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Abstract. Complex neural modules with embedded neural development
and synaptic plasticity features have been connected to form a hier-
archical recurrent circuit. Virtual electrodes have been used to record
a “neural” generated signal, called electrochipogram EChG, from each
module. The EChG are processed by frequency domain methods to deter-
mine the modifications in functional connectivity by assessing quadratic
phase coupling. The experimental paradigm is aimed to describe what
happened prior to, at the beginning, towards the end, and after repeat-
ing an external input at fixed frequency. The results are discussed by
comparing with the same signal processing methods applied to a human
study.
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1 Introduction

At mesoscopic level, the recording of brain activity by means of electroen-
cephalography (EEG), electrocorticography (ECoG) and local field potentials
(LFP) collects the signals generated by multiple cell assemblies. The neurophys-
iological processes underlying those signals are determined by highly non-linear
dynamical systems [1]. Because of these nonlinearities the functional interactions
between brain areas that are simultaneously sampled by electrophysiological
techniques generate signals that can be better analyzed by third order polyspec-
tral methods that retain phase relationships [2]. This analysis was applied to
EEG by pioneers as early as the 1970s [3]. Phase coupling frequencies can be
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interpreted as frequencies of resonance of standing waves whose wavelength is
associated to the average distance between interacting cell assemblies [4, 5].

In the present study we simulate the activity of interconnected neural net-
works undergoing neural developmental phases. The implementation of such
complex models requires high performance of the simulation that can be achieved
thanks to a powerful hardware platform, its bio-inspired capabilities, its dynam-
ical topology, and generic flexibility of artificial neuronal models presented else-
where [6, 7]. The outcome is the implementation of each neural network into a
Ubidule and a network of Ubidules as a Ubinet. Within each Ubidule the emer-
gence of functional connectivity driven by neural development, cell and synaptic
pruning, and selective external stimuli was assessed by recording Electrochi-
pograms (EChG) which are analog signals similar to EEG generated by virtual
electrodes located into each Ubidule [8].

The experimental paradigm is aimed to describe what happened prior to, at
the beginning, towards the end, and after repeating an external input at fixed fre-
quency. The rationale is that the spike timing dependent plasticity (STDP) em-
bedded in the neural network models would drive the build-up of auto-associative
network links, within each Ubidule, such to generate an areal activity, detected
by EChG, that would reflect the changes in the corresponding functional connec-
tivity within and between Ubidules. This experiment is compared to a small set
of recordings performed in patients suffering of primary insomnia whose EEG
recordings were analyzed during several sleep phases, before and after a clinical
treatment.

2 Hybrid system implementation

The Ubidule is a custom reconfigurable electronic device allowing an implemen-
tation of several bio-inspired mechanisms such as growth, learning, and neu-
ral processing [9]. The common Ubidule platform is an hybrid system with an
XScale-class processor that manages the software components of the system,
such as ontogenetic processes, communications with other Ubidules, monitoring
and recording of the activity. This processor is equipped with an open hardware
subsystem which allows connecting any sort of USB device (sensors, actuators,
Wifi / Bluetooth dongles, mass storage, etc.). The processor runs an embedded
Linux operating system which facilitates Ubidule programming and management
while ensuring portability at the same time.

Both hardware and software platforms are based upon modular architecture
that offers interoperability among the hardware and the software parts of the
system and simplifies the usage of bio-inspired features of the hardware. The
neural system simulator consists of multiple computational modules, each one
corresponding to a neural network, exchanging their neural activity and/or re-
ceiving input data from hardware sensors (camera, photodiode, radars, etc.)
and/or providing output to hardware actuators (motor, diode array, etc.). The
characteristics of the implementation naturally geared the modeling framework
towards agent oriented programming. An evaluation of the available platforms
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of this kind led us to select JADE [10] for the development and runtime execu-
tion of peer-to-peer applications which are based on the agent oriented paradigm
[11]. It is a JAVA-based multi-agent development system that fulfils the FIPA
specifications [12].

