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A B S T R A C T

Cyclin-Dependent Kinase 1 (CDK1) is a major M-phase kinase which requires the binding to 

a  regulatory protein,  Cyclin  B,  to  be  active.  CDK1/Cyclin  B complex  is  called  M-phase 

Promoting Factor (MPF) for its key role in controlling both meiotic and mitotic M-phase of 

the cell cycle. CDK1 inactivation is necessary for oocyte activation and initiation of embryo 

development.  This  complex  process  requires  both  Cyclin  B  polyubiquitination  and 

proteosomal  degradation  via  the  ubiquitin-conjugation  pathway,  followed  by  the 

dephosphorylation of the monomeric CDK1 on Thr161. Previous proteomic analyses revealed 

a  number  of  CDK1-associated  proteins  in  human  HeLa  cells.  It  is,  however,  unknown 

1



whether specific partners are involved in CDK1 inactivation upon M-phase exit. To better 

understand CDK1 regulation during MII-arrest and oocyte activation, we immunoprecipitated 

(IPed)  CDK1  together  with  its  associated  proteins  from M-phase-arrested  and  M-phase-

exiting Xenopus laevis oocytes. A mass spectrometry (MS) analysis revealed a number of new 

putative CDK1 partners. Most importantly, the composition of the CDK1-associated complex 

changed  rapidly  during  M-phase  exit.  Additionally,  an  analysis  of  CDK1  complexes 

precipitated with beads covered with p9 protein, a fission yeast suc1 homologue well known 

for  its  high  affinity  for  CDKs,  was  performed  to  identify  the  most  abundant  proteins 

associated with CDK1. The screen was auto-validated by identification of: i) two forms of 

CDK1: Cdc2A and B, ii)  a set  of cyclins  B with clearly diminishing number of peptides 

identified upon M-phase exit, iii) a number of known CDK1 substrates (e.g. peroxiredoxine) 

and partners (e.g. HSPA8, a member of the HSP70 family) both in IP and in p9 precipitated  

pellets.  In  IP  samples  we  also  identified  chaperones,  which  can  modulate  CDK1  three-

dimensional  structure,  as  well  as  calcineurin,  a  protein  necessary  for  successful  oocyte 

activation. These results shed a new light on CDK1 regulation via a dynamic change in the 

composition of the protein complex upon M-phase exit and the oocyte to embryo transition.

1. Introduction

MPF  (M-phase  Promoting  Factor)  is  the  universal  molecular  regulator  of  M-phase 

progression (Masui and Markert, 1971). Identification of the molecular nature of MPF was 

possible due to the appropriateness  Xenopus laevis oocytes appropriateness for biochemical 

analysis. MPF is composed of a kinase, CDK1 (Cyclin-Dependent Kinase 1), and a regulatory 

subunit, Cyclin B (Gautier et al., 1988; Lohka et al., 1988). CDK1/Cyclin B is associated with 

a  third component  of the complex,  the p9 protein (Xe-p9 in  Xenopus,  Cks1 and Cks2 in 

mammals, orthologues of fission yeast Suc1 protein; van Zon et al. 2010.). The activation of 

CDK1 triggers M-phase entry, whereas its inactivation is linked to M-phase exit (Labbe et al., 

1989; Riabowol et al., 1989). In  Xenopus, CDK1 is activated during oocyte maturation and 

inactivated  upon  fertilization  triggering  embryo  development.  The  sperm  entry  or  a 

parthenogenetic  treatment  trigger  an  increase  in  intracellular  free  Ca2+  concentration 

promoting CDK1 inactivation that allows MII exit and the beginning of embryo development. 

This inactivation is due to the dissociation of CDK1/Cyclin B complex, Cyclin B degradation 

and CDK1 Thr-161 dephosphorylation (Nishiyama et al., 2000; Chesnel et al., 2006; Chesnel 

et  al.,  2007).  More  precisely,  the  APC/C  (Anaphase-Promoting  Complex/Cyclosome)-
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dependent polyubiquitination of cyclin B targets the fully active CDK1/Cyclin B complex to 

the 26S proteasome. The 19S regulatory particle of the proteasome unfolds and dissociates 

Cyclin B from CDK1 (Nishiyama et al., 2000; Chesnel et al., 2006). Cyclin B dissociation is 

the earliest and indispensable step of CDK1 inactivation. Once separated from CDK1, Cyclin 

B  is  degraded,  whereas  the  kinase  is  dephosphorylated  on  Thr-161  by  type  2C  protein 

phosphatase (Chesnel et  al.,  2007).  Both CDK1 Thr-161 dephosphorylation and Cyclin B 

degradation ensure the irreversibility of CDK1 inactivation. CDK1 inactivation requires its T-

loop refolding, which closes the access of the kinase enzymatic active site. This closure may 

be mediated by chaperones, assuring the rapidity of CDK1 inactivation (reviewed in Kubiak 

and El Dika, 2011). Thus CDK1 inactivation may require modifications in association with 

different partners.

The increasing knowledge on CDK1 makes the hypothesis of a role of CDK1-specific 

inhibitors and/or chaperones in CDK1 inactivation very attractive. In mammals, two types of 

CDK inhibitors (CKIs) have been described (for review see De Clercq and Inze, 2006). The 

Ink4 family inhibits CDK4 and CDK6 by binding to CDK instead of Cyclin (McConnell et  

al., 1999; Parry et al., 1999), while Cip/Kip family members bind to and inhibit CDK/Cyclin 

complexes (Chen et al., 1995). In Saccharomyces cerevisiae, Cdc6 in cooperation with Sic1 

and  Hct1  were  postulated  to  participate  in  timely  Cdc28  (CDK1-homologue)  inhibition 

(Calzada et al., 2001). This function has been recently suggested by Yim and Erikson (2011) 

in  HeLa  cells,  but  has  never  been  shown  in  developmentally-regulated  processes  or  in 

Xenopus. However, the CDK1 inhibitory role of Cdc6 remains controversial even in yeast 

(Archambault et al., 2003). No other CKI has ever been shown to regulate mitotic CDK1 

activity, and we wondered whether such regulators could exist during M-phase and participate 

in the regulation of CDK1 regulation in Xenopus.

Our goal in the present study was to identify CDK1 interactors during M-phase-arrest 

and upon oocyte activation leading to the entry into the first embryonic interphase. For several 

reasons,  this  transition  in  Xenopus  laevis oocytes  provides  a  unique  opportunity  for  the 

biochemical study of putative changes in the composition of the CDK1 complex. First, the 

transition from active to inactive CDK1 is easily inducible and highly synchronous. Second, 

Xenopus laevis oocyte cytoplasm is abundant and rich in proteins (Nishiyama et al., 2000; 

Chesnel  et  al.,  2006;  Chesnel  et  al.,  2007).  The feasibility  of  proteomic  analysis  of such 

oocytes and embryos was already demonstrated by our previous MS study of ubiquitinated X. 

laevis proteins  (Bazile  et  al.  2008).  Our  results  show that  the  composition  of  the  CDK1 

complex is indeed modified during CDK1 inactivation and consequently these data open new 
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avenues for studying the function of so far unknown protein associations with this major M-

phase regulator. 

