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Abstract

Background: To illustrate that Breast-MRI performed in high spatial resolution and low temporal resolution

(1 minute) allows the measurement of kinetic parameters that can assess the final pathologic response to

neoadjuvant chemotherapy in breast cancer.

Methods: Breast-MRI was performed in 24 women before and after treatment. Eight series of 1.11 minute-duration

were acquired with a sub-millimeter spatial resolution. Transfer constant (Ktrans) and leakage space (Ve) were

calculated using measured and theoretical Arterial Input Function (AIF). Changes in kinetic parameters after

treatment obtained with both AIFs were compared with final pathologic response graded in non-responder (<

50% therapeutic effect), partial-responder (> 50% therapeutic effect) and complete responder. Accuracies to identify

non-responders were compared with receiver operating characteristic curves.

Results: With measured-AIF, changes in kinetic parameters measured after treatment were in agreement with the

final pathological response. Changes in Ve and Ktrans were significantly different between non-(N = 11), partial-(N =

7), and complete (N = 6) responders, (P = 0.0092 and P = 0.0398 respectively). A decrease in Ve of more than -72%

and more than -84% for Ktrans resulted in 73% sensitivity for identifying non-responders (specificity 92% and 77%

respectively). A decrease in Ve of more than -87% helped to identify complete responders (Sensitivity 89%,

Specificity 83%). With theoretical-AIF, changes in kinetic parameters had lower accuracy.

Conclusion: There is a good agreement between pathological findings and changes in kinetic parameters

obtained with breast-MRI in high spatial and low temporal resolution when measured-AIF is used. Further studies

are necessary to confirm whether MRI contrast kinetic parameters can be used earlier as a response predictor to

neoadjuvant chemotherapy.

Background
Neoadjuvant chemotherapy is increasingly used in breast

cancer patients to decrease the tumour size in large can-

cers to enable breast-conserving treatment. Accurate eva-

luation of the treatment response before surgery offers

the potential to avoid unnecessary mutilating procedures

in patients with a favorable prognosis, without jeopardiz-

ing local control or long-term survival. Compared with

physical examination, and conventional modalities (US

and mammography), breast MRI appears to be the best

monitoring method for neoadjuvant chemotherapy [1,2].

Although MR imaging may be superior to other methods

[3,4], the correlation between conventional anatomic

MRI analysis and histopathological response is not per-

fect [5]. The determination of residual tumour size is

underestimated and unreliable in carcinomas significantly
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responding to chemotherapy which may lead to missed

detections in up to 30% of patients [6]. There is now

increasing evidence that functional analysis of the micro-

circulation by using dynamic contrast material-enhanced

MR imaging could be used to identify responders and

non-responders during and/or after neoadjuvant che-

motherapy more reliably than conventional anatomic

MRI results alone [6-10]. The functional analysis is based

on post-therapeutic changes of microvessels permeability,

tissue perfusion, blood volume, and extracellular leakage

space. These parameters can be obtained by analyzing

the enhancement kinetics measured in the tissue of inter-

est and in its afferent artery (Arterial Input Function,

AIF) using compartmental modeling [11,12].

Several compartmental models can be chosen for assess-

ment. The simplest model, applied to MRI data by both

Larsson et al. [13] and Tofts and Kermode [14] allows cal-

culation of the transfer constant (Ktrans) that reflects

simultaneously perfusion and permeability, and the leak-

age space (Ve). More recent models potentially enable to

distinguish perfusion and permeability separately [15-18].

The choice of the model and kinetic parameters to be cal-

culated depends on the acquisition parameters. In particu-

lar, the temporal resolution determines whether the

vascular component can be taken into account. Indeed,

perfusion and blood volume measurement requires a high

temporal resolution, because the sampling interval must

be less than the mean transit time of the contrast agent

[19], which is usually less than 2 seconds [20]. In breast

MRI, high spatial resolution is required because most of

the diagnostic criteria are based on lesion morphology

[21]. Due to technical reasons in most current systems of

magnetic field up to 1.5T, the 3D high spatial resolution

limits the temporal resolution to as low as 1 minute and

imposes to use the simplest model limited to the estima-

tion of Ktrans and Ve values [22-24].

