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Abstract.

The linear mixed model (LMM), routinely used to dese change over time of outcomes and
association with risk factors, assumes that aal@nge in any predictor is associated with a
constant change in the outcome. When used on psythio tests, this assumption may not
hold. Indeed, psychometric tests usually suffermfra@eiling and/or floor effects, and
curvilinearity (i.e. varying sensitivity to change)

This work aimed at determining the consequencesicii a misspecification when evaluating
predictors of cognitive decline. As an alternatieethe LMM, two mixed models based on
latent processes that handle discrete and boundécbroes were considered. Models
differences were illustrated using four psychoneetests from the cohort PAQUID. Type |
error of the Wald test for risk factors regresspamameters were then formally assessed in a
simulation study. It demonstrated that type | exiiarthe LMM could be dramatically inflated
for some tests so that spurious associations wsth factors were found. In particular
confusion between effects on mean level and on gthaver time was highlighted. The
authors thus recommend the use of the alternatixedmodels when studying psychometric

tests and more generally quantitative scales (yuailife, activities of daily living).

Keywords.

biostatistics, cognition, longitudinal studies, gisgmetrics, risk factors, statistical models



Footnotes page.

Abbreviates: Linear Mixed Model (LMM); Mini Mentgbtate Examination (MMSE); Item
Response Theory (IRT); calculation subscore of MBISE (CALC); Benton Visual
Retention Test (BVRT); Isaacs Set Test (IST); pegpdostic phase of dementia (PDPD);
general aging (GA); educational level (EL); Akaikéormation criterion (AIC); difference in

AIC (AAIC)

Running title: Misuse of the Linear Mixed Model

Abstract: 200 words

Manuscript: 3998 words (excluding appendix)

Correspondence t€&€écile Proust-Lima, INSERM U897, ISPED, Univer&igrdeaux

Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cé&damce. Tel : (33) 557 57 45 79 ;Fax :

(33) 556 24 00 81 ;e-maikecile.proust-lima@inserm.fr




In the study of chronic diseases, the linear mirsadel (LMM) has become a standard
method to describe change over time of markersrofression and association with risk
factors. It offers a flexible statistical framewaxk dynamically describe disease progression
through the trajectory of repeated marker data. IM& relies on the assumptions that (i)
the outcome of interest is continuous, (ii) thed@n components of the model are Gaussian,
and (iii) a unit change in any predictor is assmtlawith a constant fixed change in the
outcome. It was shown that inference with LMM wabust to violation of assumption (ii)
and especially misspecification of the random-effedistribution (1-3) or of the errors
distribution (4-6) when the mean structure was exdyrin particular when assumption (iii)
held.

In cognitive aging, the markers of progression@sgchometric tests that are noisy measures
of the underlying latent cognitive level, the bigical process of interest. They are usually
discrete quantitative outcomes consisting in suarescof items and have specific properties.
First, because of a limited range of possible \altiey usually suffer from ceiling and/or
floor effects (7). Moreover, in the range of possibalues, they usually have a varying
sensitivity to change (8) that will be referreda curvilinearity. It means that a change in the
psychometric test may not represent the same ityesfscognitive change in the underlying
latent cognitive level scale at different levelgloé psychometric test.

Despite these specific properties that may resulmarkedly skewed and bounded tests
distributions and departures from assumptiongi{j)and (iii) of the LMM, change over time
of psychometric tests is still usually studied tigb the standard LMM. Recent examples
include the evaluation of risk factors on chang®lini Mental State Examination (MMSE) (a
widely used test measuring global cognitive perfmmoe (9)) (10-12), or in other

psychometric tests (12-13). Change over time ofeatfansformation of the outcome was



