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1
Abstract

Introduction: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate
in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on
cancer risk, we searched for novel components through protein physical interaction screens.

Methods: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications
and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and
functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway
components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the
downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed
for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for
associations with BrCa risk.

Results: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in
human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51
and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine
embryonic fibroblasts showed moderate sensitivity to g-irradiation relative to controls and reduced formation of
Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by
accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells.
However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa
familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or
BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and
rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively.

Conclusions: While the present study expands on the role of MRG15 in the control of genomic stability, weak
associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2

mutation carriers.

Introduction

Genes that when mutated cause Fanconi anemia (FA)

and/or influence breast cancer (BrCa) susceptibility

functionally converge on a homology-directed DNA

damage repair process [1]. That is, 15 FA genes

(FANCs) and genes with high-penetrance, moderate-

penetrance or low-penetrance mutations for BrCa

encode for proteins cooperating in a defined FA/BrCa

signaling pathway [2-6]. Remarkably, germline bi-allelic

and mono-allelic loss-of-function mutations in four of

these genes cause FA and BrCa, respectively: FANCD1/

BRCA2 [7,8], FANCJ/BRIP1 [9-12], FANCN/PALB2

[13-15], and the recently identified FA-like/BrCa

mutated gene FANCO/RAD51C [3,4]. These observa-

tions partially endorse perturbation of the DNA damage

response as fundamental in leading to breast carcino-

genesis. In addition to the main effects on susceptibility,

variation in RAD51 - a gene encoding for a component

of this pathway and paralog of RAD51C - modifies BrCa

risk among BRCA2 but not BRCA1 mutation carriers

[16]. Notably, RAD51 interacts with BRCA1 and BRCA2

[17,18] to regulate double-strand breaks repair by

homologous recombination [19].

While genes with low-penetrance and/or modifier

alleles can be linked to diverse biological processes, the

FA/BrCa pathway is still incomplete [2,20]. To gain

deeper insight into the molecular and functional FA/

BrCa wiring diagram and the fundamental biological

process(es) influencing cancer risk, we screened for

novel protein physical interactions of known pathway

components. Consistent with previous results on protein

complex memberships [21,22], we identified a physical

interaction between PALB2 and MRG15. Results from

the analysis of MRG15/MORF4L1 in unclassified FA

patients and familial BrCa cases did not reveal patholo-

gical alterations; nonetheless, a weak modifier effect

among carriers of BRCA2 mutations cannot be ruled

out.

Materials and methods

Yeast two-hybrid design and screens

Following indications of increased sensitivity in the yeast

two-hybrid (Y2H) system [23,24], we designed multiple

baits of each FA/BrCa pathway protein according to

family domains defined by Pfam [25] and intrinsically

disordered regions predicted by PONDR [26], as well as

full-length ORFs. Proteome-scale Y2H screens were car-

ried out using the mating strategy [27] and two different

cDNA libraries as sources of prey, of human fetal brain

or spleen (ProQuest; Invitrogen, Carlsbad, CA, USA).

Bait fragments were obtained by RT-PCR using cDNAs

derived from healthy lymphocytes, with the primers
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indicated in Additional file 1 and were subsequently

cloned into the Gateway pDONR201 (Invitrogen) vector.

Baits were 5’-sequenced so that they were confirmed,

they did not show changes relative to publicly available

sequence information and they were in-frame. Frag-

ments were then transferred to the pPC97 yeast expres-

sion vector (Invitrogen) to be fused with the DNA-

binding domain of Gal4. Constructs were transformed

into the AH109 (Clontech, Palo Alto, CA, USA) yeast

strain for screens (Y187 mate strain) using selective

medium lacking histidine and supplemented with 10

mM 3-amino-triazole (Sigma-Aldrich, Taufkirchen, Ger-

many) to test the interaction-dependent transactivation

of the HIS3 reporter. Baits had previously been exam-

ined for self-activation at 3-amino-triazole concentra-

tions in the range 10 to 80 mM. Under these

conditions, >107 transformants were screened for each

bait. Positive colonies were grown in selective medium

for three cycles (10 to 15 days) to avoid unspecific

cDNA contaminants, prior to PCR amplification and

sequence identification of prey [28].

Microarray data analysis

The similarity of expression profiles was evaluated by

calculating Pearson correlation coefficients using nor-

malized (gcRMA) expression levels from the Human

GeneAtlas U133A dataset [29] [Gene Expression Omni-

bus:GSE1133]. Comparisons were made for all possible

microarray probe pairs.