The estimation of the kinetic parameters requires two

sets of data: the variation of contrast concentration in

time in the tissue of interest and in the feeding artery

(arterial input function, AIF). In MRI, concentrations can

be non-invasively derived from signal intensity. In Breast

MRI, the measurement of the AIF can be difficult. A

large blood vessel such as the aorta is rarely included in

the field of view [25] and the measurements of the inter-

nal thoracic artery can be difficult due to its small size

with the risk of partial volume artifact [26]. For these rea-

sons, several authors use a calculated theoretical AIF [7].

The time curve of contrast agent concentration in the

plasma is represented by a biexponential decay based on

the AIF measured by Weinmann et al [27]. However, the

use of a calculated theoretical AIF may entail errors in

MR estimates of kinetic parameters.

The purpose of this retrospective study is to demon-

strate that even with low temporal resolution routine

MRI protocol, changes in microcirculation kinetic para-

meters such as Ktrans and Ve can be used to determine

tumor response to neoadjuvant chemotherapy in breast

cancer as observed at the final pathological evaluation

after surgery.

Methods
Demography

This study was part of the Remagus [28,29] protocol,

approved by the ethics committee, and requiring informed

consent before enrollment from all patients. Three physi-

cians specialized in breast cancer with over 10 years of

experience performed the patients follow up and deter-

mined the clinical response to neoadjuvant chemotherapy

according the WHO criteria. The Remagus protocol was a

neoadjuvant chemotherapy trial for locally advanced breast

cancers including 4 cycles of Antracycline and Cyclopho-

sphamide, followed by 4 cycles of Docetaxel chemother-

apy. Patients with noninflammatory, stage II to III breast

cancer were included during 12 month. Diagnosis of inva-

sive breast carcinoma was made by core needle biopsy in

all patients. Surgery was performed less than 4 weeks after

the last course of chemotherapy. Patients either underwent

mastectomy or wide local excision with axillary lymph

node dissection.

Pathologic Assessment

One senior pathologist with 20 years of experience in

breast pathology blinded to the MRI results assessed

tumor response and graded according to the scale estab-

lished by Sataloff [30] as shown Table 1: total or near-total

therapeutic effect (grade A), more than 50% therapeutic

effect but less than total or near-total effect (grade B), less

than 50% therapeutic effect but visible effect (grade C), or

no therapeutic effect (grade D). Pathologic tumor regres-

sion was used as the gold standard to evaluate treatment

response. For comparison with imaging five groups of

patients were defined according to the response grade:

complete responder group (grade A), partial responder

group (grade B), responder group (A+B), non-responder

group (grade C+D), and non-complete responders (grades

B+C+D).

Table 1 Tumor response graded according to the scale

established by Sataloff

Sataloff
Grade

Therapeutic effect at pathology

A Total or near-total

B More than 50% therapeutic effect but less than total or
near-total effect

C Less than 50% therapeutic effect but visible effect

D No therapeutic effect
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MRI protocol

All patients underwent two breast MRI, the first exam less

than 1 week before the beginning of the treatment and the

second MRI performed after completion of chemotherapy

treatment and less than 2 weeks before surgery. All MRI

were performed on a 1.5 Tesla Siemens Symphony TIM

MR system (Erlangen, Germany), with a breast-specific

coil with four elements, CP Breast Array Coil. DCE-MRI

was acquired with a 3D T1-weighted gradient echo

sequence using a TR of 4.67 ms, a TE of 1.65 ms and a

flip angle of 12°. The DCE-MRI sequences (120 contigu-

ous 1.2-mm-thick slices, 320 × 280 mm FOV, 380 ×

300 matrix, 1.11 min scan duration, axial slices on both

breasts) were acquired at 0, 1.36, 2.47, 3.59, 5.10, 6.21,

7.32, and 8.44 min. The contrast agent, gadoterate dime-

glumine (Dotarem®, Guerbet, France), was injected imme-

diately after the acquisition of the first DCE-MRI

sequence with an automatic injector (Spectris, Medrad,

UK) at a dose of 0.1 mmol/Kg with a rate of 2 ml/sec and

pushed by saline serum. The minimum delay between the

end of the contrast injection and the beginning of next

sequence acquisition was 20 second.