rarely analyzed, like the square root of the nundfarrors in MMSE which distribution was
closer to the Gaussian distribution in a populatbaubjects free of dementia (14).
Alternatively, mixed models with latent processes de used to account for the discrete
nature and the curvilinearity of the psychometests$ (including ceiling/floor effects) in
longitudinal studies of cognitive aging (15-17).these models, the latent process represents
the actual unobserved cognitive level that undetie psychometric test. Change over time
of this latent process is described according teagates in a LMM, and an equation of
observation defines the link with the outcome. |dsihe Item Response Theory (IRT), the
latent process is directly related to the itemssttuting the sum-score with an item-specific
equation of observation (18-21). However, in loadibal settings these models become very
complicated and computationally intensive with @éanumber of parameters so that their use
has been limited until now. In contrast, the thoddhmodel (22) directly describes the sum-
score by considering that each level of the sumescorresponds to a specific interval of the
latent process, the limits of the intervals beiatinreated. This approach that corresponds to an
IRT model for a single graded item (19) takes etoount the discrete and bounded nature of
the psychometric test. However, its use has alem bienited because it induces a large
number of parameters and numerical burden (15).

To avoid computational problems induced by IRT niede threshold models, Proust et al.
(16) proposed to estimate the nonlinear functiokitig the latent process level with the
outcome inside a parsimonious family of flexiblentouous transformations. This approach
extends the idea of pre-transforming the outconeteect for curvilinearity and ceiling/floor
effects by directly estimating the transformatibie most adapted to the data along with the
regression model. It was shown to improve markedsy goodness-of-fit compared to the
LMM, and to highlight metrological properties ofetipsychometric tests (8) while remaining

computationally easy.



Despite these alternative models that handle tiygisgmmetric and bounded psychometric
test distributions, the LMM is still widely used twout further checking, and results are
interpreted without taking into account the limifsthe analyses. The objective of this work
was thus to evaluate the consequences of negletttengotential curvilinearity of the tests
when studying associations between risk factorscagphitive decline. Differences between
the standard LMM and alternative latent process efsodre illustrated using data from the
PAQUID cohort. In a simulation study, the type logs of the Wald tests for the risk factors
regression parameters that are of main interessuch studies are assessed. Finally
recommendations for future epidemiological studiethe impact of risk factors on cognitive

decline are given.

MATERIALS AND METHODS

Population

The PAQUID study is a French epidemiological stuelying on a population-based sample
of 3,777 community dwelling individuals aged 65abder. Subjects were evaluated at home
at the initial visit(V0) and were followed up for seven times at Yeigrg, 5, 8, 10, 13 and 15
(called V1 through V15). At each visit, a neurogsylogical evaluation and a two-phase
screening procedure for diagnosis of dementia vaased out at home. See Letenneur et al.

(23) for a detailed description of the PAQUID pragr.

Neuropsychological evaluation
Four psychometric tests for which low values inthca more severe impairment were

considered. These psychometric tests were choseaude they were largely used in



epidemiology and illustrated different charactécstof psychometric tests: asymmetric
distribution, ceiling/floor effect, and/or small mber of levels.

The Mini Mental State ExaminatioMMMSE) (9) evaluates various dimensions of cogniti
(memory, calculation, orientation in space and filaeguage, and word recognition). It is
often used as an index of global cognitive perfarogaand the score ranges from 0 to 30.
The calculation subscore of the MMSEALC) consists in subtracting iteratively 5 timée
number 7 beginning from 100. The score ranges fidm5.

The Recognition form of the Benton Visual Retentiort T&@€RT) (24) evaluates immediate
visual memory. After a 10-second presentation dftimulus card displaying geometric
figures, subjects are asked to choose the inigaké among four possibilities. A total of 15
stimulus cards are successively presented sohtbatcbre ranges from 0 to 15.

Thelsaacs Set TegtST) (25) sortened to 15 seconds evaluates semantic vetsaldy and
processing speed. Subjects are required to namdsw@rith a maximum of 10) in four
specific semantic categories (cities, fruits, angnand colors) in 15 seconds. The score

ranges from O to 40.

