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Abstract

Introduction: Septic shock remains a major health care problem worldwide. Sepsis-induced immune alterations

are thought to play a major role in patients’ mortality and susceptibility to nosocomial infections. Programmed

death-1 (PD-1) receptor system constitutes a newly described immunoregulatory pathway that negatively controls

immune responses. It has recently been shown that PD-1 knock-out mice exhibited a lower mortality in response

to experimental sepsis. The objective of the present study was to investigate PD-1-related molecule expressions in

septic shock patients.

Methods: This prospective and observational study included 64 septic shock patients, 13 trauma patients and 49

healthy individuals. PD-1-related-molecule expressions were measured by flow cytometry on circulating leukocytes.

Plasmatic interleukin (IL)-10 concentration as well as ex vivo mitogen-induced lymphocyte proliferation were

assessed.

Results: We observed that septic shock patients displayed increased PD-1, PD-Ligand1 (PD-L1) and PD-L2

monocyte expressions and enhanced PD-1 and PD-L1 CD4+ T lymphocyte expressions at day 1-2 and 3-5 after the

onset of shock in comparison with patients with trauma and healthy volunteers. Importantly, increased expressions

were associated with increased occurrence of secondary nosocomial infections and mortality after septic shock as

well as with decreased mitogen-induced lymphocyte proliferation and increased circulating IL-10 concentration.

Conclusions: These findings indicate that PD-1-related molecules may constitute a novel immunoregulatory

system involved in sepsis-induced immune alterations. Results should be confirmed in a larger cohort of patients.

This may offer innovative therapeutic perspectives on the treatment of this hitherto deadly disease.

Introduction
Sepsis remains a major health-care problem worldwide

[1]. For example, during the last decade, its hospitaliza-

tion rate has almost doubled in the US [2]. This is asso-

ciated with a mortality rate approaching 50% in the case

of septic shock [3,4], despite the development of novel

treatments such as early appropriate antibiotherapy,

early goal-directed therapy, and activated protein C.

Therefore, a better understanding of pathophysiology of

severe sepsis is a necessity if we are to decrease the high

mortality rate of this condition.

Septic pathophysiology is a culmination of multiple

complex dynamic processes whose interactions are only

partially understood. However, it is now accepted that

after a rapid proinflammatory response, a counter-

regulatory phase characterized by immune alterations

impacting both innate and adaptive responses develops

[1,5,6]. This second phase has been characterized by an

increased production of anti-inflammatory cytokines

(mainly interleukin-10 (IL-10) and transforming growth

factor-beta) [7], increased lymphocyte apoptosis [8],

increased proportion of circulating regulatory T cells
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[9], and a severe downregulation of monocyte HLA-DR

expression [10]. However, much remains to be under-

stood in order to clarify our vision of this complex and

multiparameter pathophysiologic process.

Programmed death-1 (PD-1)-related molecules consti-

tute a complex system of negative regulators involved in

controlling T-cell responses. This system is composed of

PD-1 (CD279) and its two ligands, PD-L1 (B7-H1,

CD274) and PD-L2 (B7-DC, CD273). These molecules

belong to the B7:CD28 family [11]. They are best under-

stood relative to their role in viral infections and oncol-

ogy [11-14]. It has been proposed that pathogens and

tumor cells may take advantage of this pathway to

escape the host’s immune defenses. Considering their

immunoregulatory properties, we postulated that the

PD-1 system could participate in sepsis-induced

immune dysfunctions. Indeed, it was recently shown

that PD-1 knockout mice exhibited not only a greater

capacity to clear bacteria but, more importantly, a lower

mortality in response to experimental sepsis [15]. There-

fore, the objective of this study was to investigate the

PD-1 system in patients with septic shock.

Materials and methods
Patients

After Hospices Civils de Lyon (Lyon, France) ethics

committee review and approval, we enrolled 64 patients

with septic shock in this observational clinical study

(from 2007 to 2009). Septic shock was diagnosed

according to the diagnostic criteria of the American

College of Chest Physicians/Society of Critical Care

Medicine [16]. Patients were admitted to one of the two

intensive care units (ICUs) (one medical, the other sur-

gical) of the Lyon-Sud University Hospital (France).