Data processing

A senior and a junior radiologist with 8 years and 2 years

of experience in breast imaging respectively, performed

all image analysis. Tumor sizes were measured with elec-

tronic calipers on high-resolution T1 weighted post con-

trast images (measured on the 90-120 second subtraction

image), following the WHO methodology, the same day

of the exam by the same radiologist as required by the

clinical protocol [31], the functional analysis was per-

formed retrospectively by the same radiologists. For this

analysis, the use of a 3D acquisition for the DCE-MRI

allowed the selection of region of interest (ROI) at a dif-

ferent level for tumor than for internal thoracic artery

when necessary. Regions of interest were drawn by the

radiologist on subtraction images with an appropriate

window and magnification factor to optimize the detec-

tion of both enhancing tumor margin and internal thor-

acic artery. For the AIF, the center of the ROIs were

manually defined in the center of the internal thoracic

artery in the native images at the second acquisition time

(first acquisition after injection), and the 8 surrounding

pixels were automatically selected by the computer. This

9 pixel square was automatically reproduced at the same

position at all acquisition time. Then, each ROI was

manually translated when necessary for motion artifacts

correction to avoid partial volume artifacts. The tumor

ROIs were placed around the edge of the anatomically

defined tumor but away from non-enhancing areas which

were either necrotic or so poorly perfused that they

could not be evaluated in functional imaging.

With the 3D T1-weighted gradient echo sequence use

for the DCE-MRI, the contrast information was recorded

30 seconds after the beginning of the acquisition and at

least 50 second after the injection. Thus, we assumed

that the contrast information was measured after the first

pass of the bolus of contrast media in the artery and

therefore after the peak concentration [32]. Hence, for all

patients, contrast media concentrations in artery and

tumor were supposed to be low (< 2 mM Gd-DOTA)

and a linear relationship was assumed between signal

intensity kinetics measured in ROIs and contrast media

concentrations according with the following equations:

Ct (t) = R · (ISt (t) − ISt (0)) (1)

Cp (t) = R ·

(

ISp (t) − ISp (0)
)

(2)

Where Ct and Cp are the concentrations of contrast

media in the tissue of interest and plasma, respectively.

ISt and ISp are the signal intensities measured with the

ROIs in the tissue of interest and the internal thoracic

artery, respectively. R is an amplitude constant, which is

simplified in equation 3.

Custom software [33] written with Matlab® (Math-

Works Inc., Natick, MA, USA) was used to calculate

kinetic parameters. These parameters included the

transfer constant, Ktrans (min-1), of gadolinium-based

contrast agent between blood plasma and the extravas-

cular extracellular space (EES), and the EES fractional

volume, Ve (%). Parameters were adjusted using the

modified Kety model applied to MRI data by both Lars-

son et al [13] and Tofts and Kermode [34] and fully

described recently by various authors such as Buckley

[19] or Padhani [7]:

Ct (t) = Ktrans
·

∫ t

0

Cp(u) · exp

(

−

Ktrans

Ve
· (t − u)

)

· du(3)

This model assumes that the plasma volume is negligi-

ble. It also assumes that a short bolus injection time is

used, with instant mixing and fast exchanges of all mobile

protons within the tissue. A pixel by pixel analysis was

used given a Ktrans and a Ve maps. For all exams, para-

meters were adjusted twice: with a Cp obtained directly

from the measured AIF (ROIs selecting the internal thor-

acic artery); with a Cp related to a calculated theoretical

AIF. The theoretical AIF was modeled by using a biexpo-

nential decay that corresponds to the results measured

by Weinmann et al [27]:

Cp (t) = D ·

(

a1 · e−m1 ·t + a2 · e−m2·t
)

(4)

Where D is the injected dose of contrast agent (in

millimoles per liter per kilogram of body weight), a1 =

3.99 kg/L and a2 = 4.78 kg/L are two amplitude
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constants, m1 = 0.144 min-1 and m2 = 0.0111 min-1 are

two rate constants [27].

Statistical analysis

The kinetic parameter changes measured after treatment

in each group of patients defined by final pathologic find-

ings were compared using non parametric tests (Mann-

Whitney U test for two independent random samples and

Kruskal-Wallis test for three independent random sam-

ples). Kinetic parameter changes of responder patients

were compared to the changes of the non-responder

patients. Kinetic parameter changes after treatment were

compared between complete-, partial-, and non-responder

patients. Eventually, the ability of the technique to distin-

guish the complete responders was tested. All compari-

sons were performed twice: once with kinetic parameters

obtained with measured AIF and then with kinetic para-

meters estimated with theoretical AIF. The differences in

tumour size changes between groups of patients were also

compared with nonparametric methods.

