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Supplementary materials 

 

Detection of saccade latencies 

First, the initial consecutive time slices with eye speeds exceeding 10 deg/s for at 

least 40 ms were noted. The period of such consecutive time slice was defined as a 

saccade candidate duration. Next, the saccade candidate duration for the first time slice 

that was followed by a continuous increment of eye speed for at least 6 ms was found. 

Saccade initiation time was defined as this initial time slice. Saccade end time was 

defined as the first time slice after the end of the saccade candidate duration when the eye 

speed dropped below 10 deg/s. The time of peak-velocity was automatically detected 

within the range between the saccade initiation and the end latency. The latencies of these 

key events were determined for each trial by using averaged velocity between the eyes. 

After automatic detection, we visually validated the detected parameters. 

 

Optimized Gaussian kernel 

For the mutual information (MI) analysis, a joint probability distribution of the 

left eye’s velocity x and the right eye’s velocity y was estimated using a Gaussian kernel, 

defined as 
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where Xk and Yk denote the velocity samples from the left and right eyes and N is the 

number of samples. hx and hy represent the smoothing lengths of the Gaussian kernel. 

Optimal smoothing lengths depend on sample size and distribution. The dispersion of Xk 
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can be different from that of Yk; thus, the optimal smoothing length should also be 

different between the eyes. However, we wanted to reduce the number of free parameters 

to be optimized in order to reduce the computational load. To do this, we first normalized 

the samples in relation to their standard deviation as follows: 
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where X  and XSD  are the mean and standard deviation of samples kX , and similarly 

for kY . After this normalization, the Gaussian kernel estimator of probability density is 

given as follows: 
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where h represents the common smoothing length between the eyes. The Gaussian kernel 

for the eyes positions was also defined similarly. 

 The smoothing length was optimized by a likelihood cross validation method 

(Silverman, 1986). The difference between the estimated probability density ),(ö yxP  

and the true one ),( yxP  is quantified as the information distance, defined as 

  dxdyyxPyxPyxPhID  ),(ö/),(ln),()( . (S4) 

ID(h) contains the function ),( yxP  that we are seeking. However, we can minimize 

ID(h) without knowing ),( yxP  because the optimal smoothing length maximizes the 

score function 
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where ),(ö
kkk YnXnP  is the probability density at Xnk and Ynk, estimated by using all 

samples except the kth sample. We sought the value h that maximized the score function 

CV(h). See Supplementary Fig. 1D for the dependence of optimal smoothing length on 

the sample size and on the probability distribution. 

 The joint probability distribution estimated by the optimized kernel was used for 

the MI analysis. 

 

Simulation  

To show quantitatively how the optimized kernel works for the MI estimation, we 

simulated our method using computer-generated samples. In our simulation, sets of 

paired samples were generated according to a given probability distribution given by: 
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where C is the product-moment correlation coefficient between x and y. The MI value of 

the distribution was varied between 0 and 1 in steps of 0.1 by using different C values. 

When the MI value was zero, obtained by setting C at zero, the distribution became the 

well-known bivariate normal distribution. The MI value estimated from the samples was 

compared with the true MI value, which was computed directly from the given 

probability distribution. The sample size of each MI calculation was 50, 100, 200, or 400. 

The computer generation of samples was repeated 100 times; thus, we obtained 100 MI 

values for each given distribution and sample size. 

 