2. Materials and Methods

2.1. Egg collection and activation

Xenopus laevis females were purchased from NASCO (Fort Atkinson, WI). Females were 

subcutaneously  injected  with  human  chorionic  gonadotropin  (hCG,  500  IU/female). 

Unfertilized eggs (UFEs) were collected and washed with F1 buffer (31.25 mM NaCl, 1.75 

mM KCl, 60 µM MgCl2, 2 mM NaHCO3, 10mM Hepes, 0.25 mM CaCl2, pH 7.6). UFEs were 

dejellied with 2% L-cysteine in F1 buffer, pH 7.8. Aliquots of 200 UFEs for both CDK1 IP 

and p9 precipitation and of 20 UFEs for Western blotting analysis were made and frozen in 

liquid nitrogen. Eggs were activated using 0.5µg/mL calcium ionophore A23187 for 90 sec. 

Aliquots of 200 activated UFEs were taken out about 7 min after ionophore treatment for both 

CDK1 IP and p9 precipitation, and aliquots of 20 eggs were taken out 3, 7, 9, 15 and 30 min 

after treatment for Western blotting analysis.

2.2 Samples preparation for Western blotting

Eggs were homogenized in MPF-stabilizing buffer (80mM β-glycerophosphate, 50 mM NaF, 

20 mM EGTA, 20 mM Hepes, 15mM MgCl2, 1mM DTT, pH 7.5) with mixture of protease 

inhibitors (1mM AEBSF and 10µg/mL of aprotinin,  leupeptin,  pepstatin) and 10µg/mL of 

sodium orthovanadate and centrifuged (10000 g, 15 min, 4°C). The egg extract was mixed 

with Laemmli buffer (Laemmli, 1970), heated at 85°C and stored at -20°C.

2.3. CDK1 immunoprecipitation

To IP CDK1 during M-phase and M-phase exit, we used protein extracts of unfertilized (200 

UFE) and activated eggs (200 eggs at 7 min post activation). Affi-Prep protein A beads were 

washed three times with TBS-Triton X100 (50mM Tris-HCl, 150 mM NaCl, 0.01% Triton 

X100, pH 7.5). The beads were then pre-equilibrated with or without (for IP negative control 

and  for  pre-clearing  step)  rabbit  polyclonal  antibody  raised  against  XlCDK1  C-terminal 

peptide (a gift from T. Lorca, CRBM, Montpellier, France), overnight at 4°C in TBS-Triton 
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X100 (50mM Tris-HCl,  150 mM NaCl,  0.01% Triton X100, pH 7.5),  supplemented  with 

proteases inhibitors and sodium orthovanadate (as above). We selected this antibody because 

it was previously successfully used to specifically immunoprecipitate CDK1 from X. laevis 

oocytes (Krasinska et al. 2008). Fifteen hours later, aliquots of 200 eggs were homogenized in 

1mL of immunoprecipitation buffer (20mM Tris-HCl, pH 7.5, 150 mM NaCl, 10% glycerol, 

2mM  EDTA,  50  mM  NaF,  50mM β-glycerophosphate,  0.2%  NP-40)  and  centrifuged  at 

10 000g for 15 min at 4°C. Protein extracts were centrifuged again at 10 000g for 15 min at 

4°C. Volumes of protein extracts were adjusted to 2 mL with IP buffer containing protease 

inhibitors, and a 15µl aliquot was collected for Western blotting analysis (“total fraction”). 

After  three  brief  washes  with  IP  buffer,  naked  beads  (200µL  per  protein  extract)  were 

incubated with protein extracts and the mixture was agitated for 2 hours at 4°C to pre-clear 

the extract. The mixture of naked beads and egg extracts was then centrifuged at 4000 rpm, 3 

min, 4°C. The supernatants were mixed with 100µL of naked beads (IP negative control) or of 

Affi-Prep  protein  A  beads  cross  linked  to  CDK1  antibodies  (dimethyl  pimelimidate 

dihydrochloride was used as cross linking agent) previously washed twice with homogenizing 

buffer  and  agitated  for  2.5  hours  at  4°C.  After  centrifugation  (1300g,  3  min,  4°C),  the 

supernatants were kept for a second round of IP, but an aliquot of 15µL for each supernatant 

was conserved for Western blotting analysis (“unbound fraction”). The pellets were washed 

three times with 1.5 mL of TBS-Triton X100 with protease inhibitors. Proteins were eluted 

from beads using 100µL of 100mM glycine, pH 2.0. The eluted proteins were frozen at -20°C 

and the beads were eluted a second time with glycine and washed three times with TBS-

Triton X100 and two times with IP buffer. The additional  round of IP was performed as 

previously described by incubating the supernatant of the first round with the beads. The two 

aliquots of eluted proteins were pooled and neutralized with 1M Tris-HCl, pH 9.2. Laemmli 

buffer was added and the samples were heated at 85°C for 5min. A small aliquot was retained 

for  Western  blot  analysis  (bound  fraction)  and  the  remaining  was  analyzed  by  mass 

spectrometry.

2.4. CDK1 precipitation with p9 beads

To precipitate  CDK1 with  p9  beads  during  M-phase  and  M-phase  exit,  we used  protein 

extracts made from unfertilized (200 UFE) and activated eggs (200 eggs taken out 7 min. after 

activation).  p9-Sepharose beads  were a  kind gift  from L.  Meijer  and O.  Lozach  (Marine 

Station, Roscoff, France; Vogel et al. 2002). p9-bound beads and naked Sepharose beads for 
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pre-clearing were pre-equilibrated overnight at 4°C in homogenizing buffer (25mM MOPS, 

pH 7.2, 60mM  β-glycerophosphate,  15mM EGTA, 15mM MgCl2,  2mM DTT, 1mM NaF, 

1mM sodium orthovanadate)  with protease inhibitors and 1% BSA. Aliquots of 200  eggs 

were homogenized in 0.8 mL of homogenizing buffer and centrifuged at 10 000g for 15 min 

at 4°C. Protein extracts were centrifuged at 10 000g for 15 min at 4°C. Volumes of protein 

extracts were adjusted to 1.5 mL with homogenizing buffer including protease inhibitors and 

a 20µl aliquot was collected for Western blotting (“total fraction”). Naked Sepharose beads 

(200µL per protein extract) were incubated with protein extracts and agitated for 2 hours at 

4°C. After centrifugation (1300g, 3 min, 4°C), supernatants were mixed to 200µL of p9 beads 

or  naked beads  (negative  control)  and agitated  for  2.5 hours  at  4°C.  After  centrifugation 

(1300g, 3min, 4°C), the supernatants (30µL) were collected for Western blotting (“unbound 

fraction”) and the pellets of p9 beads were washed four times with 5 mL of washing buffer 

(Tris-HCl pH 7.4, 5mM NaF, 250 mM NaCl, 5mM EDTA, 5mM EGTA, 0.1% Nonidet P-40) 

with protease inhibitors.  The proteins were eluted with 150 µL of Laemmli buffer and heated 

at 85°C for 5min. 