Co-immunoprecipitation and co-affinity purification

assays

For co-affinity purification (co-AP) assays, plasmids (1.5

μg) were transfected into HEK293/HeLa cells in six-well

format using Lipofectamine 2000 (Invitrogen). Cells

were then cultured for 48 hours and lysates prepared in

buffer containing 50 mM Tris-HCl (pH 7.5), 100 to 150

mM NaCl, 0.5% Nonidet P-40, 1 mM ethylenediamine

tetraacetic acid, and protease inhibitor cocktail (Roche

Molecular Biochemicals, Indianapolis, IN, USA). Lysates

were clarified twice by centrifugation at 13,000 × g

before purification of protein complexes using sepharose

beads (GE Healthcare, Piscataway, NJ, USA) for 1 hour

at 4°C. Purified complexes and control lysate samples

were resolved in Tris-glycine SDS-PAGE gels, then

transferred to Invitrolon PVDF membranes (Invitrogen)

or IMMOBILON PVDF (Millipore Corporation, Biller-

ica, MA, USA), and target proteins were identified by

detection of horseradish peroxidase-labeled antibody

complexes with chemiluminescence using the ECL/ECL-

Plus Western Blotting Detection Kit (GE Healthcare) or

the Pierce ECL Western Blotting Substrate (Thermo

Fisher Scientific, Waltham, MA, USA) following stan-

dard protocols. In some cases, samples were resolved in

NuPAGE Novex 4 to 12% Bis-Tris or 3 to 8% Tris-Acet-

ate Gels (Invitrogen). GST/GST-importin co-APs were

performed as previously described [30].

For endogenous co-immunoprecipitation (co-IP)

assays, cell cultures were washed with PBS and lysed at

0.5 × 107 to 1 × 107 cells/ml in NETN buffers (20 mM

Tris pH 7.5, 1 mM ethylenediamine tetraacetic acid and

0.5% NP-40) containing 100 to 350 mM NaCl plus pro-

tease inhibitor cocktail (Roche Molecular Biochemicals).

In some assays, supplementary phosphatase (10 to 50

mM NaF) or proteasome (MG132; Sigma-Aldrich) inhi-

bitors were added to the solutions. Lysates were pre-

cleared with protein-A sepharose beads (GE Healthcare),

incubated with antibodies (2.5 to 5 μg) for 2 hours to

overnight at 4°C with rotation, and then with protein-A

beads for 1 hour at 4°C with rotation. Beads were col-

lected by centrifugation and washed four times with

lysis buffer prior to gel analysis.

Survival and iRNA-based assays

For evaluation of survival, 3 × 105 cells were seeded in

duplicate in 60-mm dishes and left to recover for 24

hours. Cultures were then exposed to mitomycin-C or

g-radiation at the indicated doses. Next, 72 hours after

the treatment, cells were rinsed with PBS, harvested by

trypsinization and counted. Survival is reported as the

percentage relative to untreated controls. Each siRNA

(Additional file 2) was transfected for two successive

rounds (24 hours apart) at a final concentration of 20

nM using Lipofectamine RNAiMAX reagent (Invitrogen)

according to the manufacturer’s instructions. After 4

days, cultures were treated with mitomycin-C or g-radia-

tion. Stealth siRNA Lo GC (12935-200; Invitrogen) was

used as a negative control.

Immunofluorescence microscopy and antibodies

Cells were grown on glass cover slips and fixed using

standard paraformaldehyde solution. Pre-extraction with

PBS containing 0.5% Triton X-100 for 5 minutes at

room temperature was used in some experiments. Stain-

ing was performed overnight at 4°C using appropriate

primary antibody dilutions. Samples were then washed

three times with 0.02% Tween 20 in PBS, incubated for

30 minutes at room temperature with Alexa fluor-conju-

gated secondary antibodies (Molecular Probes, Invitro-

gen), washed three times with 0.02% Tween 20 in PBS,

and mounted on 4,6-diamidino-2-phenylindole-contain-

ing VECTASHIELD solution (Vector Laboratories,

Peterborough, UK). Images were obtained using a Leica

CTR-6000 microscope (Leica, Buffalo Grove, IL, USA).

Purified negative control IgGs of different species were

purchased from Santa Cruz Biotechnology, Inc. (Santa

Cruz, CA, USA). Anti-tag antibodies used were anti-HA

(12CA5 and Y11; Santa Cruz Biotechnology), anti-HIS
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(H15; Santa Cruz Biotechnology) and anti-MYC (9E10;

Sigma-Aldrich). Other antibodies used were anti-ACTN

(ACTN05 C4; Abcam, Cambridge, UK), anti-Actb (8226;

Abcam), anti-ATR (09-070; Millipore), anti-BRCA2 (Ab-

1; Calbiochem-EMD Biosciences, San Diego, CA, USA),

anti-CHEK2 (H300; Santa Cruz Biotechnology), anti-

CHUK (ab54626; Abcam), anti-FANCD2 (ab2187;