Septic shock was defined by an identifiable site of

infection, which was evidence of a systemic inflamma-

tory response manifested by at least two of the following

criteria: (a) temperature of greater than 38°C or less

than 36°C, (b) heart rate of greater than 90 beats per

minute, (c) respiratory rate of greater than 20 breaths

per minute, and (d) white blood cell count of greater

than 12,000 or less than 4,000/mm3 and hypotension

persisting despite fluid resuscitation and requiring vaso-

pressor therapy. The beginning of vasopressive therapy

was considered the time of diagnosis of septic shock.

Exclusion criteria were age of less than 18 years and the

absence of circulating leukocytes for flow cytometry

phenotyping. No patients with HIV were included.

Patients with cancer were excluded from our study if

they presented with an aplasia (defined by a polymor-

phonuclear neutrophil count of less than 0.5 G/L) or

were treated with a high dose of corticoids (estimated as

treatment superior to 10 mg equivalent prednisolone/

day or more than 700 mg equivalent prednisolone

accrued the first day of inclusion) or both.

The following clinical and biological data were collected:

demographic characteristics (age and gender), admission

category (elective or emergency surgery and medicine),

referral pattern (community-, hospital-, or ICU-acquired

septic shock), microbiological findings, clinical scores

(Simplified Acute Physiology Score II (SAPS II) and sep-

sis-related organ failure assessment (SOFA) score),

incidence of secondary nosocomial infections (defined

as microbiologically documented pulmonary infection,

urinary tract infection, bloodstream infection, and cathe-

ter-related infection that occurred 48 hours after ICU

admission and up to ICU discharge [17]), and the outcome

after 28 days (death or survival).

The protocol was reviewed by the institutional ethics

committee, which waived the need for informed consent

because the study was observational and involved sam-

pling of very small quantities of blood. The purpose of

the study was explained to the patients or members of

their families. Samples were collected from residual

blood after completion of routine follow-up. Ethylene-

diaminetetraacetic acid (EDTA)-anti-coagulated blood

was collected from patients at different time points: day

(D) 1-2, D3-5, and D6-10 after diagnosis of septic shock.

Additionally, 13 trauma patients were included in the

study within the first 48 hours of admission. Inclusion

criteria were trauma, age of at least 18 years, and an

initial injury severity score (ISS) of at least 25. Finally,

49 healthy volunteers from laboratory staff of our hospi-

tal were included as controls.

Flow cytometry reagents

The following antibodies were used: PC5-labeled anti-

CD4, PC5-labeled anti-CD8, PC5-labeled anti-CD14,

PC5-labeled anti-CD25, PE-labeled anti-CD127, FITC-

labeled anti-CD14, ECD-labeled anti-CD4 (Beckman

Coulter, Miami, FL, USA), and PE-labeled anti-HLA-DR

or its isotype PE-labeled IgG2a (Becton-Dickinson Bios-

ciences, San Jose, CA, USA), PE-labeled anti-human

CD249 (PD-1, clone MIH4), FITC-labeled anti-human

CD274 (PD-L1, clone MIH1), or PE-labeled anti-human

CD273 (PD-L2, clone MIH18) (BD Biosciences). Red

blood cells were lysed using the automated TQ-Prep

(Beckman Coulter) or using FACS-lysing solution (BD

Biosciences). Samples were run on FC500 (Beckman

Coulter) and analyzed using CXP software (Beckman

Coulter).

Plasma cytokine measurements

IL-10 concentration in patients’ plasma samples was mea-

sured by Bio-Plex Pro Assays (Bio-Rad Laboratories, Inc.,

Hercules, CA, USA). Unknown sample values presented
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as picograms per milliliter were determined against

human standards as described by the manufacturer.