2.5. Immunoblotting

Proteins were separated by 12% SDS-PAGE and transferred to Hybond C membranes (GE 

Healthcare).  Membranes were probed with antibodies to:  CDK1 (mouse monoclonal,  MS-

110-PO,  Interchim),  Cyclin  B2  (gift  from  T.  Lorca,  CRBM,  Montpellier,  France;  rabbit 

polyclonal)  and  MCM4  (both  gifts  from  M.  Méchali,  IGH,  Montpellier,  France,  rabbit 

polyclonal).

2.6. Sample preparation for mass spectrometry analysis

Eluted proteins were resolved on a 4-12% Criterion™ XT Bis-Tris gradient gel (Bio-Rad), 

and stained with SYPRO Ruby (Bio-Rad). Images were acquired on a Geliance CCD-based 

bioimaging system (PerkinElmer).

2.7. LC-MS/MS analysis

The entire protein profile of each lane on SDS-PAGE was sliced from the gel into 16 bands 

using a gel excision Lanepicker™ (The Gel Company). Gel slices were deposited into 96-well 
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plates.  In-gel  protein  digestion  was  performed  by  a  MassPrep™  liquid  handling  station 

(Micromass), using sequencing-grade modified trypsin (Promega). Peptide extracts were dried 

using a SpeedVac™. Peptide extracts were separated by online reversed-phase (RP) nanoscale 

capillary  liquid  chromatography  (nanoLC)  and  analyzed  by  ES  MS/MS.  Analyses  were 

performed  on  a  Thermo  Surveyor  MS pump  connected  to  an  LTQ linear  ion  trap  mass 

spectrometer (Thermo Electron, San Jose, CA) equipped with a nanoelectrospray ion source 

(Thermo Electron,  San Jose, CA). Peptide separation took place within a PicoFrit  column 

BioBasic C18, 10 cm x 0.075 mm internal diameter (New Objective, Woburn, MA) with a 

linear gradient from 2 to 50% solvent B (acetonitrile, 0.1% formic acid) in 30 min, at 200 

nL/min.  Mass  spectra  were  acquired  using  data  dependent  acquisition  mode  (Xcalibur 

software,  version 2.0). Each full-scan mass spectrum (400 to 2000 m/z)  was followed by 

collision-induced dissociation of the seven most intense ions. The dynamic exclusion function 

was enabled (30 s exclusion), and the relative collisional fragmentation energy was set to 

35%. 

2.8. Interpretation of Tandem-MS Spectra

The RAW files generated from MS/MS spectra were uploaded to the MASCOT search engine 

(Matrix Science, London, UK; version 2.2.0) for protein identifications. The parameters for 

database  searching  were  as  follows:  (I)  Protein  database:  Uniref_100,  (II)  Taxonomy: 

Xenopus laevis [TaxID: 8355, 15 599 entries], (III) Trypsin digestion with up to two missed 

cleavage  sites,  (IV)  Fragment  and  parent  ion  mass  tolerance  were  0.5  Da  and  2.0  Da 

respectively, (V) Iodoacetamide derivative of cysteine as a fixed modification and oxidation 

of methionine as a variable modification.

2.9. Criteria for protein identification

Scaffold  (version 03_00_01,  Proteome Software Inc.,  Portland,  OR) was used to  validate 

MS/MS  based  peptide  and  protein  identifications,  and  to  provide  confidence  level  (% 

probability)  of  the  identification.  Peptide  identifications  were  accepted  if  they  could  be 

established at greater than 95.0% probability by the PeptideProphet algorithm (Keller et al., 

2002). Protein identifications were accepted if they could be established at greater than 95.0% 

probability and contained at least 2 distinct peptides. Protein probabilities were assigned by 

the ProteinProphet algorithm (Nesvizhskii et al., 2003). Proteins containing similar peptides 

7



that could not be differentiated based on MS/MS analysis alone were grouped to satisfy the 

principles of parsimony. A Scaffold 3 report is provided as Supporting Information. This file 

can  be  accessed  with  a  free  viewer  available  from  Proteome  Software,  Inc.  website 

(http://www.proteomesoftware.com). This file contains all the spectral information, including 

the accession number for each protein sequence, Mascot scores, protein sequence coverage 

and amino acid residues modifications, statistical probability modeling, and spectral counting.

3. Results 

We have applied two different affinity-based approaches to identify proteins bound to CDK1. 

The first approach is a classical CDK1 pull-down using an anti-CDK1 antibody (Krasinska et 

al.  2008),  whereas  the  second  is  based  on  CDK1 precipitation  via  p9  beads  (Patra  and 

Dunphy,  1996).  MS analysis  was used to  identify CDK1-associated  proteins  in  M-phase, 

when the kinase is fully active, and during its inactivation upon M-phase exit. Experiments 

were repeated  several  times to  establish  the method.  Below, we present  data  from single 

experiments  obtained  using  IP  and  p9  purifications  according  to  the  final  satisfactory 

procedure described in Materials & Methods section. Scaffold software was used to merge the 

identifications, validate the peptides and proteins hits and discriminate homologous proteins 

(150  unique  proteins,  8866  spectra,  0.1%  protein  false  discovery  rate  (FDR),  see 

Supplementary file Protein IDs. SF3)

3.1. CDK1 immunoprecipitation

As shown in Fig. 1a, the protein markers (Mcm4 and cyclin B2) confirm MII exit. CDK1 

immunoprecipitations were performed on extracts from MII-arrested eggs (T0) and activated 

eggs (7 minutes after activation, T7). A negative IP control with naked beads instead of anti-

CDK1-coupled beads was performed. To assess the yield during the stages of purification, 

aliquots of total egg extract (total),  unbound fraction (unbound) and proteins bound to the 

beads (bound) were taken for Western blot analysis. CDK1 was almost completely depleted 

from extracts  (compare unbound and bound fractions from IP T0 and T7 in Fig. 1B). To 

verify if this approach also enables CDK1-interacting proteins to be precipitated, we assessed 

the presence of Cyclin B2. As expected, Cyclin B2 was also depleted and found in bead-

bound fractions. We observed a clear decrease in cyclin B2 abundance between T0 and T7 

extracts,  confirming activation of eggs. No signal for CDK1 and Cyclin B2 was found in 
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negative-control  bound  fractions,  indicating  that  protein  interactions  were  specific.  These 

results showed that both CDK1 and CDK1-associated proteins were efficiently depleted.

SYPRO Ruby-stained gel containing all four bound fractions (M-phase, M-phase exit 

and their respective negative controls) showed quantitative and qualitative differences (Fig. 

1C).  Control  samples  contained  much  less  protein  than  immunoprecipitation  samples, 

indicating  that  proteins  interacting  with  CDK1 are  abundant  and  that  only  few  proteins 

interact nonspecifically with naked beads. Differences between bound fractions of M-phase-

arrested and activated extracts were also visible, suggesting that partners of CDK1 change 

upon M-phase exit. To identify CDK1 partners, protein bands corresponding to the entire gel 

were excised and analyzed by LC-MS/MS. We identified 30 proteins during M-phase (Table 

1)  and  42 during  M-phase  exit  (Table  2).  A total  of  23  proteins  were  common  to  both 

samples.  As  expected,  the  major  biological  process  that  stands  out  for  CDK1-associated 

proteins  is  cell  cycle  progression  (Fig.  2).  A few other  purified  proteins  are  involved  in 

DNA/RNA metabolism, cytoskeleton/vesicle transport, fertilization for the M-phase sample. 