Abcam), anti-phospho-Ser139-H2AX (JBW301; Milli-

pore), anti-KPNA1 (ab6035 and ab55387; Abcam), anti-

MRG15 (N2-14; Novus Biologicals, Littleton, CO, USA;

1-235 ab37602; Abcam; and 15C [31-34]), anti-NFKB1

(H119; Santa Cruz Biotechnology), anti-p84 (ab487;

Abcam), anti-PALB2 (675-725; Novus Biologicals), anti-

PPHLN1 (ab69569; Abcam), anti-RAD51 (H92; Santa

Cruz Biotechnology), anti-RPA1 (C88375; LifeSpan

BioSciences, Seattle, WA, USA), anti-TOP3A (N20;

Santa Cruz Biotechnology), anti-TRF2 (36; BD Trans-

duction Laboratories, Mississauga, ON, USA), anti-

TSNAX (3179C2a; Santa Cruz Biotechnology), and anti-

USP1 (AP130a; Abgent, San Diego, CA, USA). Second-

ary horseradish peroxidase-linked antibodies were pur-

chased from GE Healthcare and Abcam.

Caenorhabditis elegans studies

Worms were cultured according to standard protocols,

maintained on NGM agar seeded with Escherichia Coli

OP50 [35]. The Bristol N2 strain was used as the wild-

type strain. Strains carrying mutations studied here were

provided by the Caenorhabditis Genetics Center (Uni-

versity of Minnesota, Minneapolis, MN, USA): DW104

brc-2(tm1086) III/hT2[bli-4(e937) let-?(q782) qIs48](I;

III); VC1873: rad-51(ok2218) IV/nT1[qIs51](IV;V); and

XA6226 mrg-1(qa6200)/qC1 dpy-19(e1259) glp-1(q339)

[qIs26]. Gonads from gravid adults were dissected out

with fine-gauge needles to perform a standard immuno-

fluorescence. Primary antibodies were rat anti-RPA-1

(1:500) and rabbit anti-RAD-51 (1:100). Secondary anti-

bodies were anti-rat Alexa 488 and anti-rabbit Alexa

568 (Invitrogen). Gonads were mounted with ProLong®

Gold antifade reagent with 4,6-diamidino-2-phenylindole

(Invitrogen). The cell-permeable SYTO 12 Green-Fluor-

escent Nucleic Acid Stain (Invitrogen) was used to label

apoptotic cell death.

Study samples, genotyping and statistical analysis

All participants were enrolled under Institutional Review

Boards or ethics committee approval at each participat-

ing center, and gave written informed consent. Research

was conducted in accordance with the Declaration of

Helsinki.

The MORF4L1 genomic sequence was obtained from

the University of California at Santa Cruz Genome

Browser version hg18 and intronic primers were

designed using the web-based program Primer3 [36].

Extracts from 13 unclassified FANCD2 monoubiquitiny-

lation-proficient FA cell lines, without mutations in

FANCJ, FANCD1, FANCN, FANCO, or FANCP, and

including six cases with deficient RAD51 nuclear foci

formation, were examined by immunoblotting using the

anti-MRG15 15C antibody [31-34]. These samples were

also sequenced on all annotated MORF4L1 exons and

exon-intron boundaries using primers shown in Addi-

tional file 3.

BRCA1 and BRCA2 mutation carriers were enrolled

through 18 centers participating in the CIMBA and fol-

lowing previously detailed criteria [37,38]. The following

individual and clinical data were collected: year of birth,

mutation description, ethnicity, country of residence,

age at last follow-up, age at diagnosis of BrCa or at

ovarian cancer diagnosis, age at bilateral prophylactic

mastectomy, and age at bilateral prophylactic

oophorectomy.

Genotyping was performed at the corresponding cen-

ters using 5’ to 3’ nuclease-based assays (TaqMan;

Applied Biosystems, Foster City, CA, USA), except for

an iPLEX assay carried out at the Queensland Institute

of Medical Research (Brisbane, Australia) and containing

EMBRACE, FCCC, GEORGETOWN, HEBCS, HEBON,

ILUH, kConFab, Mayo Clinic, PBCS, SWE-BRCA and

UPENN carriers. Results of these assays were centralized

and analyzed for quality control as previously described

[37]. Based on these criteria, one study was excluded

from the analysis.

Hazard ratio (HR) estimates were obtained using Cox

regression models under both standard regression analy-

sis and under a weighted cohort approach to allow for

the retrospective study design and the nonrandom sam-

pling of affected and unaffected mutation carriers [39].