Samples selection

Cognitive measurements at VO were excluded fromatiedysis because of a learning effect
between the first two exams (14). Two samples wereidered: a sample in pre-diagnostic
phase of dementia (PDPD) in which only subjecthwiicident dementia between V3 and

V15 were included and post dementia diagnosis date excluded, and a heterogeneous
sample representing general aging (GA) where esabject free of dementia at V1 was

included. For any sample (PDPD or GA) and any pswyudtric test, subjects who had at least

one measure between V1 and V15 were included. [Ea$ to 6 samples made of N=2,897



subjects for MMSE and CALC in GA (N=612 in PDPD)2623 subjects for BVRT in GA

(N=514 in PDPD), and N=2,760 subjects for IST in 3574 in PDPD).

Statistical models

All the statistical models (including the standdrifiM) are presented as latent process
models described in Figure 1. The latent procesmtefest called! represents the latent
cognitive level at any timethat underlies the psychometric test. Change tiner of A for
subject (i=1,...N) is described according to tinh@and covariate; in a standard LMM (26):
Ni(t)=Lot But+BoXi+ BeXit+Uoit Unit (1)
whereuy; andu;; are the random intercept and slope that accourthércorrelation between
repeated measures. They are correlated and follGawssian distribution. At the population
level, % is the mean of the latent process tted andX=0; S; is the mean slope that is the
mean change izl in a time unit forX=0; B> corresponds to the mean changeliatt=0 for a
unit change irX, andg; corresponds to the mean change in the slopefof a unit change in
X. In the following, % and the variance aip are respectively constrained to 0 and 1 for
identifiability purposes.

For each statistical model, an equation of obsemdinks the repeated measure of outcome
Y; with the latent process level at the observationettj, j representing the occasion
(4=1,...n):

- The standard LMM is obtained by assumilg=a+bA(tj)+& where g is an
independent Gaussian measurement error at jraed a and b are parameters to
estimate that replag® and variance ddi;.

- The standard LMM applied on a pre-transformed augmssumes similarly that
h(Yj)=a+b A(t;j)+ &; where  h(.) is the pre-transformation (e.g.

h(MMSE) = +/30- MMSE) andg;, a andb are defined as above.



- In the latent process model proposed by Prousk €1&) and called Beta LMM, the
equation of observation I¥Yj,”7)=a+b/(tj)+& where the transformatidm.,) is a
Beta cumulative distribution function depending merameters) that are estimated
along with the regression parameters gné andb are defined as above.

- In the threshold LMM, the equation of observatisndefined at each level ¢ of the
outcome €=0,...C) by Yj=ce n=A(tj)+&j<nc+1, Where & is defined as above,
thresholdsy. (c=1,...,C) are estimated along with the regression paraseted/o=-
co and/s.+;=+ co for identifiability (19).

Compared to the three former, the threshold LMMamputationally more intensive because
of the increased number of parameters and the ncahentegration required in the log-
likelihood computation. However, as it models dilgeach possible level of the outcome, it
is considered as the most adequate model amorogiisidates.

Goodness-of-fit of these four models was companetie natural scale of the outcome using
the Akaike information criterion (AIC) (27). To makpossible the comparison of models
assuming continuous (standard, pre-transformedBata LMM) and discrete data (threshold
LMM), the posterior likelihood was computed as th@bability of observing the discrete
values from estimated standard, pre-transformed Betch LMM rather than the density

(details in Appendix).

RESULTS

lllustration on data from PAQUID cohort

Histograms of the four psychometric tests distidng are given in Figure 2 for GA and
PDPD samples. With exception for the IST, they ulge asymmetric and bounded
distributions that could reflect curvilinearity fems and justify the use of more

sophisticated mixed models.



