compression. For image rotation, we apply angles varying from 0 to 120 every 20. For image scaling, we consider scale factor evolving from 0.1 to 0.6 with a step of 0.1. The standard deviation of the Gaussian noise varies from 5 to 30 every 5 for the additive noise attack. The JPEG compression quality factor varies from 10 to 60 with a step of 10. We give the average variation of the distance ( ) used in the detection process, i.e., the distance between ALMIs of the watermarked image and of 30 h the received image , for the eight test images. It can be seen from that with respect to rotation, scaling, additive Gaussian t Fig. 5(a) (d)

noise and JPEG compression our ALMIs have a better behavior than the affine geometric moment invariants (AGMIs) adopted by Alghoniemy . ALMIs variability is also smaller than AGMIs. In fact, we achieved an averaged standard deviation of 0.2 for et al. [START_REF] Alghoniemy | Geometric invariance in image watermarking[END_REF] ' % ALMIs against 2.6 for Alghoniemy s method in all these experiments.

% '

Considering the same test image set, we then compare detection performance of our scheme with for different PSNR values and [START_REF] Alghoniemy | Geometric invariance in image watermarking[END_REF] under various attacks including rotation, scaling, affine transformation, median filtering, Gaussian noise, salt and pepper noise, speckle noise, small random distortions (SRD), JPEG compression, cropping, and histogram equalization. For that purpose, we used stirmark 4.0 I ratio between the number of correctly detected watermark and the number of tested image; and, the average detection distance for and [START_REF] Alghoniemy | Geometric invariance in image watermarking[END_REF] ALMIs see ( ) under the attacks described above. It can be seen that the proposed method achieves better results whatever the attack type. However, as our scheme is not robust to cropping and histogram equalization attacks. This may be explained by the fact that: 1) [START_REF] Alghoniemy | Geometric invariance in image watermarking[END_REF] we use the image center of mass as origin of the coordinate system, center of mass usually modified by such kind of modifications (see Section II-A), and 2) changes of the image intensity more or less impact invariants values.

'

As shown in Section III-C, once the watermarked is detected, one can estimate the affine transform parameters allowing then the watermark extraction. To illustrate the efficiency of our system in that situation, we use a logo image as watermark

B W: h = f + sB = f + W
, where , , and correspond to the watermarked, the original and the logo images, respectively (see Section III-A). is of same h f B B dimensions than our test images, see and was embedded in the four test images shown in using all image moments 

Conclusion and Perspectives

The major contribution of this paper relies on two aspects. The first one is the derivation of a set of affine invariants based on Legendre moments. Those invariants can be used for estimating the affine transform coefficients applied to one image. The second one is the use of these affine Legendre moment invariants for watermark embedding, detection and extraction. It was shown that the proposed method is more robust than others based on geometric moments.

One weak point of this algorithm is that the watermark detection is considered as a 1-bit watermarking system since the distance between the affine invariants and the threshold is used. However, the proposed detection approach could be extended to a multi-bit watermarking scheme by making use of spread spectrum techniques for example. This subject is currently under investigation. Another limitation of the proposed algorithm is that it is not robust to image cropping and histogram equalization, a common problem for the moment-based watermark algorithms.

where Substitution of ( ) into ( ) yields A3 A2

Note that we have shifted the indices in the last step of ( ). Using ( ), we have A5 A4

Since both and are lower triangular matrices, and is the inverse of matrix , we have

C M D M D M C M
Substituting ( ) into ( ) leads to A7 A6

Using the relationship , we obtain

β f =β g + β 0
It can be deduced from ( ) and ( ) that . A9 A5

Proof of Theorem 3

From ( ), we have 13 can be written in matrix form as Equation [START_REF] Shu | Moment-based approaches in image part 2: invariance[END_REF] can also be written in matrix form as Equation (A10) Substituting ( ) into ( ) and using the relationships , and where is the th order identity matrix, we A12 A11 D C p p = I p α f = α 0 α g δ f = δ 0 δ g I p p obtain Thus, we have .
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  Fig. 6(a) ] Fig. 2(a) (d) -( 255) and fixed to 0.005. Watermarked images were then attacked by an affine transformation as illustrated in . Affine M = s Fig. 6(b) (e) coefficients and their estimations based on ( ) ( ) are listed in . It can be seen that our method fits well the affine 21 -25 Table II transformation coefficients. Extracted watermarks are shown in . They are correctly recovered. Fig. 6(f) (i) -
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 2 Fig. 1 (a) Watermarked image with PSNR 40 dB. (b) Magnified watermark.=
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 34 Fig.3PSNR variation for the reference image Lena with respect to the parameter of strength ( ) and the invariants order ( ) used for embedding.s M
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 5 Fig. 5 Variation in average of the distance between moment invariants with respect to our image test set and different image attacks: (a) rotation attack; (b) scaling attack; (c) gaussian noise attack; (d) JPEG compression attack.
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 6 Fig. 6 (a) Logo used as watermark. (b) (e) Watermarked images under affine transformation. (f) (i) Extracted watermark from (b) (e).

  

  1 and Matlab 7.1. The threshold used to decide whether or not an image is watermarked was set to 0.02. The parameters of the two affine respectively. In average on the test image set, was set to 0.0250, 0.0199, 0.0110, and 0.0088 in order to achieve a PNSR of 38, 40, 45, s respectively. Results achieved with both methods are summarized in . Indicated values correspond to the detection rate, i.e., the Table

	transform attacks given in	Table I	are	a 11 =	1.1,	a 12 =	0.2,	a 21 =	0.1,	a 22 =	0.8, and	a 11 = -	1.2,	a 12 =	0.3,	a 21 =	0.4,	a 22 = -	0.6,
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Appendix Proof of Theorem 1

The Legendre moment invariants of the image intensity function (

) is defined as g x, y

Now we want to prove . To that end, we have