Most importantly for the validity of the analysis, the two isoforms of CDK1, Cdc2-A and 

Cdc2-B, were identified in both samples. Moreover, among the 21 proteins common to both 

samples, four are involved in cell division, and two, Cyclins B2 and B4, are known regulatory 

subunits of CDK1. The two other cell cycle proteins common for M-phase and M-phase exit 

samples, are ERK2 (mitogen activated protein kinase 1) and calcineurin A (a serine/threonine 

protein phosphatase). Another category of proteins shared between M-phase and M-phase exit 

are chaperones belonging to T-complex protein1 (Tcp1) family and heat-shock proteins (A8 

and D1). 

Among proteins specifically interacting with M-phase CDK1, three are egg envelope 

components  (XlZPA,  egg  envelope  glycoprotein  and  component  ZPAX).  M-phase  exit-

specific CDK1-interactors are mainly involved in metabolism (7 out of 19) and this group 

apparently increases upon CDK1 inactivation. Among them, two are involved in proteolysis 

(arginyl aminopeptidase and LOC431925 protein). Interestingly, Septin 9 found in this group 

is  potentially  involved  in  late  mitosis  and cytokinesis (Bi  et  al.,  1998;  Cao et  al.,  2009; 

Nguyen et al., 2000; Spiliotis et al., 2005).  The other proteins found exclusively during M-

phase exit are involved in protein folding (a member of Tcp1 family), cytoskeleton/vesicle 

transport (2 proteins), DNA/RNA metabolism (2 proteins) and other functions (5 proteins). As 

expected, fertilization-specific proteins were missing in CDK1 complexes following oocyte 

activation.
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3.2 Affinity purification with p9-beads

As  shown  in  Fig.  3A,  protein  markers  confirmed  egg  activation.  As  in  CDK1  IP,  p9 

precipitation was performed on extracts from MII (T0) eggs, and eggs 7 min after activation 

(T7). CDK1 was almost completely depleted from egg extracts (compare unbound and bound 

fractions from p9 T0 and T7 in Fig. 3B). We also searched for Cyclin B2 in the different 

fractions to test whether this method allows co-precipitation of CDK1 partners. As expected, 

Cyclin B2 was depleted from the extract,  and was found in the bound fraction of the T0 

extract. We did not detect Cyclin B2 in the bound fraction of the T7 extract, due to its almost  

complete degradation at this time point. No signals for CDK1 and Cyclin B2 were detected in 

the negative control bound fractions, indicating that protein interactions were specific. These 

results showed that p9 precipitation depleted both CDK1 and its associated proteins.

The staining of the gel containing all four bound fractions showed fewer differences 

between samples than in IP experiments (Figs. 1C and 3C). Nineteen proteins were identified 

during  M-phase  (Table  3)  and  37  during  M-phase  exit  (Table  4).  Sixteen  proteins  were 

common for the two samples. As in IP, p9 precipitation allowed us to identify more proteins 

in  activated  oocytes  compared  to  MII-arrested ones  (Fig.  3C).  A functional  classification 

indicates that the proteins identified are mainly involved in cell cycle, folding (heat shock 

proteins 70 kDa), metabolism (L-isoaspartate O-methyltransferase and XlGst) and DNA/RNA 

metabolism  (Nif3-like  protein  1,  Ribosomal  protein  S30,  Double-stranded  RNA-binding 

protein A). Remaining proteins are involved in cytoskeleton/vesicle transport (Cofilin-1-A) 

and  other  functions  (Traf2  and  Nck-interacting  protein  kinase,  Peroxiredoxin-2,  Galectin-

VIIa). As expected, p9 beads precipitated two isoforms of CDK1, Cdc2-A and Cdc2-B, next 

to CDK2 (represented by a single peptide, indicating a low amount; see Tables 3 and 4) in 

both samples  showing that  other  identified  proteins  may be partners  of  either  Cdc2-A or 

Cdc2-B subunit, and/or of CDK2. Identification of Cyclins B2 and B4 confirmed the presence 

of CDK1-associated proteins in p9 samples.  Concerning specific  M-phase proteins  in  p9-

precipitates,  two  are  B-type  Cyclins  (B1  and  B5)  and  one  is  involved  in  cell  adhesion 

(Junction plakoglobin). Proteins specific for M-phase exit (Table 4) are mainly involved in 

metabolism (6 out of 21), DNA/RNA metabolism (6 proteins), protein folding (3), and other 

functions (6).

3.3 Comparative analysis of the two approaches
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Among all proteins co-purified with CDK1 and identified by these two approaches, six were 

common for all samples: Cdc2A, Cdc2B, Cyclin B2, Cyclin B4,  Peroxiredoxin-2 and Heat 

shock protein A8 (Fig. 5). The presence of two CDK1 isoforms and two B-type Cyclins (B2 

and B4) in all samples confirms that CDK1 partners could indeed be present among other 

identified proteins. None of the proteins was exclusively present in M-phase samples, whereas 

two proteins involved in metabolism were specific for M-phase exit samples: pyruvate kinase 

and the  α subunit  of  ATP synthase  (Fig.  5).  The presence of pyruvate  kinase and the  α 

subunit of ATP synthase in M-phase exit samples obtained by two methods argue for their 

real association with CDK1.

4. Discussion

4.1. Validation of the proteomic screen

Our mass spectrometry analysis of CDK1 co-IPed proteins was supplemented by analysis of 

p9-precipitates.  Large-scale  proteomic screens often give rise to false-positive  interactions 

(e.g.  Trinkle-Mulcahy  et  al.  2008).  The  analysis  of  p9-precipitated  proteins  focused  on 

verification of major CDK1 partners found by IP, as p9 beads also precipitate p9-specific 

partners, which may not be associated with either CDK1 or CDK2. Despite this shortcoming 

that makes the p9 precipitation less stringent for CDK1 partners than CDK1 IP, p9-beads are 

widely used to precipitate CDK1 in Xenopus oocytes, for instance to measure CDK1 activity 

(Patra  and Dunphy,  1996).  In  both cases  two CDK1 isoforms,  Cdc2-A and Cdc2-B,  and 

CDK1 partners, cyclins B2 and B4, were identified. CDK1 was used as a positive control in a 

proteomic screen using HeLa cells and cyclins B were also identified as CDK1 interactors as 

expected (Fig. S5(B) in Hutchins at al. 2010; www.mitocheck.org ). In addition, in our screen 

the  number  of  identified  peptides  of  two  cyclins  B diminished  in  M-phase  exit  samples 

concomitant  with  their  advanced  degradation.  The  successful  identification  of  remaining 

Cyclins B2 and B4 in activated oocytes (both with IP and p9 precipitation) demonstrates the 

relative sensitivity of the method used here to purify CDK1 protein complexes.  These data 

auto-validated our screen and confirmed that we efficiently co-IPed partners of CDK1 (Cdc2-

A or Cdc2-B) complexes. The absence of CDK2, the closest CDK to CDK1 in oocytes, in the 

IP further confirmed the specificity of this method.  Thus the combination of methods used 

was appropriate for the purification of complexes containing CDK1 in both states: fully active 

and being inactivated CDK1 complex purification.