Cognitive decline was studied according to age & €amples, and time before dementia
diagnosis in PDPD samples, and adjusted for edutievel (EL) as a binary covariate (no
diploma vs graduated from primary school). The frequencysobjects with no diploma
varied from 29.9% to 32.3% in GA samples, and fB81% to 43.1% in PDPD samples.
Figure 3 displays estimated transformations linkimg psychometric test with the underlying
Gaussian latent process in each model consideredTable 1 presents the corresponding

AlIC.

For MMSE, in both samples, the standard LMM assumdshear transformation very far
from the nonlinear one estimated by the most flextbreshold LMM, and the difference in
AIC (AAIC) between the models reached 4,227 points ina@& 592 points in PDPD. If the
use of a pre-transformation shrank this gap, itaieed quite important with AAIC of 803
points in GA and 77 points in PDPD. In contrasg #stimated transformation from the Beta
LMM was close to the transformation stemmed frora threshold LMM showing that it
constituted a good alternative. This was confirhgd largely reduced difference of AIC in
GA (AAIC=94) and in PDPDAAIC=16).

For BVRT, in GA sample, the linear transformatioss@med in the standard LMM was
relatively far from the transformation estimatedthe threshold LMM (withAAIC=540). In
PDPD sample, transformations from the thresholdsaaddard LMM were relatively close in
low levels of the tests. However, they differedhigh levels and théAIC of 63 points
indicated again a better fit of the threshold LMM.contrast, the transformations from the
Beta LMM remained very close to the ones estimatdtie threshold LMM in both samples,
and the fit were very similar (AIC of Beta LMM was4 points better in PDPD and 6.4 points

worse in GA).



For IST, the linear transformation assumed in ttadard LMM was close to the ones
estimated in the Beta and threshold LMM in both @&# PDPD samples. In GA sample, a
slight difference in the transformations could Heserved in very small values of IST.
Although this corresponded to few observations (Sgere 2), this lead to a better AIC for
the threshold model than for the BefsA(C=108) and standard\AIC=142) LMM. In PDPD
sample in contrast, parsimonious Beta and stantbtifl gave better AIC (respectively
AAIC=19 andAAIC=13) with a slight preference for Beta LMM.

For CALC, large differences in the estimated tranmsftions from the standard and threshold
LMM were observed in GA. They were reduced but ptiégsent in PDPD. Th&AIC reached
2,547 points in GA and 434 points in PDPD whichi¢ated the markedly better fit of the
model accounting for the discrete nature of thé. fEse Beta LMM was not applied with
CALC. Indeed a model assuming continuous data isappropriate for a test with 6 levels
and may induce convergence problems (this comnpgiies to the standard LMM too0).
These analyses showed that flexible models acamyrfor the test curvilinearity gave
markedly better fits. Not surprisingly these diffaces resulted in parameter estimates of EL
impact on cognitive baseline level and cognitivie raf change that were quite different (see
Table 2). However, they also resulted in markedffedent parameter p-values that even
induced dissimilar conclusions regarding EL assmmawith cognitive decline (interaction
EL*t). For example in GA sample, the threshold LMiddcounting for curvilinearity did not
highlight any interaction between EL and cognitdecline for MMSE, BVRT and CALC
while significant associations were found when gsanstandard LMM. These contradictions
regarding EL effect did not necessarily emergeha predicted trajectories of cognitive
decline represented in figure 4: the trajectorieained relatively close in the threshold
LMM and the standard LMM. Indeed, the curvilinegnheans that the intensity of change

represented by one point lost in the test variegshastest level changes. Consequently,
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although the distance in latent cognitive leveWssn high and low EL remained the same
across time and range of latent cognition (no adton with time), the distance between high
and low EL in the test scale varied with time antial levels of the test. When assuming a
constant intensity of change in the entire rangéheftest, that is using the standard LMM,
this non constant gap between high and low EL wesstated into a fake interaction with
time.

This kind of departure from the LMM assumptionyésy difficult to highlight in diagnostic
analyses. For example, except for MMSE and CALGSH, the subject-specific residuals
from the standard LMM displayed in Figure 5 withagtile-quantile plots did not show any
severe departure from the Normality assumptionvds the same for other diagnostic tests.