Analyses were stratified by birth cohort (<1940, 1940 to

1949, 1950 to 1959 and ≥1960), ethnicity and study cen-

ter. A robust variance estimate was used to account for

familial correlations. Time to diagnosis of BrCa from

birth was modeled by censoring at the first of the fol-

lowing events: bilateral prophylactic mastectomy, BrCa

diagnosis, ovarian cancer diagnosis, death and last date

known to be alive. Subjects were considered affected if

they were censored at BrCa diagnosis and unaffected

otherwise. The weighted cohort approach involves

assigning weights separately to affected and unaffected

individuals such that the weighted observed incidences

in the sample agree with established estimates for muta-

tion carriers [39]. This approach has been shown to

adjust for the bias in the HR estimates resulting from

the ascertainment criteria used, which leads to an over-

sampling of affected women. Weights were assigned

separately for carriers of mutations in BRCA1 and

BRCA2 and by age interval (<25, 25 to 29, 30 to 34, 35

to 39, 40 to 44, 45 to 49, 50 to 54, 55 to 59, 60 to 64,
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65 to 69 and ≥70). P values were derived from the

robust score test.

Results

Protein physical interactions

The Y2H system was used to identify physical interac-

tions for components of the FA/BrCa signaling pathway.

In an initial phase, we screened for interactors of 12 pro-

teins, which included the products of the FANCJ and

FANCN genes (BRIP1 and PALB2, respectively)

[9-11,15], CHEK2 as linked to BrCa risk [40], and known

molecular and/or functional interactors of FA/BrCa pro-

teins (ATR, BLM, ERCC1, ERCC4, H2AFX, RAD51,

TOP3A, TOPBP1 and USP1; see Additional file 1). To

increase interactome coverage, we used specific protein

domains or defined regions as baits, in addition to full-

length ORFs, and screened >107 transformants belonging

to two different cDNA sources (see Materials and meth-

ods). Multiple baits were thus screened for each protein

based on Pfam-based family domain similarities [25] and

on predicted intrinsically disordered regions using the

PONDR algorithm [26]. Intrinsically disordered regions

are defined as lacking a fixed tertiary structure and

appear to be more common in nuclear proteins and

involved in the cell cycle, transcription and signaling reg-

ulation processes [41,42]. A total of 33 baits were

screened for the 12 target proteins (Additional file 1).

Two previously demonstrated and six novel, potential

physical interactions were identified through the Y2H

screens (Additional file 4). Consistent with the physical

interaction between their products, analysis of transcrip-

tomic data identified significant expression correlations

across normal human samples for most gene pairs

(Additional file 5). The known interactions were BLM-

MLH1 [43] and ERCC4-ERCC1 [44], through a pre-

dicted disordered region and a family domain, respec-

tively (Additional file 6). The potential physical

interactions included a previously described protein

complex membership between PALB2 and MRG15 (also

known as the MORF4-like 1 gene product) [21,22]. To

corroborate the Y2H results, we performed co-AP and

co-IP assays, which suggested reliability for four of the

interactions: CHEK2-NFKB1, PALB2-MRG15, TOP3A-

TSNAX and USP1-KPNA1 (Additional file 7). TOP3A

was originally co-purified with, among others, BLM,

FANCA and replication proteins [45]. TSNAX (also

known as translin (TSN)-associated factor X) was pre-

viously found to interact physically with MORF4 family

associated protein 1-like 1 [46], and USP1 and KPNA1

were co-purified [47]. With the exception of MRG15

(see below), however, protein depletion assays did not

show cellular sensitivity to g-irradiation or mitomycin-C

for any of the potential pathway components (siRNAs

detailed in Additional file 2).

MRG15 is a chromo domain-containing protein pre-

sent in histone acetyltransferase and deacetylase com-

plexes [34], and the MRG15 ortholog in Drosophila

melanogaster has been co-purified in histone chaperone

complexes with a known BRCA2 interactor in humans,

EMSY [48]. Consistent with a potential role in DNA

damage repair, EAF3, the MORF family ortholog in Sac-

charomyces cerevisiae, was shown to interact genetically

with radiation-sensitive (RAD) genes [49]. As previously

shown [21,22], MRGX, a close homolog of MRG15, also

co-purified with PALB2 (Additional file 8). Consistent

with the interaction domains delineated by the Y2H

results, a MRG15 mutant lacking the C-terminal leucine

zipper domain but not the N-terminal chromo domain

was unable to interact with PALB2 (Additional file 8).

Similarly, the helix-loop-helix region in MRGX was

necessary for co-purification with PALB2 (Additional

file 8). Together, these results support the identification

of a physical interaction between PALB2 and MRG15,

and probably MRGX.