Receiver operating characteristic (ROC) analyses of

transfer constant and EES fractional volume changes

were used to select threshold for the identification of

responder and non-responder patients. The diagnostic

performance of changes in parameters obtained with a

measured or a theoretical AIF were compared by using

the approach of DeLong et Clarke-Pearson [35].

Results were analyzed using a statistical software pack-

age (Analyse-it Software, Leeds, UK) with an a level set at

5%. All results are given with a 95% confidence interval

(95% CI).

Breast tumours size changes in MRI have an accuracy

varying from 25% to 93% in detecting tumor response

after neoadjuvant chemotherapy [6,29-31]. We estimate

that our approach will improve the accuracy from 55%

with tumor size changes to 80% using kinetic parameter

changes. Thus, sample size of 24 patients was computed

to provide 90% power at the overall 5% (two-sided) signifi-

cance level to detect an accuracy of 80% [32].

Results
Patients and Pathologic Response

Patient and tumor characteristics are listed in Table 2.

After completion of chemotherapy, within the 24 included

patients a Sataloff grade A response was identified in 6

patients, a grade B response was identified in 7 patients,

and a grade C+D was identified in 11 patients.

Using a conventional cutoff value of a decrease of 50%

(WHO criteria) of tumor size after treatment compared

to baseline, the sensitivity, specificity, positive and nega-

tive predictive values, and accuracy of physical examina-

tion to detect non-responder were respectively 13% (95%

CI:0.8%,54%), 82% (95% CI:48%,97%), 33%, 56% and 53%.

The performances of conventional anatomic MRI were

27% (95% CI:6%,61%), 77% (95% CI:46%,95%), 50%, 56%

and 54%. Physical examination and conventional mor-

phological MRI based on size measurement were not

correlated with the pathologic response after chemother-

apy (Mann-Whitney U test, P = 0.44 and P = 0.42

respectively).

Interestingly, physical examination and conventional

morphological MRI were more accurate for the detection

of complete responders when compared with theirs ability

to detect non-responders, (Sensitivity, Specificity, Positive

Predictive Value, Negative Predictive Value, and accuracy

of 85% (95% CI:54%,97%), 67% (95% CI:24%,94%), 85%,

67%, and 79% with the physical exam and 67% (95%

CI:41%,87%), 83% (95% CI:36%,100%), 92%, 45% and 71%

respectively in MRI). Physical examination was better

correlated with the final pathological response than con-

ventional morphological MRI in detecting complete

responders (Mann-Whitney U test, P = 0.05 and P = 0.22

respectively).

Evaluation of the neoadjuvant chemotherapy in DCE-MRI

The selection and measurement of the internal thoracic

artery was possible in all patients (N = 24). Changes in

kinetic parameters after the last course of chemotherapy

were obtained using measured and theoretical AIF.

With measured AIF

Under treatment, changes in Ktrans and Ve were signifi-

cantly different between non-responders (grade C+D) and

responders (grades A+B), (Mann-Whitney U test, P = 0.01,

P < 0.01 respectively). Moreover, changes in Ktrans and Ve

were significantly different between non-responders (grade

C+D), partial responders (grade B) and complete respon-

ders (grade A) as seen figure 1 (Kruskal-Wallis test,

Table 2 Patient and Tumor Characteristics (n = 24)

Characteristic Number of Patients

Age, years (mean, range) 48 (range, 31 to 62)

Tumor histology

Invasive ductal carcinoma 21

Invasive lobular carcinoma 3

Receptor status

Estrogen, (positive/negative) 17/4

Progesterone (positive/negative) 10/11

Her2/neu (positive/negative) 9/12

Scarff and Bloom Richardson grade

I 2

II 12

III 9

Stage

IIA 2

IIB 5

IIIA 7

IIIB 8
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P = 0.04 and P < 0.01 respectively). Eventually, a higher

decrease of Ve (-90% (95% CI:-97%,-80%)) was noted in

complete responders (grade A) than in non-complete

responders (grade B+C+D), (-68% (95% CI: -82%,-19%);

Mann-Whitney U test, P < 0.01). All results are summar-

ized Table 3 and 4.