In this study each network is a 2D lattice of 20 x 20 units that includes
80% of excitatory units and 20% of inhibitory units. Our framework implements
several features of brain maturation, including apoptosis active during the very
initial 700 time units and STDP active from the end of apoptosis until the
end of simulation. This framework was extensively described elsewhere [13, 6, 7].
Synaptic pruning occured when the activation level of a synapse reached a value
of zero, so that besides cell death and axonal pruning of dead cells provoked by
apoptosis, the units whose all synaptic connections were characterized by a zero
level of activation were definitely eliminated from the network. All units were
simulated by leaky integrate-and-fire neuromimes with background activity used
to simulate the effect of afferences that were not explicitly simulated within a
network. The background activity to each neuron was set to 900 spikes/s with a
low amplitude (1 mV ) generated by uncorrelated Poisson distributed inputs. In
each Ubidule two sets of 20 excitatory units were randomly selected among the
excitatory units corresponding to the “input” and “output” layers of the Ubidule.
The neurons of these layers send and receive connections from the other units
of both types (excitatory and inhibitory) within the network in addition to the
connections with other Ubidules.

Our circuit topology remained fixed during all simulations and the Ubidules
were characterized by their role in the network, i.e., sensory, processing, or mo-
tor (Fig. 1). In our network, the u1Sensory Ubidule has a pure sensory role.
Ubidules labeled u3Process, u4Process, u5Process, u6Process have a pure infor-
mation processing role and are characterized by having neither external inputs
nor afferences from the motor Ubidule. They are all reciprocally interconnected
and send efferent projections to u2Motor.

u1Sensory

u3Process u4Process

u5Process u6Process

u2Motor
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Fig. 1. The Ubinet hierarchical circuit used in all simulations. Solid arrows depict
connections and directions of information flow between the Ubidules.
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3 Electrochipograms

Our design of the bio-inspired artificial neural networks allowed us to imple-
ment realistic virtual electrodes to record neuro-mimetic signals, called Elec-
trochipograms (EChG), characterized by dynamics and features similar to those
recorded in living brain structures. In our implementation the virtual electrode
measures the potentials over a certain ‘area’ of the 2D lattice neuronal network
according to an appropriate weighted sum [8]. The main parameters of the elec-
tode are its position over the neural network and its sensibility function. The tip
of the virtual electrode was located in the middle of the 2D lattice of each Ubidule
neural network. The sensibility function depends only on the distance between a
given point of the lattice and the centre of the electrode field. According to this
model, all neurons located at the same radial distance from the center of the
electrode field make an equivalent contribution to the final electrode output and
thus form an equi-potential layer [8]. In this study, the sensibility radius was set
equal to 9 with a linear decaying function.

The EChG was recorded with a 6 channels virtual electrode system with one
channel per Ubidule during 350 trials. Each trial had a fixed duration and in-
cluded two intervals: a stimulation interval followed by an inter-stimulus interval.
The stimulation was generated by spatio-temporal external stimuli applied only
to the input layer of u1Sensory lasting 128 (Type A) and 512 (Type B) time steps.
The group of simulations with higher stimulation frequency (0.89 Hz) was called
“Simulations A” and the group with lower stimulation frequency (0.67 Hz) was
called “Simulations B”. The extensive use of Fast Fourier Transform in our signal
analysis imposed, for improved efficiency, sampling frequencies which are powers
of two. In practice the time-steps of the simulator were selected for convenient
time units, i.e., 1024 time steps corresponding to 1000 ms. The inter-stimulus
interval was always equal to 1000 ms. The recording time was divided into four
periods defined following the amount of time the Ubinet was exposed to the
stimulation: (i) PRE-learning beginning at time zero and lasting 27 trials char-
acterized by the absence of any external stimulation (i.e., only the background
activity was present during the stimulation interval); (ii) EARLY-learning last-
ing 50 trials, between trials #28 and #77; (iii) LATE-learning lasting 50 trials,
between trials #228 and #277; and (iv) POST-learning lasting 50 trials, be-
tween trials #278 and #327 again characterized by the absence of any external
stimulation.

The signals recorded during the stimulation interval were averaged across
several trials in order to compute evoked potentials (e.g., Fig. 2). The signals
recorded during the inter-stimulus interval were used for frequency domain anal-
yses that included power spectrum, bispectrum and bicoherence analyses.

4 Power Spectrum Analysis

Figure 3 shows the averaged evoked potentials for the “first” (u3P,u4P) and the
“second” (u5P,u6P) processing layers and their corresponding Power Spectrum
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Fig. 2. Evoked potentials averaged over 50 trials obtained from u1Sensory (blue solid
trace) and from u4Process (green dotted trace) Ubidules during the EARLY-learning

stage. The stimulus was applied during 256 time steps. The upper panel displays the
raw evoked potentials and the lower panel shows the signals smoothed by a Blackmann
smoothing window in order to emphasize the low frequency components.