Cell isolation, culture conditions, and cell proliferation

assay

In brief, peripheral blood mononuclear cells (PBMCs)

were isolated by Ficoll density gradient centrifugation

(PAA Laboratories, Pasching, Austria). PBMCs were

washed three times in phosphate-buffered saline (bio-

Mérieux, Marcy-l’Etoile, France) and resuspended in

complete medium - that is, RPMI supplemented with

HEPES (25 mM), sodium bicarbonate (2 g/L) (Eurobio

Laboratories, Les Ulis, France), 10% human serum

AB (obtained from a pool of healthy volunteers), 2 mM

L-glutamine (Lonza, Verviers, Belgium), 20 UI/mL peni-

cillin, 20 μg/mL streptomycin (Sigma-Aldrich, St. Louis,

MO, USA), and 2.5 μg/mL Amphotericin B (Bristol-

Myers Squibb Company, Princeton, NJ, USA). Cells

were kept on ice until stainings or cell cultures were

performed.

PBMCs were seeded at a density of 1 × 106 cells/mL

(50,000 cells/well, 100 μL) in flat-bottom 96-well micro-

titer plates and were stimulated with 5 μg/mL phytohe-

magglutinin (PHA) (Remel, part of Thermo Fisher

Scientific, Lenexa, KS, USA). Cells were incubated

48 hours at 37°C in a humidified 5% CO2 atmosphere.

[methyl-3H]-Thymidine (20 μCi/mL) (PerkinElmer,

Waltham, MA, USA) was added 24 hours before har-

vesting cells on fiberglass filters by means of an auto-

mated cell harvester (PerkinElmer). Incorporated

radioactivity was measured in a direct beta counter (Per-

kinElmer). Assays were carried out in triplicate.

Data analysis and statistics

Patients’ clinical and biological parameters were pre-

sented as frequencies, percentages, medians, and inter-

quartile ranges (IQRs). Differences in expression levels

were calculated using the Mann-Whitney U test or,

when multiple comparisons were performed, the Fried-

man test. Correlations were calculated using the Spear-

man rank test. P values of not more than 0.05 were

considered statistically significant; if necessary, correc-

tion for the number of tests was performed. Statistical

analysis was performed using SPSS software (version

12.0; SPSS Inc., Chicago, IL, USA).

Results
Clinical characteristics of the patient population

Sixty-four patients with septic shock (20 women and 44

men) were included in the study. Their clinical charac-

teristics are shown in Table 1. Median age at admission

was 63 years (IQR 54 to 73). Median values for SAPS II

and SOFA score at diagnosis of shock were 53 (IQR 39

to 64) and 10 (IQR 8 to 12), respectively, indicating a

high level of severity. Approximately 30% of patients

developed secondary nosocomial infections, and 28-day

mortality was 17%.

Septic patients presented with typical features of sepsis-

induced immunosuppression and displayed a reduced

monocyte HLA-DR expression at D3-5 (median value

45.5%, IQR 29.5 to 69.5) in comparison with control

values (>90% [18]). Median CD4+ T-cell count was also

decreased in patients in comparison with healthy

Table 1 Clinical characteristics of the patients with septic

shock

Parameters Patients with septic
shock
(n = 64)

Age at admission, years 63 (54-73)

Males, number (percentage) 44 (68.8)

SAPS II at diagnosis of shock 53 (39-64)

Main admission category, number
(percentage)

Medical 25 (39.1)

Surgery + trauma 39 (60.9)

Comorbidities, number (percentage) of
patients

None 35 (54.7)

One or more 29 (45.3)

SOFA score at diagnosis of shock 10 (8-12)

28-day non-survivors, number (percentage) 11 (17.2)

Infection, number (percentage)

Diagnosis

Radiology 10 (15.6)

Surgery 7 (10.9)

Microbiologically documented

Bacilli Gram-negative 26 (40.6)

Cocci Gram-positive 30 (46.9)

Fungi 8 (12.5)

Type of infection

Community-acquired 38 (59.4)

Nosocomial 26 (40.6)

Site of infection

Pulmonary 21 (32.8)

Abdominal 27 (42.2)

Others 16 (25)

Secondary nosocomial infections, number
(percentage)

19 (29.7)

Immunological parameters

Percentage mHLA-DRa 45.5 (29.5-69.5)