With theoretical AIF

Ve changes were found to be different between non-

responders (grade, C+D) and responders (grades, A+B),

(Mann-Whitney U test, P = 0.05). However, no significant

difference was found between patient groups with Ktrans.

Typical examples of complete responder (#22) and

non-responder (#10) patients are given in figure 2 and 3.

Identification of responders and non-responders

After treatment, a reduction of less than -84% in trans-

fer constant (Ktrans) with measured AIF, would have had

a 73% (95% CI:39%,94%) sensitivity in the identification

of 8 of 11 non-responders patients (i.e., pathologic sub-

group C+D) and would have excluded 3 out of 13

responders (specificity 77% (95% CI:46%,95%), positive

predictive value 73%, negative predictive value 77%,

accuracy 75%, area under ROC curve 0.80 (95 CI:

0.62,0.99)). With a theoretical AIF to assess Ktrans, the

cutoff (-85%) had lower accuracy (sensitivity 46% (95%

CI:167%,76%), specificity 54% (95% CI:25%,80%), positive

predictive value 46%, negative predictive value 54%,

accuracy 50%, area under ROC curve 0.48 (95% CI:

24%,73%)). However, the difference between areas under

ROC curves of Ktrans obtained with measured and theo-

retical AIF (Figure 4) was not significantly different

(Clarke-Pearson test, P = 0.1475).

A reduction of less than -72% in leakage space (Ve)

with measured AIF, would have enabled identification of

8 of eleven non-responders (sensitivity 73% (95%

CI:39%,94%)) and would have excluded only 1 out of 13

responders (specificity 92% (95% CI:64%,100%)), positive

predictive value 89%, negative predictive value 80%,

accuracy 83%, area under ROC curve 0.83 (95% CI:

64%,100%)). With a theoretical AIF to assess Ve, the cut-

off (-51%) had lower accuracy (sensitivity 64% (95%

CI:31%,89%), specificity 100% (95% CI:75%,100%), posi-

tive predictive value 100%, negative predictive value

77%, accuracy 83%, area under ROC curve 0.74 (95%

CI:51%,97%)). However, the difference between areas

under ROC curves of Ve obtained with measured and

theoretical AIF (Figure 4) was not significantly different

(Clarke-Pearson test, P = 0.3216). Moreover, a reduction

of less than -87% in Ve with measured AIF, would have

enabled identification of 5 of 6 complete responders and

16 of 18 non complete responders (sensitivity 89% (95%

CI:65%,99%), specificity 83% (95% CI:36%,100%), positive

predictive value 94%, negative predictive value 71%,

accuracy 88%, area under the ROC curve 87% (95%

CI:71%,100%)).

The accuracy of the classification between responders

and non-responders was slightly improved when Ktrans

and Ve were used jointly. With a cutoff of -82% for Ktrans

and -72% for Ve, all non-responders were distinguished

(sensitivity 100% (95% CI:68%,99%)), whereas 4 out of 13

responders were misdiagnosed (specificity 69% (95%

CI:39%,90%), positive predictive value 73%, negative pre-

dictive value 100%, accuracy 83%).

Discussion
This clinical study have examined the ability of conven-

tional breast DCE-MRI performed at 1.5T with high

spatial resolution (sub millimeter) and low temporal

resolution (1 acquisition per minute), to provide changes

in kinetic parameters that agree with pathological analy-

sis of response to neoadjuvant chemotherapy. Changes

in transfer constant and in leakage space obtained with

a measured AIF were significantly different between the

three pathologic response categories (Kruskal-Wallis

test, P < 0.04). We found that changes in the kinetic

parameters correlated pathologic response to neoadju-

vant chemotherapy (P < 0.04), whereas both change in

MRI-derived tumor size and final clinical examination

following neoadjuvant chemotherapy failed to correlate

with final pathologic response (Kruskal-Wallis test, P >

0.4), when complete responders and partial responders

are considered. It is well recognized that size change is

an imperfect assessment method for assessing the effects

of neoadjuvant chemotherapy. We found an appreciable

discordance between final clinical and final pathologic

response in our patient group, with almost a half of

clinical responders (13 of 24) failing to obtain a patholo-

gic response. This discrepancy between clinical and

pathologic response has been described by others. The

Figure 1 Changes (median, 1st and 3rd quartile and range) in

leakage space (Ve) after neoadjuvant chemotherapy in

complete responders (Sataloff grade A), partial responders

(Sataloff grade B) and non-responders (Sataloff grade C+D).