11

http://www.mitocheck.org/


Among  other  identified  proteins  only  two  were  common  for  all  samples 

(Peroxiredoxin-2 and Heat shock protein A8) and two (pyruvate kinase and the α subunit of 

ATP synthase) specific for M-phase exit samples and detected by both approaches. All these 

proteins were found often as contaminants in other proteomic analyses (Trinkle-Mulcahy et 

al.  2008).  However,  the  absence  of  these  proteins  in  our  control  argues  for  their  true 

association with CDK1 (see Tables 1-4).  As p9 precipitation is a method that enables the 

purification of CDK1, CDK2 and p9 partners, specific interactors of CDK1 are diluted among 

all  co-precipitated  proteins.  As  a  consequence,  their  identification  by  mass  spectrometry 

analysis could be impaired explaining why the number of overlapping proteins between the 

two  methods  is  low.  Another  explanation  could  rely  on  differences  in  experimental 

conditions, more stringent for p9 precipitations than for IP, decreasing the number of proteins 

purified on p9 beads.  Nevertheless,  we managed to identify molecules  engaged in CDK1 

complexes at two studied states of activity and the major components common for the two 

methods.

4. 2. CDK1 partners specifically present during M-phase exit 

Our proteomic analysis revealed the presence of two proteins specifically detected during M-

phase exit:  pyruvate kinase and the  α subunit  of ATP synthase,  both involved in cellular 

energy metabolism. Pyruvate kinase PKM2 was also identified as a CDK1 partner in human 

cells, but without indication of a potential cell cycle-dependent association (Hutchins et al. 

2010;  www.mitocheck.org).  An  interaction  between  CDK1  and  the  α subunit  of  ATP 

synthase has never been demonstrated and its significance remains unclear considering their 

functions and subcellular localization. Pyruvate kinase and ATP synthase could associate with 

inactive CDK1 or could be attached to a common support fixing CDK1 during its inactivation 

for  example  on  cytoskeletal  elements,  as  CDK1  associates  with  the  spindle  and  its 

inactivation  requires  a  functional  spindle  (Kubiak  et  al.  1993;  Thibier  et  al.  1997).  The 

association between CDK1 and metabolic enzymes involved in cell cycle progression is an 

attractive  hypothesis.  For  instance,  6-phosphofructo-2-kinase  (PFKFB3)  and  fructose  2,6-

bisphosphate  activate  CDK1 to  phosphorylate  p27  in  HeLa  lysates,  indicating  that  these 

proteins may have direct allosteric  effects  activating CDK1 (Yalcin et al.  2009). The link 

between ATP cycle and CDK1 inactivation is also obvious in the light of the requirement of 

ATP for  cyclin  B polyubiquitination  and M-phase  exit  (Miniowitz-Shemtov  et  al.  2010). 
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Interestingly,  Hutchins  and  collaborators  (2010)  also  found,  besides  pyruvate  kinase,  a 

number of metabolic enzymes associated with CDK1 in HeLa cells (e.g. carbonic anhydrase 

CA2, carbamoyl-phosphate synthase 1 CPS1, tRNA (cytosine-5-)-methyltransferase NSUN2, 

phosphoglycerate  kinase  1  PGK1,  3-phosphoglycerate  dehydrogenase  PHGDH, thymidine 

phosphorylase TYMP; www.mitocheck.org).

Among potential CDK1 partners specifically present during M-phase exit following 

CDK1 IP, two are known to be involved in cytoskeleton functions:  dynein, the microtubule 

motor protein (Burakov and Nadezhdina, 2006) and septin 9, a GTP binding protein involved 

in microtubule and actin function (Cao et al., 2009).  This is also in agreement with results 

obtained by Hutchins and colleagues (2010), who identified a number of cytoskeletal proteins 

associated with human CDK1 (e.g. ezrin EZR, actin-related protein 3 homolog ACTR3, actin 

binding protein coronin CORO1C, dynactin 1 DCTN1, Cytoplasmic dynein 1 heavy chain 1 

DYNC1H1,  non-erythrocytic  spectrin  SPTBN2;  www.mitocheck.org).  CDK1/cyclin  B  is 

localized  on the spindle in  mitosis  and meiosis,  where it  regulates  spindle formation  and 

maintenance (Brunet and Maro, 2005; Huo et al., 2005; Nakamura et al., 2005). Moreover, an 

intact spindle is necessary for cyclin B degradation and CDK1 inactivation (Kubiak et al. 

1993;  Thibier  et  al.  1997).  Thus,  interactions  between CDK1 and microtubule-interacting 

proteins  seem of great  importance  for spindle maintenance  and for correct  localization  of 

CDK1 own residual activity. The presence of actin-related proteins both in our screen and by 

Hutchins  et  al.  (2010) argues the need for a serious analysis  of CDK1-actin  cytoskeleton 

interactions. 

4.3. CDK1 partners common for M phase and M-phase exit

Among common putative partners of CDK1 identified by our two approaches, the molecular 

chaperone HspA8, a member of Hsp70 family,  seems to be particularly interesting. Hsp70 

colocalizes with CDK1 on the meiotic spindle of sea urchin oocytes (Geraci et al., 2003). A 

member  of  the  Hsp70  family  (Hsp70-2)  is  a  molecular  chaperone  of  CDK1 involved  in 

CDK1/cyclin B1 complex formation, and essential for the cell cycle in spermatogenesis (Dix 

et al.,  1996; Zhu et  al.,  1997).  Interestingly,  we did not find any members  of the Hsp90 

family,  known as Mos-specific  chaperone in  Xenopus laevis oocytes  (Fisher  et  al.  2000). 

Taken together,  these results  show a clear  molecular  link  between the Hsp70 family and 

CDK1, confirmed by our proteomic screen.
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The other common protein for all samples is Peroxiredoxin-2, a protein involved in 

cell redox homeostasis  (Hofmann et al., 2002). Two members of Peroxiredoxin family (Prx 

family) including Prx-2 are phosphorylated  in vitro by CDK1 (Chang et al., 2002).  In vivo 

phosphorylation  of  Prx-1  on  Thr90 occurs  only  during  mitosis  when  CDK1 is  active.  A 

proteomic  screen performed in bovine oocytes  also revealed  that  Prx-2 is  phosphorylated 

during  oocyte  maturation  via  CDK1 or  MAPK (Bhojwani et  al.,  2006).  CDK1-mediated 

phosphorylation at Thr90 of Prx-1 leads to decrease of its activity (Chang et al., 2002). The 

significance  of  Prx-1  inactivation  and  consequently  of  H2O2 increase  on  the  M-phase 

progression remains  unclear.  However,  one putative  target  of  H2O2 could  be the  Cdc25C 

phosphatase, a major CDK1 activator (Morgan, 1995; Perdiguero and Nebreda, 2004; Wang 

et  al.,  2007).  Cdc25C  activity  requires  reducing  agents,  and  oxidative  stress  induces  its 

degradation  (Savitsky  and  Finkel,  2002). The  CDK1-Prx-2  interaction  suggested  by  our 

screen could lead to CDK1-dependent inhibitory phosphorylation of Prx-2, and consequently 

an  increase  in  H2O2  concentration.  This  oxidative  stress  could  participate  in  Cdc25C 

inactivation,  and  in  turn  CDK1  inactivation.  As  peroxiredoxins  often  appear  often  as 

contaminants in proteomic screens  (Trinkle-Mulcahy et al.  2008), the potential  association 

between Prx-2 and CDK1 will have to be carefully examined.