CD4+ T-cell counts, cells/μLa 319 (226-681)

Percentage of regulatory T cellsa 8.5 (6.1-11.2)

Values are presented as median and interquartile range (IQR) for continuous

variables or as number of cases and percentage for categorical data.
aMeasured at day 3 to 5 after the onset of septic shock. CD4+ T-cell counts

were measured in 41 patients with septic shock, and percentage of regulatory

T cells (CD4+CD25+CD127-) was measured in 42 patients. mHLA-DR, monocyte

HLA-DR; SAPS II, Simplified Acute Physiology Score II; SOFA, sepsis-related

organ failure assessment.

Guignant et al. Critical Care 2011, 15:R99

http://ccforum.com/content/15/2/R99

Page 3 of 11



volunteers (319 cells/μL (IQR 226 to 681) versus 822

cells/μL (IQR 679 to 1,075), respectively; P < 0.001),

whereas percentage of circulating regulatory T cells (CD4
+CD25+CD127- T lymphocytes) was augmented (8.5%

(IQR 6.1% to 11.2%) versus 6.2% (IQR 5.2% to 7.6%),

respectively; P = 0.001).

Thirteen trauma patients (9 men and 4 women) were

also included in the study. Median age at admission was

34 years (IQR 24 to 56). In the first 24 hours of admis-

sion, they presented a median ISS of 32 (IQR 26 to 34)

and a median SAPS II of 39 (IQR 22 to 52).

PD-1-related molecule expression in patients with

septic shock

PD-1, PD-L1, and PD-L2 expressions were measured on

circulating CD4+ lymphocytes, CD8+ lymphocytes (PD-1

only), and monocytes at D1-2 and 3-5 after the onset of

septic shock. Results for CD4+ lymphocytes and mono-

cytes are shown in Figure 1.

The percentages of circulating monocytes expressing

PD-1, PD-L1, or PD-L2 were markedly increased in

patients with septic shock in comparison with healthy

volunteers during the overall monitoring (Figure 1a).

This augmentation was present for PD-1 (median con-

trol values: 5.0% versus 18.6% (D1-2) and 17.8% (D3-5)

in patients; P < 0.001), for PD-L1 (control values: 10.2%

versus 46.6% (D1-2) and 34.9% (D3-5) in patients; P <

0.001), and for PD-L2 (control values: 2.6% versus 8.7%

(D1-2) and 8.5% (D3-5) in patients; P < 0.001). Similar

results were observed when flow cytometry data were

expressed as mean fluorescence intensity (MFI) (Table

2). In trauma patients, PD-1-related molecule expres-

sions on monocytes were significantly increased in com-

parison with healthy individuals (for PD-1: control

value: 5.0% versus 9.6%, P = 0.005; for PD-L1: control

value: 10.2% versus 40.1%, P < 0.001; and for PD-L2:

control value: 2.6% versus 7.2%, P < 0.001). However,

PD-1 expression on monocytes was significantly lower

in trauma than in septic shock patients at D1-2 (9.6%

versus 18.6%, respectively; P = 0.008) (data not shown).

Likewise, the percentages of circulating CD4+ lympho-

cytes expressing PD-1 or PD-L1 were notably increased

in patients with septic shock in comparison with healthy

volunteers during the overall monitoring (for PD-1: con-

trol values: 5.4% versus 15.0% (D1-2) and 13.6% (D3-5),

P < 0.001; for PD-L1: control values: 2.5% versus 3.9%

(D1-2; P = 0.002) and 3.6% (D3-5; P = 0.016) in

patients) (Figure 1b). Alternatively, no significant differ-

ences were observed between patients and healthy

volunteers for percentages of CD4+ cells expressing PD-

L2 (Figure 1b) or of CD8+ lymphocytes positive for PD-

1 (Table 2). Once again, similar results were observed

when flow cytometry results were expressed as MFI

(Table 2). No difference in PD-1-related molecule

expressions was observed between trauma patients and

healthy individuals. However, the percentage of PD-1

expressing CD4+ cells was significantly lower in trauma

than in septic shock patients at D1-2 (5.2% versus

15.0%, respectively; P < 0.001) (data not shown).