Kinetic parameters were obtained with measured AIF. The non-

responder patient that had an increase in Ve (+193%) is not shown.
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Table 3 Changes in kinetic parameters and tumor size in 24 patients after systemic neoadjuvant chemotherapy

Patient # Ktrans changes Ve changes Size changes Clinical Final pathologic finding

AIF theoretical AIF measured AIF theoretical AIF measured N/A Response Sataloff Grade

1 -70% -23% -73% -80% 0% PR C

2 -35% -20% -4% -52% 57% SD C

3 -2% 108% -89% -91% -100% PR C

4 -71% -22% -46% -48% -84% SD C

5 223% 166% -76% -74% -100% PR C

6 -97% -84% 23% -29% 158% PR C

7 -85% -67% -78% -64% -72% PR C

8 -93% 93% -15% -52% -99% CR C

9 -98% -98% -50% -38% -65% PR D

10 -90% -82% -50% -59% -100% PR C

11 -97% -89% -49% 193% -62% PR C

Median (C+D) -85% -23% -50% -52% -72%

95 CI [-110%,17%] [-72%,51%] [-69%,-23%] [-88%,17%] [-98%,13%]

12 -85% -95% -61% -73% -71% CR B

13 -99% -86% -65% -77% -73% PR B

14 -54% -89% -57% -48% -100% SD B

15 -94% -95% -75% -75% -33% SD B

16 65% -52% -68% -72% -100% PR B

17 -96% -84% -72% -85% -91% PR B

18 -97% -97% -77% -91% -29% PR B

Median (B) -94% -89% -68% -75% -73%

95 CI [-121%,-10%] [-100%,-71%] [-75%,-61%] [-87%,-62%] [-98%,-44%]

Median (B+C+D) -88% -83% -63% -68% -73%

95 CI [-95%,-14%] [-80%,0%] [-69%,-40%] [-82%,-19%] [-87%,-20%]

19 0% 27% -89% -89% -40% PR A

20 -15% -91% -62% -95% -99% CR A

21 4% -54% -89% -91% -100% CR A

22 -29% -98% -51% -73% -100% CR A

23 -99% -100% -95% -94% -96% CR A

24 -94% -99% -75% -87% -97% PR A

Median (A) -22% -94% -82% -90% -98%

95 CI [-87%,10%] [-122%,-16%] [-95%,-59%] [-97%,-80%] [-114%,-64%]

Final pathologic findings were graded according to the scale established by Sataloff: complete responder group (grade A), partial responder group (grade B),

responder group (A+B), and non-responder group (grade C+ D). Surgery performed after neoadjuvant chemotherapy included mastectomy or conservative

treatment or inadequate conservative surgery followed by mastectomy. SD = stable disease, PR = partial responder, CR = complete responder.

Table 4 Statistical results (P-value) of the non parametrical test (* Kruskal-Wallis and ‡ Mann-Whitney U test) used to

compare changes in the kinetic parameters, tumor size in MRI, and clinical findings, between groups of patients

defined by final pathologic findings (Sataloff Grade)

Ktrans Ve Size in
MRI

Clinical
findings

Sataloff
Grade

AIF theoretical p-
value

AIF measured p-
value

AIF theoretical p-
value

AIF measured p-
value

p-value p-value

A vs B vs C
+D

0,5467 0,0398 0,0799 0,0092 0,4643 0,4643

A+B vs C+D 0,9095 0,0107 0,0474 0,0059 0,4244 0,4421

A vs B+C+D 0,3173 0,1096 0,0532 0,0077 0,2244 0,0462
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NSABP-B18trial [36] showed that of the 682 patients,

who received neoadjuvant chemotherapy, 247 achieved a

clinical Complete Response but only 88 of these had a

pathologic Complete Response.