Among common potential CDK1 partners during M-phase and M-phase exit in both 

methods  used  in  our  study,  several  were  involved  in  cytoskeletal  functions. In  the  IP 

experiments kinectin, a membrane anchor for kinesin (Kumar et al., 1995), was especially 

abundant.  Copin,  a  calcium-dependent  membrane  binding  protein  involved  in  membrane 

trafficking (Creutz et al., 1998) was also identified during M-phase and M-phase exit by IP. 

On the other hand, cofilin 1-A  (Bernstein and Bamburg, 2010) was identified in both p9 

samples (Tables 3 and 4). A member of cofilin family was already reported as a substrate of 

CDK1 and its phosphorylation is involved in the functionality of inositol (1,4,5)-trisphosphate 

receptors in starfish oocytes (Santella et al., 2003). Copin A knockout in Dictyostelium leads 

to  the  formation  of  multinucleated  cells  (Damer et  al.,  2007)  and cofilin  localizes  at  the 

contractile ring, suggesting their involvement in cytokinesis (Nagaoka et al., 1995). Together 

with the identification of septin 9 during M-phase exit by IP, these results  suggest interplay 

between CDK1 and cytokinesis. Other proteins linking CDK1 and cytoskeleton are members 

of TCP1 complex family, identified in two IP samples. They are involved in tubulin folding 

(Brown et al., 1996) and colocalizes with CDK1 at the mitotic spindle in sea urchin embryos 

(Agueli et al., 2001). All these results suggest that CDK1 is cytoskeleton-anchored.
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Among common putative CDK1 partners during M-phase and M-phase exit present 

only  in  IP  samples,  two  are  involved  in  cell  cycle  regulation:  calcineurin  A and ERK2. 

Calcineurin is a highly conserved phosphatase composed of a catalytic subunit, calcineurin A 

and a regulatory one, calcineurin B  (Rusnak and Mertz, 2000). Calcineurin is required for 

CSF release during MII exit in Xenopus oocytes via dephosphorylation of Apc3 and Cdc20 

contributing  to  APC/C  activation  and  cyclin  B2  degradation  (Chung  and  Chen,  2003; 

Mochida and Hunt, 2007; Nishiyama et al., 2007; Yudkovsky et al., 2000). Calcineurin is also 

required  for  completion  of  meiosis  in  Drosophila oocytes  (Takeo et  al.,  2010).  The 

association  between calcineurin  A and CDK1 that  we found may suggest  that  these  two 

proteins regulate each other, or are linked by a common support (e.g. the cytoskeleton). 

ERK2 MAP kinase is involved in CDK1 activation during oocyte maturation (Castro 

et al., 2001). The ERK2 pathway catalyzes the inhibitory phosphorylation of Myt1 kinase, 

responsible for the inhibitory phosphorylation of CDK1 on Thr14 and Tyr 15 (Mueller et al., 

1995), and is required for CDK1 activation. ERK2 is also involved in activation of Cdc25C at 

the G2/M transition (Wang et al., 2007) and Cdc25 is essential for CSF arrest  (Lorca et al., 

2010).  A clear  feedback  links  ERK2 and CDK1 in  meiosis  (Abrieu et  al.,  2001),  which 

changes  during  embryonic  mitosis  (Bazile  et  al. 2007).  Thus,  CDK1  and  ERK2  are 

functionally related especially during meiosis.  However, until now no physical association 

between these proteins has been shown.

4.4. Different CDK1 complexes with potentially different functions

Each  of  two  CDK1  isoforms  identified  in  this  study  (Cdc2-A  and  B)  may  be 

associated with different types of partners. The nature of the cyclin associated with CDK1 is 

essential  for  the  substrate  specificity  of  CDK1.  Upon M-phase  exit  the  timing  of  cyclin 

degradation is  sequential  (Hochegger et  al.,  2001).  Thus, different  CDK1 complexes may 

exert various functions according to the type of cyclin they harbour (Gong and Ferrell, 2010; 

Kõivomägi  et  al.  2011).  The spectrum of  different  CDK1 complexes  can  be enlarged by 

association with other partners identified in the current study.

4.5. Conclusions

In this paper we have shown that CDK1 interacts with different proteins depending on 

the cell cycle stage (namely upon MII-arrest and oocytes activation). Our results show the 
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necessity  to  study  individually  CDK1-other  proteins  associations  to  fully  understand  the 

regulation of this major cell cycle kinase. It also completes information on potential CDK1 

associated proteins previously obtained in much larger screen of protein complexes involved 

in mitotic regulation by Hutchins et al. (2010) in human cells. Our dynamic approach points 

the necessity to analyse the evolution of protein complexes to better understand cell cycle 

regulation and especially the mitotic progression. 
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Fig. 1. Co-immunoprecipitation of CDK1 and its partners during M-phase and M-phase exit. 

(A) Egg activation was checked by following Mcm4 phosphorylation status and Cyclin B2 

(CycB2) abundance by immunoblotting of extracts of eggs taken 0, 3, 7, 9, 15, 30 min after 

calcium ionophore addition. (B) Co-immunoprecipitation of CDK1 and its partner (CycB2) 

during M-phase (T0) and M-phase exit (T7) was checked by following its presence either in 

protein fractions bound to beads (Bound) or in the non-retained fractions (Unbound). The 

presence of CDK1 and CycB2 was also checked in negative controls (C-, naked beads) in 

order to control the specificity of the interactions. (C) Comparative protein profiles of bound 

fraction of each samples: M-phase CDK1 IP (T0), its negative control (c- T0), M-phase exit 

CDK1 IP (T7) and its negative control (c- T7). Eluted proteins were resolved on SDS-PAGE 

and revealed with SYPRO Ruby staining.

Fig.  2.  Distribution  of protein functions based on Gene Ontology (GO) classification and 

bibliography of putative MPF interactors during M-phase (IP T0) and M-phase exit (IP T7) 

identified by CDK1 immunoprecipitation followed by MS analysis. 

Fig. 3.  Co-precipitation of CDK1 and its partners using p9 beads during M-phase and M-

phase exit. (A) Egg activation was checked by following Mcm4 phosphorylation status and 

CycB2 abundance  by immunoblotting  extracts  of  eggs taken 0,  3,  7,  9,  15,  30 min  after 

calcium ionophore addition. (B) Co-precipitation of CDK1 and its partner (CycB2) during M-

phase (T0) and M-phase exit (T7) was checked by following its presence either in protein 

fractions  bound  to  the  beads  (Bound)  or  in  the  non-retained  fractions  (Unbound).  The 

presence of CDK1 and CycB2 was also checked in negative controls (C-, naked beads) in 

order to control the specificity of the interactions. (C) Comparative protein profiles of bound 

fraction of each samples: M-phase CDK1 p9 precipitation (T0), its negative control (c- T0), 

M-phase exit CDK1 p9 precipitation (T7) and its negative control (c- T7). Eluted proteins 

were resolved on SDS-PAGE and revealed with SYPRO Ruby staining.