MRG15 and DNA damage repair

According to the putative role of MRG15 in the repair

of DNA double-strand breaks, murine embryonic fibro-

blasts (MEFs) derived from littermate embryos with the

Morf4l1-/- genotype showed greater sensitivity (measured

as cellular survival) to g-irradiation than wild-type con-

trols (Figure 1). The level of radiation sensitivity was

moderate when compared with Atm-deficient MEFs

(Figure 1). Milder sensitivity to mitomycin-C of cell cul-

tures depleted of MRG15, relative to BRCA2 and

PALB2, was also previously described [21]. In our study,

however, deficiency of Mrg15 and depletion of MRG15

in MEFs and in HeLa and MCF10A cells, respectively,

did not lead to a statistically significant increase in mito-

mycin-C-induced cell death or to G2/M phase cell cycle

arrest and FANCD2 monoubiquitinylation (Additional

file 9 shows results for HeLa cells). The observed milder

effect and the use of different cell types may explain the

discrepancy regarding mitomycin-C sensitivity when

MRG15/Mrg15 is fully or partially depleted.

Contrary to the results for MRG15/Mrg15, radiation

sensitivity phenotypes were not observed with assays for

MRGX - also consistent with the previous study [21] -

and for the potential novel interactor of TOP3A,

TSNAX (data not shown). In agreement with the known

role of TOP3A in telomere maintenance [50], however,

an EmGFP-tagged TSNAX protein co-localized in speci-

fic nuclear structures with the telomere-binding protein

TRF2 (Additional file 10). The major partner of

TSNAX, TSN, was initially identified as a protein that

binds to breakpoint junctions [51] and with high affinity

to repeat sequences [52]. Although there is no evidence

linking TSN to processes where recombination is
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necessary, there is some suggestion of a role in the DNA

damage response [53]. Intriguingly, telomere shortening

has been linked to FA pathology [54-56], and some

FANC products were demonstrated to participate in tel-

omere maintenance [57-59]. These observations lead to

speculation that interactions between TSN-TSNAX-

TOP3A may play a role in DNA damage repair and tel-

omere maintenance by signaling through the FA/BrCa

pathway.

In previous work, MRG15 appeared necessary for the

association of BRCA2/PALB2/RAD51 with chromatin

and the formation of nuclear foci following g-irradiation

[21]. In keeping with these observations, Morf4l1-/-

MEFs showed lower numbers of Rad51 nuclear foci

after g-irradiation - discovered across time points and

using clones or unselected cell cultures (Figure 2a shows

results for clones). On the other hand, Morf4l1-/- MEFs

showed lower expression levels of Brca1 and Brca2, but

results were variable for Rad51 (Figure 2b) - Palb2 levels

could not be assessed because the antibodies tested did

not cross-react in mouse cell extracts. The result for

Brca2 appeared to disagree with a previous study using

human cell models [22]; however, another study showed

reduction of BRCA2 through transient depletion of

MRG15 but not MRGX [21]. This relationship for

MRG15 could therefore be reminiscent of the role of

PALB2 in stabilizing BRCA2 [60]. Together, these data

suggest the involvement of MRG15 in the repair of

DNA double-strand breaks through relationships with

BRCA2, PALB2 and RAD51.

Caenorhabditis elegans mutants of MRG15 and BRCA2

orthologs

The BRCA2 and RAD51 C. elegans orthologs (named

BRC-2 and RAD-51, respectively) interact physically and

regulate homologous recombination, so that brc-2

mutants fail to locate RAD-51 to sites of double-strand

breaks present in meiosis or induced by DNA damage

agents [61]. The hallmarks of brc-2 mutants in the

germline are therefore lack of RAD-51 foci formation in

parallel with an accumulation of RPA-1 at presumptive

double-strand breaks, chromosomal abnormalities at

diakinesis and, consequently, an increase in apoptotic

corpses [61,62]. C. elegans has an ortholog for the

MORF human protein family (named MRG-1), which,

like its mammalian counterparts, associates with chro-

matin and is required for embryo survival and cell pro-

liferation [63,64]. On the strength of this evidence, the

functional link between BRC-2/BRCA2 and MRG-1/

MRG15 was further investigated by assessing the pheno-

copy between brc-2 and mrg-1 mutants (tm1086 and

qa6200, respectively).

Similar to brc-2 mutants, disruption of mrg-1 was

linked to a remarkable increase in the number of RPA-1

foci in meiotic cells relative to wild-type animals (Figure

3a). While a wild-type animal presented, on average,

three or four RPA-1 foci per nucleus, mrg-1 mutants

commonly exhibited nuclei with more than 10 foci (Fig-

ure 3b). Two different patterns for RPA-1 staining were

observed among mrg-1 mutant germ cell nuclei: one

consisted of discrete foci similar to those observed in

brc-2 mutants (Figure 3a, arrow), while the other

showed more intense and diffuse staining (Figure 3a,

arrowhead). Although RAD-51 staining was mainly

nuclear in mrg-1 mutants - contrary to brc-2 mutants

[61] - it was rather diffuse and often intense when com-

pared with the usual pattern of discrete foci only

observed in wild-type animals (Figure 3a and Additional

file 11). Finally, mrg-1 mutants frequently showed aber-

rant chromosomal compaction (Figure 3a, asterisk) and,

as expected, an increase in cell death revealed by SYTO-

12 staining (Figure 3c). Together, these data further

endorse the involvement of MRG-1/MRG15 in the con-

trol of genomic stability and suggest that perturbation

of its function may activate the nonhomologous end-

joining DNA damage repair process, as proposed for

alteration of BRC-2 [61].