Of note, there was no variation of PD-1-related mole-

cule expressions in regard to age or gender either in

healthy subjects or in patients with septic shock. Indeed,

we did not observe significant correlations between PD-

1-related molecule expressions and the age of septic

shock patients (r = 0.21, P = 0.12 for PD-1 expression

on CD4+ lymphocytes; r = 0.04, P = 0.78 for PD-L1

expression on monocytes) or of healthy volunteers (r =

0.10, P = 0.49 for PD-1 expression on CD4+ lympho-

cytes; r = -0.15, P = 0.30 for PD-L1 expression on

monocytes).

Finally, in 10 patients with septic shock, sequential

blood samples were obtained at D1-2, D3-5, and D6-10

after the onset of shock. During this period, no signifi-

cant variations over time in regard to PD-1 molecule

expressions either on monocytes or on lymphocytes

were observed (Figure 2).

Association between PD-1-related molecule expressions

and clinical parameters

To assess the clinical relevance of the increase in PD-1-

related molecule expressions after septic shock, flow

cytometric measurements were correlated with clinical

parameters and usual biomarkers of sepsis-induced

immunosuppression. No significant correlations were

found between PD-1-related molecule expressions and

percentages of HLA-DR expressing monocytes, CD4+

lymphocyte count, percentage of circulating regulatory

T cells, or severity scores calculated at the onset of

shock (SAPS II or SOFA score) (data not shown). How-

ever, at D1-2, we observed that PD-L1 expression on

monocytes was significantly higher in non-survivors in

comparison with survivors (Figure 3a). Moreover, at D3-

5, patients who went on to develop a secondary nosoco-

mial infection presented with higher PD-1 (Figure 3b)

and PD-L2 (Figure 3c) expressions on their blood

monocytes in comparison with those who remained free

of any secondary nosocomial episode.

Correlation between plasma IL-10 concentration and

PD-1-related molecule expression in patients with

septic shock

Increased circulating IL-10 concentration has been linked

with mortality after septic shock [19] and recently with

enhanced PD-1 expression in HIV-infected patients [20].

We thus measured circulating IL-10 levels in 29 septic

shock patients for whom plasma samples were available

and we correlated this parameter with leukocyte PD-1/

PD-L expressions. Not surprisingly, we observed that
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non-survivors exhibited higher plasma IL-10 concentra-

tion than survivors at D1-2 and D3-5 (P = 0.01 for both)

(Figure 4a). Interestingly, a significant positive correlation

was measured between PD-1 monocyte expression and

plasma IL-10 concentration in patients at D1-2 (r = 0.49;

P = 0.007) (Figure 4b) but not at D3-5 (data not shown).

In addition, significant correlations were observed between

both PD-L1 or PD-L2 monocyte expressions and

increased plasma IL-10 concentration at D1-2 (r = 0.58;

P = 0.001 and r = 0.45; P = 0.014, respectively) and D3-5

(r = 0.45; P = 0.015 and r = 0.53; P = 0.003, respectively)

(Figure 4c, d). Of note, no correlations were found

between PD-1/PD-L-related molecule expressions on

CD4+ lymphocytes and changes in plasma IL-10 concen-

tration (data not shown). Also, for all of these observations

made for percentage of positive cells, similar correlations

were obtained when flow cytometry results were expressed

as MFI (data not shown).
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Figure 1 PD-1, PD-L1, and PD-L2 measurements on circulating CD4+ lymphocytes and monocytes in septic shock patients and healthy

volunteers. PD-1-related molecule expressions were measured on circulating monocytes (a) and CD4+ lymphocytes (b) in whole blood from

healthy volunteers (n = 49) and septic shock patients at day 1 to 2 (D1-2) (n = 37) and at day 3 to 5 (D3-5) (n = 56) after the onset of shock.