Only the analysis of a better suited model revetiedoroblem with curvilinearity.

Simulation study

Motivated by these observations, a simulation studg performed to evaluate the impact of
a misspecification of the LMM when testing regressiparameters. We specifically
investigated whether the tests for covariate eftectbaseline level and slope were biased.
Samples were simulated from the most flexible mathalt is the threshold LMM with
parameter values fixed at point estimates of thistilation samples. Sixteen scenarios were
investigated. The four psychometric test distribisi were mimicked and called respectively
mim-MMSE, mim-BVRT, mim-IST and mim-CALC. Two binar covariates were
considered. Xcorresponded to EL effect on the psychometristess EL had a strong effect
on baseline level and no effect on the slopewds also simulated with half the effect of EL
on the intercept and four times the effect of ELtba slope to explore different types of

association. Two kinds of samples were finally gatexl using parameters estimated on GA
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and PDPD samples. The time scale was age for GAdqfiormed to (age—65)/10) and years
before diagnosis for PDPD. Simulation design isitled in Appendix.

For mim-MMSE, 4 mixed models were compared: theddad LMM, the pre-transformed

LMM (where h(MMSE) = \31-+/31- MMSE imitates the transformatiod30— MMSE but

avoiding derivation problems in MMSE=30 and retagnthe same direction as MMSE), the
Beta LMM and the threshold LMM. For mim-BVRT andmiST only the standard, Beta
and threshold LMM were considered as there weraisual pre-transformations for these

tests. For mim-CALC, only the standard and thresih®iM were considered.

For each scenario, 500 samples of 500 subjects swendated. Table 3 gives the estimated
type | error @) of the Wald test for the covariate effect on tiase(X) and interaction with
time (X*t) for a nominal value 0ti=5%. The estimated type | error of the Wald tess wa
obtained by simulating the samples with a 0 paramedlue and calculating the percentage of
times where this parameter was found significadifferent from 0 using the Wald test. This
corresponds to test a baseline effect in a modekevthere is only an interaction effect and
inversely. In a well-specified modef; is close to 5%.

For mim-MMSE, @ reached 93.2% in GA or 97.8% in PDPD for inte@ttetween Xand
time when using standard LMM. This indicates tlneg $standard LMM concludes there is an
interaction 93.2% (or 97.8%) of the times when ¢hisrno interaction. When using the pre-
transformation,@ was reduced but still far from the nominal valuiéhwnore than 40.8% for
X1*t, and 13.0% for %*t. In contrast, using the Beta LMMy were close to 5%. In any
mixed model,a for X, effect on baseline level were close to 5% Indesdtha interaction

X1*t was nearly 0, it could not blur the associatwith baseline effect.
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For mim-BVRT, the standard LMM worked better than fim-MMSE. Howeverg reached
21.4% for some interactions between the covariatethe time. In contrast, the Beta LMM
again gave good results.

For mim-CALC, & were high in the standard LMM for interaction beem X and time
(45.6% in GA and 56.4% in PDPD) and fos &ffect on baseline in PDPD (26.0%) while the
threshold LMM gave good results (it was the corraotel).

Finally, for mim-IST that highlighted a relativelinear transformation in figure 37 were

close to 5% in the standard and Beta LMM

DISCUSSION

This work aimed at demonstrating that the stand&i®1 used on psychometric tests could
lead to spurious associations of risk factors wilnitive change over time. Our conclusions
were based on four psychometric tests that areslangsed in epidemiological studies and
exhibit different types of distribution, as well &go distinct populations. With exception for
the IST, the illustration highlighted that the stard LMM provided a markedly worse fit of
the data than the threshold LMM specifically addptediscrete and bounded data or the Beta
LMM that accounted for curvilinearity while consrittey the data as continuous (16). Indeed,
the estimated transformations derived from thesedatso showed a clear nonlinear
relationship between each test and the underlyinfpdical process of interest while the
standard LMM assumed a linear transformation. Ttad been previously stated (8). The
simulation study provided further arguments to destiate that for three of the psychometric
tests, the associations with covariates in thedstahLMM were distorted. In particular, when