MORF4L1, Fanconi anemia and breast cancer risk

Having identified molecular and functional relationships

for MRG15 in the repair of DNA double-strand breaks,

we next evaluated the existence of alterations or muta-

tions of MRG15/MORF4L1 in FA and BrCa patients.

Immunoblotting of MRG15 using extracts of 13

FANCD2-monoubiquitinylation-positive FA cell lines -

excluded for genetic defects in the downstream genes

FANCD1/BRCA2, FANCJ/BRIP1, FANCN/PALB2,

FANCO/RAD51C and FANCP/SLX4, and thus unclassifi-

able in terms of subtype - failed to show gross reduction
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Figure 1 Mrg15 deficiency confers sensitivity to g-radiation.
Mrg15-null murine embryonic fibroblasts (MEFs) show intermediate
sensitivity to g-radiation relative to controls (WT, wild-type; Morf4l1-/-,
Mrg15-deficient; and Atm-/-, Atm-deficient). *Significant differences
between WT and Morf4l1-/- MEFs (one-tailed t test, P < 0.01).
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of protein expression. This negative result included the

analysis of six patient-derived FA cell lines defective for

RAD51 foci (Additional file 12). Sequencing of

MORF4L1 in these lines detected a few base substitu-

tions and single base deletions deeper in the introns,

and only annotated common variants in the exons (data

not shown). Parallel to FA, we hypothesized that germ-

line mutations or common variants in MORF4L1 may

confer moderate/low risk of BrCa and/or modify cancer

risk among BRCA1 and/or BRCA2 mutation carriers.

Direct sequencing of MORF4L1 exons and flanking

sequences in 300 patients with strong familial aggrega-

tion of BrCa but without detected mutations in BRCA1

or BRCA2, and belonging to two populations (United

Kingdom, Institute of Cancer Research; Spain, Catalan

Institute of Oncology), did not reveal pathogenic

changes either. This negative result is consistent with a

recent report in a similar setting by another group [65].

Nevertheless, given the extremely low frequency of

high/moderate-penetrance mutations of other compo-

nents of the FA/BrCa pathway [3,12,14] and the possible

involvement in other cancer types [66], further investi-

gation of MORF4L1 may be warranted.

The public results of the genome-wide association

study conducted by the CGEMS initiative [67] suggest

that common variation at the linkage disequilibrium

block containing MORF4L1 is associated with BrCa risk

(P2df < 0.01) (Figure 4a). Based on this observation, we

genotyped two SNPs in a series of 9,573 BRCA1/2

mutation carriers collected through 18 centers partici-

pating in CIMBA: rs7164529 and rs10519219, with D’ =

1 and r2 = 0.08. After quality control and Hardy-Wein-

berg equilibrium checks, Cox regression analysis

revealed no significant associations between the SNPs

and BrCa risk for BRCA1 or BRCA2 mutation carriers

(rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14,

respectively; rs10519219, Ptrend = 0.92 and 0.72, P2df =

0.76 and 0.07, respectively; Table 1). There was some

suggestion of association with increased BrCa risk for

BRCA2 mutation carriers under the recessive model for

rs10519219 (P = 0.033) (Figure 4b and Additional file

13). Under the multiplicative model, there was no evi-

dence of heterogeneity in the HRs of rs7164529 between

studies (P = 0.66 and 0.21 for BRCA1 and BRCA2 muta-

tion carriers, respectively) but some suggestion for

rs10519219 among BRCA2 mutation carriers (P =

0.041). If an effect exists, the HR estimates for BRCA2

mutation carriers due to minor genotypes of rs7164529

or rs10519219 are in the opposite direction to those

obtained in the general population (Table 1). Studying

cancer susceptibility in mouse models has revealed

opposite allele effects across different genetic back-

grounds [68]. In this context, having a potential serial

model of function between BRCA2 and MRG15, the

(a) (b)

Figure 2 Mrg15 deficiency impairs Rad51 foci formation and reduces Brca1 and Brca2 levels. (a) Left panel: number of cells with Rad51
nuclear foci (>4 foci per nuclei) in wild-type and Morf4l1-/- murine embryonic fibroblast (MEF) clones after (16 hours) treatment with 10 Gy.
**Significant difference (two-tailed t test, P < 0.001). Right panel: representative images of Rad51 and pS139-H2ax immunodetection in cultures
counted above for foci. DAPI, 4,6-diamidino-2-phenylindole; IR, g-irradiated. (b) Levels of Brca1, Brca2 and Rad51, and control Actb, in whole cell
extracts of Morf4l1-/- MEFs and wild-type counterparts (three cell clones of each genotype are shown).