The microvascular pressures differ from one tumor to

another depending upon the vascular architecture, vis-

cous resistance offered to blood flow and interstial fluid

diffusion [37-39]. The high interstitial fluid pressure

(IFP) seen in tumor without treatment would result in a

low diffusion of the contrast agent in the interstitial

space and hence low measured Ve value. In responder,

we can assume a decrease of the proportion of immature

vessel that yield to a reduction of the IFP and an increase

of Ve. On the other hand, tumor resistance to che-

motherapy would result in ongoing production of angio-

genic factors that maintain or increase the IFP and Ve.

We have observed that changes in kinetic parameters

obtained in low temporal resolution are more accurate

when AIF are measured instead of using a calculated the-

oretical AIF as usually performed in the literature

[20,40]. In this study, the comparison of ROC curves

obtained for Ktrans changes with a measured and a theo-

retical AIF shows the inability to distinguish responders

and non-responder when a theoretical AIF is used. The

ROC curves obtained for Ve changes shows slight

improvement in performance to distinguish responders

and non-responders, not statistically significant, when

measured AIF is used. Wedam et al. have evaluated the

effect of Bevacizumab, an antiangiogenic treatment by

using the dynamic contrast enhancement MRI with theo-

retical AIF [41]. The kinetic parameters (Ktrans, kep, and

ve) were significantly decreased after the first cycle of

treatment. However, there was no significant difference

in any of the DCE-MRI parameters between clinical

responders and non-responders. The use of a calculated

theoretical AIF may have reduced the observed decrease

Figure 2 Images show changes in transfer constant (Ktrans) in patient 22, complete responder to neoadjuvant chemotherapy (Sataloff

A). Columns show in A and D: anatomic subtraction images; in B and E: corresponding Ktrans map acquired using measured Arterial Input

Function (AIF); and in C and F: corresponding Ktrans map acquired using theoretical AIF. Images A, B, and C show data before neoadjuvant

chemotherapy treatment and images D, F, and G are post-treatment. After treatment a decrease of -98% is seen in Ktrans using measured AIF

values and a decrease of -29% using theoretical AIF values. Note the difference between Ktrans values before treatment when using measured

and theoretical AIFs. To increase visibility of the color encoded Ktrans pixels the scale was reduced in postchemotherapy images.
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in all parameters under treatment and prevented the

identification of responders. We suggest that the actual

measure of the AIF be used for the calculations of Ktrans

and ve when data are obtained in low temporal

resolution.

In this study, the selection of the Arterial Input func-

tion from the internal thoracic artery was possible in all

cases, despite the risk of partial volume artifact due to

the small size of the artery [26]. The use of high spatial

resolution images helped to identify the internal thoracic

artery. Moreover, the low temporal resolution has made

possible to manually adjust ROIs on each images to

encompass motion artifact and to achieve successfully

the AIF in any of the cases. However, computed assisted

ROI selections are suitable to achieve results with a lesser

time consuming technique [42-44].

Although, the optimal temporal resolution seems to be

less than 20 seconds for tracer kinetics modeling [45-47],

several kinetic parameters studies with limited temporal

resolution obtained with the Tofts model have been

proved useful [22,48]. Li et al. have investigated the het-

erogeneity in the angiogenic response of human breast

cancer xenograft to a novel angiogenesis inhibitor. They

used the kinetic parameters provided by the Tofts and

Kermode model with data obtained in DCE-MRI with a

time resolution of 63 seconds. In their study, histogram

segmentation showed that changes in the number of vox-

els within certain segments of the transfer constant histo-

gram were the most sensitive variable for separating

control from treated tumors. Planey et al. showed good

correlation between Ktrans and Ve estimates from data

acquired at 16.4-second temporal resolution compared to

33 and 64 second [49]. However, continuous technical

improvements observed in MRI, may resolve the

dilemma between the diverging demands of high tem-

poral resolution and high spatial resolution. With the

Figure 3 Images show changes in volume leakage (Ve) in patient 10 non responder to neoadjuvant chemotherapy (Sataloff grade C).

Columns show in A and D: anatomic subtraction images; in B and E: corresponding Ve map acquired using measured Arterial Input Function

(AIF); and in C and F: corresponding Ve map acquired using theoretical AIF. Images A, B, and C show data before neoadjuvant chemotherapy

treatment and images D, F, and G are post-treatment. After treatment, low decreases in Ve median were seen using the measured AIF (-59%)

and theoretical AIF (-50%) in agreement with the pathological observation. Note the disagreement with tumour size changes (-100%). To

increase visibility of the color encoded Ve pixels the scale was reduced in postchemotherapy images.
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advent of new sequences, parallel imaging and the move

to higher field strengths 3.0 a temporal resolution of 13

sec with an isotropic voxel size of 1.7 mm is feasible [50].