the risk factor had an effect on the initial coatlevel, the test for interaction with time was
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biased: it tended to conclude too many times tpustigus association between the risk factor
and the rate of cognitive decline while there wa/@n association with the initial level.
This comes from the curvilinearity of the testseThst varying sensitivity to change induces
a varying distance between two groups even wheretlgeno interaction with time. By
neglecting the test curvilinearity, the standard NNhterprets this varying distance as an
interaction with time, so that confusion appearsvben the risk factor impact on the initial
level and its impact on cognitive change with tinfuch confusion can be of great
importance. For example, if educational level, axgrof reserve capacity of the brain, was
found related to decline of a given test, the agthooncluded that reserve capacities were
particularly linked to the underlying cognitive fttion without considering the misuse of the
model. Curvilinearity constitutes an intrinsic peoty of the test that should be accounted for
in any regression model whatever the studied ptipulathe covariates or the time scale.
Especially, it cannot be corrected by changingtiime scale or adding nonlinear covariate
effects. For instance, the estimated nonlinearstcamations in both Paquid datasets were
almost identical when rescaling the latent procass, were practically not changed when
considering quadratic trajectories or when removirggcovariate (results not shown).
Recommendations should be addressed based onfthaiegs. In any analysis evaluating
risk factors on a psychometric test change ovee titihe standard LMM should not be used
without a precise inspection of the psychometrst pgoperties. In particular, a more adequate
mixed model that accounts for curvilinearity andicg/floor effects should be estimated to
evaluate the violation of the LMM assumptions am@ treliability of the associations
highlighted. For many psychometric tests like MM&f#l BVRT, the standard LMM is most
likely not reliable, and mixed model that accouiaiscurvilinearity should be systematically
preferred. The threshold mixed model is the molsable model as it models directly each

level of the outcome but it is computationally mgéeve. Therefore, for psychometric tests
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including a relatively large number of levels, adabassuming a curvilinear continuous
outcome can be used instead. For example, the LB&ka (16) provided similar fits as the
threshold LMM and more importantly gave unbiaseterence in our simulations while
avoiding the computational problems. In contrast,gdsychometric tests with a small number
of levels, the threshold LMM should be preferredheT cnm user-friendly R function is

available within thel crmm R package [fttp://cran.r-project.org/web/packages/Icrpnior

estimating latent process LMM including thresholii a8Beta LMM, and SAS macros are

available omttp://biostat.isped.u-bordeaux2.fr

The main concern regarding alternative mixed moetkat, in contrast with the LMM, they
do not provide an interpretation of risk factor @pin terms of a number of points lost on
the test scale per time unit. This is actually r@ati consequence of curvilinearity: one point
lost in a test scale does not have the same meanitige whole test range, it depends on the
initial level. So if significance degree and direntof associations can be still interpreted like
in the LMM, the intensity of association shouldra¢her appreciated graphically as in figure
4 or be quantified in the psychometric test saalieims of the number of years a subject with
a certain covariate value would need to reach #imescognitive level as a person with the
covariate reference value (28). For example, inilthstration, a subject with high EL would
reach the same MMSE as a subject with low EL 14d@ry later at 65 years old, and
respectively 13.9 and 12.9 years later at 70 ange&ss old. In contrast, when using the
standard LMM, the estimated effect correspondsspectively 8.1, 10.9 and 13.1 at 65, 70
and 75 years old.