Martrat et al. Breast Cancer Research 2011, 13:R40

http://breast-cancer-research.com/content/13/2/R40

Page 7 of 14



effect of MORF4L1 alleles on BrCa risk might differ

depending on the genetic/functional status of BRCA2/

BRCA2: that is, wild-type in the general population ver-

sus altered or absent in BRCA2 mutation carriers. On

the other hand, common predisposition alleles differen-

tially associate with BrCa risk among BRCA1 and

BRCA2 mutation carriers [16,37,69], which suggests dif-

ferences in the influence of a given biological process on

carcinogenesis between the two types of carriers.

We performed a number of sensitivity analyses to

investigate the robustness of our results. Inclusion of

prophylactic oophorectomy as a time-dependent covari-

ate did not influence risk estimations (Pregression coefficients

> 0.10). Some suggestion of association was revealed

when prevalent cases, defined as those diagnosed >5

years before recruitment, were excluded from the ana-

lyses: rs7164529 per-allele model, BRCA2 n = 2,803, HR

= 1.09, 95% confidence interval = 1.00 to 1.18, P =

0.048; and rs10519219 recessive model, BRCA2 n =

2,633, HR = 1.78, 95% confidence interval = 1.12 to

2.87, P = 0.027. Finally, data were also analyzed using a

weighted cohort approach [39] to allow for the retro-

spective study design and, in particular, the nonrandom

sampling of affected and unaffected mutation carriers.

This yielded similar results to those shown in Table 1

for the per-allele and two-degrees-of-freedom models

(rs7164529, BRCA1 weighted HR (wHR) = 1.04 to 1.08,

BRCA2 wHR = 1.03 to 1.12; and rs10519219, BRCA1

wHR = 0.98 to 1.08, BRCA2 wHR = 0.95 to 1.59), but

the rs10519219 association under the recessive model
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Figure 3 Phenotypic study of Caenorhabditis elegans brc-2 and mrg-1 mutants. (a) Representative images of meiotic cells at the distal part,
near the gonad bend. RAD-51 foci are bright and nuclear in wild-type (WT) animals whereas RAD-51 foci appear less intense and weakly diffuse
in the cytoplasm, reduced but often dispersed and intense in the nuclei, or absent in brc-2, mrg-1 and rad-51 mutants, respectively. There are
more RPA-1 nuclear foci in each of the three mutants than in WT animals. 4,6-Diamidino-2-phenylindole (DAPI) panels are merged with the red
channel (for WT and brc-2 mutant) and with the green channel (for rad-51 mutant). *Abnormal chromosomal compaction. (b) Quantitation of
RAD-51 and RPA-1 foci per nuclei in several germ cell lines of WT animals and brc-2 and mrg-1 mutant animals. Number of cells scored (n) and
standard deviation of the mean indicated. **Significant differences relative to WT (Mann-Whitney U test, P < 0.001). (c) SYTO-12 staining in
synchronized adult worms. Left top panel: an animal heterozygous for the brc-2 mutation (according to green fluorescent protein expression at
the pharynx) shows WT SYTO-12 staining (that is, one to two labeled cells at the gonad bend). Right top and left bottom panels: an increase in
SYTO-12-positive cells in the germline of brc-2 and mrg-1 mutants, respectively. Right bottom panel: magnification of the highlighted area in the
left panel.
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was no longer statistically significant (BRCA2 wHR =

1.62, 95% confidence interval = 0.97 to 2.70, P = 0.062)

(Additional file 13). No evidence of heterogeneity was

observed in any case for the wHRs (P > 0.30).

Discussion

Given the evidence across biological levels and species

models, we hypothesized that perturbation of MRG15

function through genetic mutations or common alleles

might be at the root of some cases of FA and/or BrCa.

The results of our study, in addition to a recent publica-

tion on BrCa [65], indicate that in all probability the

germline mutations in MORF4L1, if any, are not at the

root of FA or BrCa. Next, analysis of common genetic

variation at the MORF4L1 locus in BRCA1 and BRCA2

mutation carriers has not identified significant associa-

tions under the principal models. However, weak asso-

ciations for risk among the latter group under the

additive (rs7164529) and recessive (rs10519219) models

might exist. Notably, in addition to the molecular and

functional data presented, while MRG15 was demon-

strated to co-purify with both BRCA1 and BRCA2, it

only appeared to be necessary for the recruitment of

BRCA2 (and PALB2/RAD51), but not of BRCA1, at

sites of DNA damage [21]. Taken together, these obser-

vations suggest that the potential link between

MORF4L1 and risk of BrCa warrants further assessment

in larger sets of BRCA2 mutations and in additional

case-control studies.