Results are presented as percentages of positive cells among total population of monocytes or CD4+ lymphocytes and as box-plots and

individual values. *P < 0.020, **P ≤ 0.002 (Mann-Whitney U test). A P value of less than 0.025 was considered statistically significant (with

correction for the number of tests). PD-1, programmed death-1; PD-L1, programmed death-ligand 1; PD-L2, programmed death-ligand 2.
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Decreased lymphocyte proliferation after septic shock

In an attempt to begin to address the biological signifi-

cance of these changes in PD-1 expression to the devel-

opment of sepsis-induced lymphocyte dysfunction,

freshly isolated PBMCs from septic shock patients and

healthy volunteers were assessed for their capacity to

respond to PHA. As expected, we observed that lym-

phocyte proliferation was significantly reduced in

patients in comparison with healthy volunteers (P <

0.001) (Figure 5a). Interestingly, in patients, a significant

negative correlation was observed between this reduced

proliferation and PD-1 (r = -0.81 with P = 0.003) (Figure

5b) or PD-L1 (r = -0.63 with P = 0.039) (data not

shown) overexpression on circulating CD4+ lympho-

cytes. Similar results were obtained when PD-1 and PD-

L1 staining was expressed as MFI (r = -0.80 with P =

0.003 and r = -0.63 with P = 0.038, respectively).

Discussion
PD-1 and its ligands, PD-L1 and PD-L2, belong to the

B7-CD28 family of molecules [11]. Co-ligation of T-cell

receptor with the PD-1 system is thought to induce an

inhibitory signal in T cells characterized by cell cycle

arrest, inability to proliferate, and reduced cytokine

synthesis (interferon-gamma (IFN-g) or IL-2 or both

[21-24]). The co-inhibitory PD-1 system has been stu-

died mainly in viral diseases and oncology. This system

may be used by viral pathogens or cancer cells to evade

the host’s immune response [11]. Of note, in virus-

infected patients, CD8+ T cells overexpressing PD-1 (in

comparison with healthy volunteers) exhibit a so-called

‘exhaustion profile’ as they produced less IFN-g follow-

ing antigen stimulation, had reduced cytotoxic activity,

and had decreased proliferation in response to specific

antigens [25-27].

Table 2 PD-1-related molecule expressions as mean of fluorescence intensity on leukocytes in septic shock patients

and healthy volunteers

CD4+ T cells CD8+ T cells Monocytes

PD-1 PD-L1 PD-L2 PD-1 PD-1 PD-L1 PD-L2

Healthy volunteers Median 8.7 11.5 4.9 13.6 12.3 16.9 8.9

IQR (7.8-10.5) (10.1-12.0) (4.5-5.6) (11.1-20.4) (10.1-15.8) (15.3-18.2) (7.7-9.8)

Median 13.1 11.4 6.0 18.1 17.4 22.0 11.6

Day 1-2 IQR (11.4-19.7) (9.8-14.3) (4.8-7.1) (13.6-24.4) (14.6-24.0) (19.3-31.8) (9.9-13.6)

Septic shock patients P value <0.001 0.150 0.009 0.213 <0.001 <0.001 <0.001

Median 12.2 11.4 5.4 17.5 16.2 21.1 11.1

Day 3-5 IQR (10.8-15.7) (10.0-13.5) (4.4-7.1) (11.8-22.3) (13.0-20.4) (18.2-28.0) (9.6-13.3)

P value <0.001 0.289 0.232 0.306 <0.001 <0.001 <0.001

Programmed death-1 (PD-1)-related molecule expressions were measured on circulating CD4+ and CD8+ lymphocytes and monocytes in whole blood from

healthy volunteers (n = 49) and septic shock patients at day 1 to 2 (n = 37) and at day 3 to 5 (n = 56) after the onset of shock. Results are presented as mean

fluorescence intensity. A P value of less than 0.025 was considered statistically significant, and correction for the number of tests was performed (Mann-Whitney