Fig.  4.  Distribution  of protein functions based on Gene Ontology (GO) classification and 

bibliography of putative CDK1 interactors during M-phase (P9 T0) and M-phase exit (P9 T7) 

identified by CDK1 precipitation via p9 beads followed by MS analysis. 
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Fig. 5. Common putative CDK1 interactors between IP and p9 precipitation during M-phase 

and M-phase exit.  (A) Six proteins are common between IP and p9 precipitation M-phase 

samples (Cdc2A, Cdc2B, CycB2, CycB4, HspA8 and peroxiredoxine-2). (B) Eight proteins 

are common between IP and p9 precipitation M-phase exit samples (Cdc2A, Cdc2B, CycB2, 

CycB4, HspA8, Peroxiredoxine-2, Pyruvate kinase and the alfa subunit of ATPase). (C) Six 

proteins are common between IP and p9 precipitation M-phase and M-phase exit samples 

(Cdc2A, Cdc2B, CycB2, CycB4, HspA8 and Peroxiredoxine-2).
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Table  1.  Potential  interactors  of  CDK1  identified  by  mass  spectrometry  from  CDK1 
immunoprecipitation in metaphase II arrest X. laevis UFE

 
Protein name Accession 

Number
Molecular 

Weight 
(kDa)

Unique 
peptide c- 

T0

Unique 
peptide 

IP T0
Biological process

1 kinectin 1 Q08B03 97 0 12 Microtubule-based 
movement

2 Cell division control protein 2-A P35567 35 0 11 Cell division
3 Heat Shock Protein A8 Q7ZTK6 71 1 9 ATP binding
4 Cyclin B2 Q6PA39 44 0 5 Cell division
5 Mitogen-activated protein kinase 1 P26696 41 0 4 Cell cycle
6 Cyclin B4 Q98TI3 44 0 4 Cell division
7 Egg cortical granule lectin Q91719 34 0 4 Signal transduction
8 Transitional endoplasmic reticulum 

ATPase 
P23787 89 0 3 Transport

9 Histone deacetylase 10 Q569T0 77 0 3 hydrolase activity
10 Cell division control protein 2-B P24033 35 0 3 Cell division
11 T-complex protein 1 gamma subunit P50143 61 0 3 Protein folding
12 Sorcin A2VDA2 22 0 2 Calcium ion binding
13 RuvB like protein Q0IH85 51 0 2 ATP binding
14 Heat shock protein d1 Q6IP60 62 0 2 Protein refolding
15 T-complex protein 1 subunit 5 A0AUT4 59 0 2 Protein folding
16 XlZPA protein A1L3D9 78 0 2 Single fertilization
17 Peroxiredoxin-2 Q6ING3 22 0 1 cell redox 

homeostasis
18 Nucleoporin Q6PAY1 55 0 1 transmembrane 

transport
19 Chaperonin containing TCP1, subunit 

7
Q5XGK8 52 0 1 Protein folding

20 Calcineurin A O57438 58 0 1 Cell division
21 Copin Q6P7H2 59 0 1 vesicle-mediated 

transpor
22 Egg envelope glycoprotein Q4VGP0 108 0 1 Unknown
23 Nupl1 protein A4FU91 60 0 1 transmembrane 

transport
24 Hadh2-prov protein Q6DCM8 27 0 1 oxidation reduction
25 Acad9-prov protein Q6DDF2 68 0 1 oxidation reduction
26 Aldehyde dehydrogenase family 18, 

member A1
Q6GMF0 89 0 1 proline biosynthetic 

process
27 Egg envelope component ZPAX B4F6R0 102 0 1 Unknown
28 LOC100049148 protein A4QN33 95 0 1 Unknown
29 Thyroid hormone receptor-associated 

protein 3 (TRAP150)
Q5BJ39 108 0 1 regulation of 

transcription
30 MGC68559 protein Q6PAA1 24 0 1 Calcium ion binding



Table  2:  Potential  interactors  of  CDK1  identified  by  mass  spectrometry  from  CDK1 
immunoprecipitation in activated  X. laevis UFE (proteins highlighted in grey are common 
between metaphase II arrested and activated UFE)

 
Protein name Accession 

Number
Molecular 

Weight 
(kDa)

Unique 
peptide 

c- T7

Unique 
peptide 

IP T7
Biological process 

(GO annotation)

1 Kinectin 1 Q08B03 97 0 9 Microtubule-based 
movement

2  Cell division control protein 2-A P35567 35 2 8 Cell division
3 Mitogen-activated protein kinase 1 P26696 41 0 4 Cell cycle
4 T-complex protein 1 gamma subunit P50143 61 0 4 Protein folding
5 Heat Shock Protein A8 Q7ZTK6 71 1 4 ATP binding
6 Transitional endoplasmic reticulum 

ATPase 
P23787 89 0 3 Transport

7 Histone deacetylase 10 Q569T0 77 0 3 hydrolase activity
8 Nucleoporin Q6PAY1 55 0 3 transmembrane 

transport
9 Calcineurin A O57438 58 0 3 Cell division

10 Copin Q6P7H2 59 0 3 vesicle-mediated 
transport

11 Member of T-complex protein 1 
chaperonin family

Q6GMA6 58 0 3 Protein folding

12 ATP synthase beta subunit Q7ZWR6 56 0 3 ATP biosynthetic 
process

13 Hadh2-prov protein Q6DCM8 27 0 3 oxidation reduction
14 Arginyl aminopeptidase Q641C7 70 0 3 Proteolysis
15 Cyclin B2 Q6PA39 44 0 2 Cell division
16 Cell division control protein 2-B P24033 35 0 2 Cell division
17 Chaperonin containing TCP1, subunit 7 Q5XGK8 52 0 2 Protein folding
18 RuvB like protein Q0IH85 51 0 2 ATP binding
19 Nupl1 protein A4FU91 60 0 2 transmembrane 

transport
20 Dynein, cytoplasmic 1, intermediate 

chain 2
Q5U238 72 0 2 Transport

21 Aldehyde dehydrogenase family 18, 
member A1

Q6GMF0 89 0 2 proline biosynthetic 
process

22 ATPase family AAA domain-containing 
protein 3-A

Q58E76 67 0 2 ATP binding

23 ATP synthase subunit alpha Q68EY5 60 0 2 ATP biosynthetic 
process

24 Von Willebrand factor A domain 
containing 5A, gene 2

Q6IND5 94 0 2 Unknown

25 LOC733268 protein Q0IH65 27 0 2 Unknown
26 Acyltransferase Q642P5 54 0 2 fatty-acyl-CoA 

biosynthetic process
27 LOC431925 protein Q6NR96 210 0 1 Proteolysis
28 Cyclin B4 Q98TI3 44 0 1 Cell division
29 Peroxiredoxin-2 Q6ING3 22 0 1 cell redox homeostasis
30 Sorcin A2VDA2 22 0 1 Calcium ion binding
31 Heat shock protein d1 Q6IP60 62 0 1 Protein refolding
32 T-complex protein 1 subunit 5 A0AUT4 59 0 1 Protein folding
33 Acad9-prov protein Q6DDF2 68 0 1 oxidation reduction
34 Nuclear pore glycoprotein A2BDA4 50 0 1 transport
35  Ruvbl1 protein Q6GR29 50 0 1 ATP binding