Densities (PSD). In the PSD several peaks could be observed around 10 Hz,
15 Hz and 25 Hz. The results obtained during the EARLY-learning stage were
not significantly different from the PRE recording condition. This suggests that
PSD is little affected by the stimulus structure and by the subsequent functional
connectivity at the begin of the stimulation. This is probably due to the fact
that stimulus-driven selective cell and synaptic pruning were not yet producing
any effect. During the LATE period the PSDs were characterized by a general-
ized decrease in the power and the preservation of the peak near 10 Hz with
a noticeable decrease of the other peaks. It is interesting to notice that in the
POST-learning stage the multiple peaks tended to appear again, thus suggest-
ing that they are mainly driven by the combined effect of background activity
and internal features of the model. Another general observation is that in ma-
ture networks, i.e. during the LATE- and POST-learning phases in comparison
with EARLY- and PRE-learning phases, PSD is getting lower, which means the
total amount of energy transferred by the neural networks is decreasing. The
POST-learning phase was characterized by 3.5 dB/Hz lower values of power
than appropriate values during PRE-learning phases. This decrease is likely to
be associated to the pruning of synpatic links and cell death.
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Fig. 3. Evoked Potentials and Power Spectrum Densities for the averaged recordings of
the pair of Ubidules in Layer 1 and in Layer 2. The left panels correspond to stimulus
Type A and the right panels to stimulus Type B. The gray stripes correspond to the
periods of stimulation. From top to bottom the results referred to the PRE-learning,
EARLY-learning, LATE-learning and POST-learning periods.

5 Quadratic Phase Coupling

The bispectral analysis was performed for all channels separatedly and the val-
ues of phase-coupled frequencies (i.e., the frequencies of resonance f3) were de-
termined. Let us consider the distribution of all phase-coupled frequencies f3

observed in single-channel and cross-channel analyses. Let us consider the fre-
quency band ]1 − 24] Hz for EChG and LF the relative number of f3 falling
into this low frequency range. Let us consider the frequency band ]60 − 84] Hz
and HF the relative number of f3 falling into this high frequency range. The
index of resonant frequencies IRF is defined in the range 0–100 as follows:
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Fig. 4. Relative distribution of the frequencies of resonance for each period for Simu-
lations A and B. Bin size corresponds to 2 Hz intervals. The dotted lines delineate the
limits of LF and HF bands.

IRF = 1

2
×

(

100 +
(

HF−LF
HF+LF

× 100
))

. A value of IRF close to 100 corresponds

to a shift of f3 towards higher frequencies and value of IRF close to 0 corresponds
to a shift of f3 towards lower frequencies. IRF values close to 50 indicates the
phase-coupling was equally distributed in low- and high-frequency bands. The
raw frequency ratio is simply defined by RFR = LF

HF
. This means a large value

of RFR corresponds to a shift of phase-coupling towards higher frequencies and
a low value of RFR corresponds to a shift towards lower frequencies.

Figure 4 shows the distribution of f3 in the range 1 to 100 Hz during all
recording periods and for the two types of stimulus used in the Ubinet simulation.
These histograms show a shift towards an increase in low-frequencies resonances
during the LATE-learning phase, especially when compared with the distribution
during the POST-learning, when the input stimulus was absent. The quantitative
assessment of this analysis presented in Table 1 emphasizes the change in the
value of IRF between EARLY- and LATE-learning phases. IRF ≈ 60 decreased
to IRF ≈ 14 followed by an increase to the range 26–29 during the POST-
learning phase suggests that the shift towards low frequencies of phase-coupling
was provoked by the learning protocol and not only due to the maturation of the
network. The analysis of IRF and RFR shows also that in the POST-learning
stage the resonant features remained affected by the functional connectivity
that developed during the trials with external stimulation and the values were
intermediate between PRE/EARLY-learning and LATE-learning phase.

Table 2 shows the relative count of phase-coupling in the frequency bands
of interest and the values of indexes IRF and RFR for all recording periods in
controls and patients suffering primary insomnia before and after treatment [14].
The frequency ranges of the bands refer to those generally used for human studies
and are different from those used for studying the Ubinet activity. However,
there is a linear correspondence between the two sets of frequency bands. The
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general pattern was a high level of high frequency coupling in the group of
patients before treatment. The main effect of the treatment was to reduce high-
frequency coupling and shift phase-coupling towards low frequencies, somehow
with a significant increase of low frequency coupling compared to the controls.
The treatment significantly increased the phase-coupling in the low frequency
band during all other intervals, either re-establishing a level close to the controls
or even beyond that level, as observed during the REM sleep phases.