Also, new multichannel breast coil may help to accelerate

sequences allowing better images sampling and faster T1

mapping for an accurate signal conversion into concen-

trations. In this study, all non-responders were success-

fully classified by combining Ktrans and Ve, whereas the

separate analysis had lower sensitivity and specificity.

These results incite to obtain more parameters from

functional studies, which require faster sequences to

accurately predict tumors response to chemotherapy.

It is clear that concentration assessment improves the

final accuracy of the kinetic parameters [51]. However,

this method requires accurate measurements of the tissue

T1 relaxation time before and after contrast injection

that is usually performed in few slices due to the tem-

poral resolution constraints [52]. Nevertheless, the effect

of the native tissue T1 relaxation on signal enhancement

ratio and Ktrans/Ve is very small in conditions observed in

this study: short TR < 10 ms, short TE < T2*, and low

dose of Gd-DTPA administration [22,34]. With a tem-

poral resolution of 1.11 minutes, the analysis of the AIF

was limited to the decay phase after the first pass, in this

study. Concentrations in artery was expected to be low,

and a linear relationship between concentration and sig-

nal intensity was assumed [25,32]. These assumption

seems acceptable since changes in Ktrans and Ve achieved

Figure 4 ROC analysis to differentiate patients’ response to neoadjuvant chemotherapy. Using measured AIF a decrease in Ve of less than

-72% results in 73% sensitivity for identifying non-responders (specificity 92%; area 0.83). Using theoretical AIF, the cutoff value of -51% had

lower accuracy (sensitivity 64%; specificity 100%; area 0.74). For transfer constant using measured AIF, a decrease of less than -84% results in 73%

sensitivity in the identification of 8 of 11 non-responders patients (Specificity 77%; area under ROC curve 0.80). Using calculated AIF, the cutoff

value of -85% had lower accuracy (sensitivity 46%; specificity 54%; area under ROC curve 0.48).
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with measured AIF allowed to distinguish responders

from non-responders (grade, C+D) (Mann-Whitney U

test, P < = 0.01). Moreover, changes in Ve were found

helpful to distinguish complete responders from non-

complete responders (Mann-Whitney U test, P < 0.01).

And hence, a Ve change threshold may be defined to cor-

roborate breast-conserving surgery in clinical ambiguous

patients. All these technical limitations do not allow us to

measure the absolute Ktrans and Ve values but only rela-

tive changes in these kinetic parameters in one tumor

between two exams. Though both Ktrans and Ve changes

could be used to differentiate responders and non-

responders, a few non responder patients showed an

unexpected large decrease in Ktrans. This could be

explained by the antivascular effects of chemotherapy

[21,53-56] that would alter the microcirculation para-

meters (Ktrans) before its effects can be seen in malignant

tissue represented by Ve.

Another limitation of this preliminary study is the small

number of patients included. Larger groups of patients can

be studied by greater number of radiologists in furthers

studies as well as more kinetic parameters with advances

in medical imaging (MRI) technology. However, while

conventional breast MRI had an accuracy as low as 54%,

with a measured AIF we have reached accuracies greater

than 80% when a threshold of -72% for Ve changes or

when combined kinetic parameter changes were used in

detecting residual breast cancer after neoadjuvant che-

motherapy. The inclusion of 24 patients yielded a power

greater than 90% to evaluate the response with these

accuracies [57]. Recent studies have demonstrated the

interest of diffusion and spectroscopy data in the evalua-

tion of breast cancers response to neo adjuvant che-

motherapy [58,59]. These parameters could be combined

with kinetics parameters [8] and biological data such as

hormonal and HER2 receptors status to provide a multi-

modality comprehensive analysis.

Conclusion
This study shows that it is feasible to assess tumours’

microcirculatory kinetic parameters changes with cur-

rent breast MRI protocols used in daily clinical practice.

These changes in parameters are more accurate when

obtained using a measured AIF, and may prove helpful

to better determine breast cancer response to neoadju-

vant chemotherapy than MRI based on tumor size

measurements.
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