Conclusions

Studies in human, mouse and C. elegans models link

MRG15 to the repair of DNA double-strand breaks, pos-

sibly through molecular and/or functional interactions

with BRCA2, PALB2, RAD51 and RPA1. No pathogenic

alterations of MRG15 or MORF4L1 have been observed

in FA patients unclassified in terms of subtype or in

familial BrCa cases negative for mutations in BRCA1 or

BRCA2. Finally, no significant association with BrCa risk

among BRCA1 and BRCA2 mutation carriers has been

revealed for two common genetic variants at the

MORF4L1 locus. Given a potentially weak and specific

effect among BRCA2 mutation carriers, however, analyses

in a larger series may be warranted.

Additional material

Additional file 1: Y2H baits for 12 proteins in the FA/BrCa signaling

pathway. Supplementary Table 1 containing details of the design of Y2H
baits for 12 proteins in the FA/BrCa signaling pathway.

Additional file 2: siRNAs used in the present study. Supplementary
Table 2 containing details of the siRNAs used in the present study.

Additional file 3: Primers for sequencing of MORF4L1. Supplementary
Table 3 containing details of primers used for sequencing of MORF4L1.

Additional file 4: FA/BrCa signaling pathway components.
Supplementary Table 4 containing details of known and potential FA/
BrCa signaling pathway components identified through Y2H screens.

Additional file 5: Gene co-expression. Supplementary Figure 1
containing results of the gene co-expression analysis.

Additional file 6: Four bait designs and Y2H results. Supplementary
Figure 2 containing details of four bait designs and the Y2H results.

Additional file 7: Co-AP and co-IP assays. Supplementary Figure 3
containing results of the co-AP and co-IP assays.

Additional file 8: Co-AP assays involving MRG15 and MRGX.
Supplementary Figure 4 containing results of co-AP assays involving
MRG15 and MRGX.

Additional file 9: siRNA-mediated depletion of MRG15 and FANCD2

monoubiquitinylation. Supplementary Figure 5 containing results of
siRNA-mediated depletion of MRG15 and FANCD2 monoubiquitinylation.

Additional file 10: TRF2 and TSNAX co-localization. Supplementary
Figure 6 containing results of TRF2 and TSNAX co-localization.

Table 1 Association between variants at the MORF4L1 locus and breast cancer risk

Variant Genotype BRCA1 mutation carriers BRCA2 mutation carriers CGEMS

n HR 95% CI n HR 95% CI n OR 95% CI

rs7164529 GG 2,437 1.00 - 1,587 1.00 - 833 1.00 -

GA 2,998 1.04 0.97 to 1.13 1,813 1.07 0.98 to 1.17 1,087 1.23 1.02 to 1.47

AA 928 1.02 0.92 to 1.14 568 1.12 0.99 to 1.27 366 0.83 0.65 to 1.06

Trend 1.02 0.97 to 1.07 1.06 1.00 to 1.12 0.97 0.86 to 1.09

Ptrend 0.45 0.05 0.58

P2df 0.51 0.14 0.003

rs10519219 TT 4,366 1.00 - 2,760 1.00 - 1,766 1.00 -

TC 1,331 0.99 0.91 to 1.08 866 0.96 0.86 to 1.06 500 0.78 0.64 to 0.96

CC 95 1.10 0.84 to 1.43 78 1.39 1.02 to 1.88 21 0.38 0.14 to 0.97

Trend 1.00 0.93 to 1.08 1.02 0.93 to 1.11 0.76 0.63 to 0.91

Ptrend 0.92 0.72 0.003

P2df 0.76 0.07 0.008

Precessive 0.49 0.033 0.045

Association study between variants at the MORF4L1 locus and breast cancer risk among BRCA1 and BRCA2 mutation carriers, and in the general population

(CGEMS results). n, number of individuals; HR, hazard ratio; CI, confidence interval; OR, odds ratio.
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Additional file 11: Immunodetection of RAD-51 and RPA-1.
Supplementary Figure 7 containing results for immunodetection of RAD-
51 and RPA-1 in wild-type animals and in brc-2 and mrg-1 C. elegans

mutant animals.

Additional file 12: MRG15 in extracts of unclassified FA cell lines.
Supplementary Figure 8 containing results for the analysis of MRG15 in
extracts of unclassified FA cell lines.

Additional file 13: BrCa risk estimates for rs7164529 and

rs10519219. Supplementary Table 5 containing BrCa risk estimates (HR
and wHR) for rs7164529 (additive model) and rs10519219 (recessive
model) among BRCA2 mutation carriers across participating centers.

Additional file 14: Funding support. Supplementary document
containing details of funding support.
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