U test). IQR, interquartile range.
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Interestingly, we demonstrated here for the first time

that typical sepsis-immune dysfunctions such as

decreased monocyte HLA-DR expression, decreased cir-

culating CD4+ T-cell count, and increased percentage of

regulatory T cells [6] were associated with an increased

PD-1 expression on CD4+ lymphocytes (and PD-L1 to a

lesser extent) and increased PD-1, PD-L1, and PD-L2

expressions on monocytes. Of note, during the review of
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presented as box-plots as well as individual values. The Mann-
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programmed death-ligand 1; PD-L2, programmed death-ligand 2.
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Figure 4 Plasma IL-10 concentration and PD-1 expression in

patients with septic shock. (a) Plasma IL-10 concentration was

measured in survivors and non-survivors at day 1 to 2 (D1-2) (n =

23 and n = 6, respectively) and at day 3 to 5 (D3-5) (n = 24 and n =

5, respectively) after septic shock. Results are presented as box-plots

and as individual values, and horizontal lines represent medians. The

Mann-Whitney U test was performed. (b-d) Correlations between

increased plasma IL-10 concentration and increased PD-1 (b), PD-L1

(c), and PD-L2 (d) expressions on monocytes were calculated at D1-

2 and D3-5 in 29 patients with septic shock. The Spearman

correlation test was used to assess statistical significance. IL-10,

interleukin-10; PD-1, programmed death-1; PD-L1, programmed

death-ligand 1; PD-L2, programmed death-ligand 2.
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this article, a study including 19 patients with septic

shock confirmed that PD-1 expression on CD4+ lym-

phocytes and PD-L1 expression on monocytes were ele-

vated in comparison with healthy volunteers [28].

Moreover, we observed a significant inverse correlation

between increased PD-1 and PD-L1 CD4+ lymphocyte

expressions and decreased PHA-induced lymphocyte

proliferation in patients with septic shock. Such inverse

correlations have been described in patients with hepati-

tis B [29] and in patients with HIV [14]. Additionally,

we observed a significant correlation between increased

plasma IL-10 concentration and increased PD-1-related

molecule expressions on monocytes from patients with

septic shock. Recently, in an HIV-infected patient

cohort, such a correlation was described and implicated

in the reduced CD4+ T-cell proliferation observed in

these patients [20]. In accordance with these observa-

tions, we recently showed not only that the increased

septic blood levels of IL-10 are reduced but also that

the rise in lipopolysaccharide-induced IL-10 release by

septic mouse macrophages is lost in animals that are

genetically deficient (knockout) in functional PD-1 [15].

Overall, our results therefore suggest a link between

increased PD-1-related molecule expressions and the

development of sepsis-induced immune dysfunctions.

Surprisingly, we found no PD-1 overexpression on cir-

culating CD8+ T cells in septic patients. This is diver-

gent from the observations made in patients with HIV,

hepatitis B virus, or hepatitis C virus [13,25,26,29]. One

explanation may be that CD8+ cells, which play a promi-

nent role in viral infections, may be less central to the

response patients make to septic shock. This is because

this response is thought mainly to be a response to a

bacterial challenge. Of note, Zhang and colleagues [28]

recently described an increased PD-1 expression on

CD8+ lymphocytes in a small cohort of 19 septic shock

patients in comparison with healthy volunteers. Thus,

this observation deserves to be further examined in a

larger cohort of septic patients.

Of note, in our cohort, non-survivors displayed higher

monocyte PD-L1 expression in comparison with survi-

vors, and patients who went on to develop secondary

nosocomial infections had significantly higher PD-1 and

PD-L2 monocyte expressions in comparison with

patients who remained free of secondary infection. This

is consistent with data observed in a murine model of

sepsis, in which after the induction of polymicrobial sep-

tic shock by cecal ligation and puncture (CLP), PD-1

knockout mice showed a markedly improved capacity to

clear bacteria, both at the local (peritoneal lavage) and

the systemic (blood) level, in comparison with wild-type

mice [15]. Moreover, PD-L1 blockade significantly

improved survival, prevented sepsis-induced depletion of

lymphocytes, increased tumor necrosis factor-alpha and

IL-6 productions, decreased IL-10 production, and

enhanced bacterial clearance in mice after CLP [30].