Table 1. Percentage of phase-coupled frequencies in each frequency bands of interest
for the stimulus Type A and B within neural network development stages. IRF: index
of resonant frequencies. RFR: raw frequency ratio.

Learning Percentage of phase-coupled frequencies Indexes
Phase LF: ] 1-24]Hz ]24-60]Hz HF: ]60-84]Hz IRF RFR

Stimulus Type A

PRE 27 53 20 43 1.34
EARLY 20 50 30 60 0.66
LATE 38 56 6 13 6.67
POST 38 49 13 26 2.83

Stimulus Type B

PRE 20 48 32 62 0.62
EARLY 21 47 31 60 0.68
LATE 49 43 8 14 6.00
POST 44 38 18 29 2.43

Table 2. Percentage of phase-coupled frequencies in each frequency bands of interest
for the the control group and for the group of patients before and after treatment.
REM: rapid eye movement sleep. NREM: rapid eye movement sleep.

Subject Group Percentage of phase-coupled frequencies Indexes
LF: ] 1-13]Hz ]13-33]Hz HF: ]33-48]Hz IRF RFR

Eyes Closed

Control 12 74 14 54 1.17
Patient before 2 77 21 91 10.50

after treatment 8 88 4 33 0.50

NREM

Control 57 30 13 19 0.23
Patient before 27 60 13 33 0.48

after treatment 42 57 1 2 0.02

REM

Control 4 90 5 56 1.25
Patient before 4 85 12 75 3.00

after treatment 19 79 2 10 0.11
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6 Discussion

This paper described the implementation of a neuronal system simulator on a
hybrid scalable multi-agent hardware platform based on the Ubidules framework
[9] and its application to the study of information processing in hierarchically
organized neural networks circuits. We have explored one simple Ubinet network
circuit characterized by a sensory network processing the external input that
projects to a hierarchically organized multilayered (in our case formed by only
two layers) recurrent network of processing areas which eventually project on
a motor network that generates an activity keen to be encoded into actuators.
The experimental approach to the Ubinet activity by recording the EChG was
aimed to assess the effect of a repeated stimulation on the functional connectiv-
ity established between the Ubidules. Our PRE-learning stage could represent a
control situation driven exclusively by the background activity of the subject’s
brain. The subject is naive to the coming stimulus so that a learning process
can occur. During the EARLY-learning stage the repetition of the stimuli at
regular intervals might initiate an unsupervised recognition process that eventu-
ally shaped the functional connectivity of feature detecting cell assemblies after
selective synaptic and cell pruning.

The third order spectral analysis of EChG and EEG allows to determine the
frequency range of quadratic phase coupling (resonant frequency) across cortical
areas [4, 5]. According to the usual interpretation based on standing waves theory,
high resonant frequencies mean that information processing is transmitted at
short distance (i.e., the distance between two nodes of the wave). A coupling
that occurs at high frequencies may be interpreted as a sign of focal cortical
interactions. Conversely, a coupling at low frequencies suggests an increased
cross-areal involvement in neural processing.

A remarkable result is the finding that in the Ubinet simulations the LATE-
learning stages were characterized by IRF ≈ 14 compared with PRE- and
EARLY-learning stages (IRF ≈ 43− 62). In the study with human Subjects we
observed that controls and patients after treatment were characterized, during all
sleep phases by values of IRF lower than insomniac patients before treatment.
It is also worth reporting that the only condition that let appear a difference
of resonant frequencies in the range ]13-33] Hz was during NREM sleep irre-
spective of the treatment. This last result suggests that despite an overall shift
of resonant frequencies towards recovery, focal cortical interactions tended to
persist in patients during NREM sleep periods. Both an appropriate stimula-
tion of the Ubinet and the cognitive brain therapy appear to modify the ratio
of resonant frequencies provoking a shift of the indexes towards low frequencies
at all brain states. Our findings suggest that new tools provided by modular
and scalable neural network simulators offer new opportunities to neurophysiol-
ogists and clinicians to test hypotheses based on the analysis of neural signals
at mesoscopic levels.
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