 
Protein name Accession 

Number
Molecular 

Weight 
(kDa)

Unique 
peptide 

c- T7

Unique 
peptide 

IP T7
Biological process 

(GO annotation)

36  Ratireb-prov protein Q7ZY37 99 0 1 Metabolic process
37  Apx protein B7ZSK3 159 0 1 Cell shape
38  Dlst-prov protein Q7ZXF6 49 0 1 tricarboxylic acid cycle
39  Grp58-prov protein Q7ZWU3 56 0 1 cell redox homeostasis
40 Pyruvate kinase Q7ZY25 57 0 1 Glycolysis
41 Septin 9 Q498G4 39 0 1 Cell cycle
42  Nmp200-prov protein Q7ZXW4 55 0 1 Protein ubiquitination



Table  3:  Proteins  identified  by mass  spectrometry from p9 precipitation  in  Metaphase  II 
arrested  X.  laevis UFE (proteins  highlighted  in  grey  are  common  between  metaphase  II 
arrested and activated UFE)

 
Protein name Accession 

Number
Molecular 

Weight 
(kDa)

Unique 
peptide 
c- P9 T0

Unique 
peptide 
P9 T0

Biological 
process 

1 Cell division control protein 2-
A P35567 35 0 9 Cell division

2 Heat shock protein A8 Q7ZTK6 71 0 6 ATP bindind
3 Cyclin B4 Q98TI3 44 0 5 Cell division
4 Cyclin B2 P13351 44 0 4 Cell division
5 Cyclin B5 Q5HZQ4 44 0 3 Cell division
6 Protein-L-isoaspartate O-

methyltransferase Q7SZS4 25 0 2
Protein 

modification 
process

7 Cell division control protein 2-
B P24033 35 0 2 Cell division

8 TRAF2 and NCK-interacting 
protein kinase Q32NV8 57 0 2

Protein amino acid 
phosphorylation 

process
9 Cyclin B1 P13350 45 0 2 Cell division

10 Peroxiredoxin-2
Q6ING3 22 1 2 cell redox 

homeostasis
11 Galectin-VIIa Q7ZSY1 28 0 1 sugar binding 
12  XlGST Superfamily1-1 protein 

Q7SZA7 23 0 1 Prostaglandin-D 
synthase activity

13 NIF3-like protein 1
Q0IHC9 37 0 1 Regulation of 

transcription
14 Ribosomal protein S30 Q4KLF0 15 0 1 Translation
15  Cofilin-1-A 

P45695 19 0 1
Actin filament 

depolymerisation/ 
cytokinesis

16 CDK2 Q6IRQ7 34 0 1 Cell cycle
17 Double-stranded RNA-binding 

protein A Q91836 33 0 1 RNA-mediated 
gene silencing

18  Heat shock protein a5  Q8AVE3 72 0 1 ATP bindind
19 Junction plakoglobin P30998 82 0 1 Cell adhesion



Table 4: Proteins identified by mass spectrometry from p9 precipitation in activated X. laevis 
UFE (proteins highlighted in grey are common between metaphase II arrested and activated 
UFE)

 

Protein name Accession 
Number

Molecular 
Weight 
(kDa)

Unique 
peptide 

c- P9 
T8

Unique 
peptide 
P9 T8

Biological 
process/molecular 

function 

1 Heat shock protein A8 Q7ZTK6 71 1 9 ATP bindind
2 Cell division control protein 

2-A 
P35567 35 0 7 Cell division

3 Heat shock protein 9 Q7ZX34 73 0 4 ATP bindind
4 Protein-L-isoaspartate O-

methyltransferase 
Q7SZS4 25 0 3 Protein modification 

process
5 XlGSTS1-1 Q7SZA7 23 0 3 Prostaglandin-D 

synthase activity
6 Ferrochelatase, 

mitochondrial
O57478 46 0 3 heme biosynthetic 

process
7 Cyclin B2  P13351 44 0 2 Cell division
8 Cyclin B4 Q98TI3 44 0 2 Cell division
9 Peroxiredoxin-2 Q6ING3 22 0 2 cell redox 

homeostasis
10 Peptidyl-prolyl cis-trans 

isomerase 
Q5XGR3 24 0 2

protein folding

11 NIF3-like protein 1 Q0IHC9 37 0 2 Regulation of 
transcription

12 Ribosomal protein S30 Q4KLF0 15 0 2 Translation
13 electron-transfer-

flavoprotein, beta 
polypeptide

Q6PBB7 28 0 2 electron  carrier 
activity

14 RNA terminal phosphate 
cyclase domain 1

Q6GMZ1 38 0 2
RNA processing

15 Galectin-VIIa Q7ZSY1 28 0 1 sugar binding 
16 Cofilin-1-A P45695 19 0 1 Actin filament 

depolymerisation/ 
cytokinesis

17 Rpl3-prov protein Q7ZYR1 46 0 1 Translation
18 CDK2 Q6IRQ7 34 0 1 Cell division
19 Cell division control protein 

2-B 
P24033 35 0 1 Cell division

20 TRAF2 and NCK-
interacting protein kinase

Q32NV8 57 0 1 Protein amino acid 
phosphorylation 

process
21 Exportin-2 Q6GMY9 110 0 1 Protein transport
22 Double-stranded RNA-

binding protein A
Q91836 33 0 1 RNA-mediated 

gene silencing
23 Hspa5 protein Q8AVE3 72 0 1 ATP bindind
24 Uncharacterized protein 

KIAA0090 
Q6NRB9 111 0 1

Unknown

25 Pyruvate kinase Q6PA20 58 0 1 Glycolysis
26 Glucagon B7ZQU9 25 0 1 Hormone activity
27 Small nuclear 

ribonucleoprotein Sm D3 
P62323 14 0 1

mRNA processing



Protein name Accession 
Number

Molecular 
Weight 
(kDa)

Unique 
peptide 

c- P9 
T8

Unique 
peptide 
P9 T8

Biological 
process/molecular 

function 

28 Adenosylhomocysteinase B O93477 48 0 1 one-carbon 
metabolic process

29 Egg envelope glycoprotein Q4VGP0 108 0 1 Unknown
30 Embryonic polyadenylate-

binding protein B 
Q6GR16 71 0 1

mRNA processing

31 Nucleolin B7ZR96 75 0 1 Nucleic acid 
binding

32 ATP synthase subunit 
alpha, mitochondrial 

P08428 59 0 1 ATP biosynthetic 
process

33 O-6-methylguanine-DNA 
methyltransferase

Q8AVP6 35 0 1
DNA repair

34 ribosomal protein S27a Q6GMC1 18 0 1 Translation
35 LOC414450 protein Q6NTL7 13 0 1 Unknown
36 Caveolin Q8AVS7 17 0 1 Various (e.g. 

vesicle trafficking, 
cholesterol 

homeostasis, signal 
transduction)

37 PKC-delta2 protein Q498G7 78 0 1 signal transduction