Similar data were recently observed ex vivo in patients

with septic shock [28]. Importantly, we show here that

the PD-1 system not only may play a role in immune

dysfunction but also may be an indicator of septic mor-

tality and subsequent infectious episodes in septic

patients.

Increased expressions of co-inhibitory as well as

decreased expressions of co-stimulatory members of the
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B7-CD28 family of molecules have been described in

ICU patients. In trauma patients, CTLA-4 and PD-1

expressions were elevated in anergic T cells [31]. Similar

results were observed at the mRNA level in trauma

patients with multiple organ dysfunction syndrome [32].

In mice, it was recently shown that B- and T-lympho-

cyte attenuator (BTLA) (another co-inhibitory molecule)

was induced at the early phase of Listeria monocytogenes

infection [33]. Moreover, CD3 expression on T lympho-

cytes was reduced in septic shock patients in compari-

son with healthy volunteers [34]. Similar decreased

expression was observed at the mRNA level in patients

developing sepsis or severe sepsis postoperatively [35]

and in trauma patients [36]. Finally, CD28 expression

(delivering a positive co-signal after ligation to B7.1 or

B7.2) was depressed in trauma patients’ anergic T cells

and may contribute to incomplete activation of these

cells [36]. In total, these alterations may play a major

role in lymphocyte anergy that has been observed in

ICU patients and that has been associated with

increased mortality and risk of nosocomial infections.

They could thus represent potential therapeutic targets

and associated markers to guide future immunothera-

peutic decisions [37].

The present study has some limitations. We could not

address the involvement of the PD-1 system in sepsis-

induced apoptosis. Indeed, PD-1 was first described as

being implicated in programmed cell death [38]. It was

also recently described that PD-1+CD8+ T cells were

more sensitive to both spontaneous and Fas-induced

apoptosis in comparison with PD-1-CD8+ T cells [14].

Most interestingly, it has recently been reported that

in vivo blockade of PD-1 could decrease T- and B-cell

apoptosis and improve survival in CLP-induced septic

mice [39]. However, given the technical difficulties

encountered in the measurement of apoptosis in clinical

samples, let alone in those of minimal-volume septic

shock patients’ whole blood samples that are already

dedicated to numerous assays [40], this aspect could not

be specifically addressed here and thus deserves to be

investigated in studies specifically dedicated to examin-

ing that process/index.

Conclusions
We describe here for the first time that PD-1/PD-L-

related molecule expression is markedly induced on cir-

culating cells of patients with septic shock. Moreover,

increased PD-1-related molecule expression appears to

be correlated with the development of immune dysfunc-

tions, secondary nosocomial infections, and death. We

believe that, although these findings need to be con-

firmed in a larger multicentered clinical study, our

results are in line with the recent commentary of

Hotchkiss and Opal [37], which proposes the use of

anti-PD-1 blocking antibodies in septic patients given

that these molecules are already being tested (and well

tolerated) in clinical trials in patients with cancer.

Although this hypothesis remains a speculation at the

moment and further functional studies are required to

understand the mechanism of action of PD-1-related

molecules in patients with septic shock, the PD-1 family

of receptor and ligands could represent a potential inno-

vative therapeutic strategy with which to restore

immune functions and may further alter morbidity/mor-

tality seen with sepsis, and this is in line with the con-

cept of tailored immunotherapy [41]. Through their

changing expression (alone or together with other mar-

kers), PD-1 molecules could give us insight into the

immune status of the septic individual as well as their

possible responsiveness to various established or novel

therapeutic approaches (or both) used in these critically

ill patients.

Key messages
• Programmed death-1 (PD-1)-related molecule

expressions are increased on circulating monocytes

and CD4+ lymphocytes after septic shock in compar-

ison with healthy volunteers and trauma patients.

• Increased PD-1-related molecule expressions on

monocytes are significantly associated with increased

mortality and occurrence of secondary nosocomial

infections after septic shock.

• Augmented PD-1-related molecule expressions

after septic shock are associated with immune dys-

functions such as decreased mitogen-induced lym-

phocyte proliferation and increased circulating

interleukin-10 concentration.
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