In conclusion, to distinguish impact of a covariatethe initial level from its impact on the
change over time of quantitative scales, such gshpsnetric tests but also quality of life or
activities of daily living scales, mixed models tit@count for their metrological properties

should be preferred to the linear mixed model.
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APPENDIX

1. Computation of Akaike’s information criterionrfdiscrete data

Using the latent process model formulation, thebphality of observing the valuk of an
ordinal outcomeY with values in {0,...C} is:

P(Y, =k)=Plx, < Alt; )+ & < &) with ko=- o0 andkc.i=+ @ 2)
for subject, i=1,...,Nand occasiop j=1,...n.

In a threshold model that considers an ordinal @mutg, the thresholdsi for k=1,...,C are
directly estimated. To compute the likelihood fdretordinal outcome using the other
estimated mixed model that consider Y as continu@ggiation (2) was also used with

thresholdsxi (k=1,...,Q defined asi=k+0.5 in the standard LMM«, =w in
hk,77)+ h(k +1,7)

the pre-transformed LMM andk, = 5

in the Beta LMM (with 7the

maximum likelihood estimate aj).

2. design of the simulation study

Samples were simulated to mimic the PAQUID cohgritry in the cohort was simulated
according to a uniform distribution between [65;8@ars old for GA and [-14;-7] years
before diagnosis for PDPD while dropout was sinadadccording to a uniform distribution
between [80;95] years old for GA and fixed at tinfor PDPD. In this window, each subject
had a measure every 3 years. The binary covadater X;) was simulated according to a

Bernoulli with a 0.5 probability.
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Figure 1. General Directed Graph of a Mixed Model for anyu&iipn of Observation
Between the Latent Process of Interest and theh@gayetric Test.
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Figure 2.Distributions of Four Psychometric Tests in Geh&ging (on the left) and in Pre-
Diagnostic Phase of Dementia (on the right) podtech all available visits, PAQUID study,
1989-2004, France. MMSE, BVRT, IST and CALC respety refer to Mini Mental State
Examination, Benton Visual Retention Test, Isaaes T®st and CALCulation subscore of
MMSE. N indicates the Number of Subjects. The Median NunabeVisits per Subject for
each Test is 3 (Interquartile Range 2-5).
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Figure 3.Estimated Transformations from Latent Process diidixed Models (LMM) for
the Four Psychometric Tests According to the Uryitegl Gaussian Latent Process in General
Aging (on the left) and in Pre-Diagnostic Phasdementia (on the right), PAQUID study,
1989-2004, France. Solid Line Denotes the Thresh®i, Dashed Line Denotes the Beta
LMM, Dotted Line Denotes the Standard LMM and Dadsitted Line Denotes the Pre-
transformed LMM Used for MMSE only. MMSE, BVRT, 1SAhd CALC Respectively Refer
to Mini Mental State Examination, Benton Visual &#ton Test, Isaacs Set Test and
CALCulation subscore of MMSE. Number of Subjectsl adedian Number of Visits per
Subject are Given in Figure 2.
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Figure 4.Predicted Trajectories of Cognitive Decline Acdngito Educational Level for the
Four Psychometric Tests in General Aging (on thi) land Pre-Diagnostic Phase of
Dementia (on the right) using the Standard Lineateld Model (in Dashed Lines, and 95%
Confidence Bands in Dotted Lines) and the Threshoidar Mixed Model (in Solid Line). In

each Graph, the Top Trajectories Correspond to éfigtducational Level and the Bottom
Trajectories Correspond to Lower Educational LeWwAQUID study, 1989-2004, France.
MMSE, BVRT, IST and CALC Respectively Refer to MiMental State Examination,
Benton Visual Retention Test, Isaacs Set Test akld3Dlation subscore of MMSE. Number
of Subjects and Median Number of Visits per SubgetGiven in Figure 2.
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Figure 5. Quantile-Quantile Plots of Subject-Specific Staddsed Residuals (with 95%

Confidence Bands) for the Four Psychometric TastSeneral Aging (on the left) and Pre-
Diagnostic Phase of Dementia (on the right) usihg Standard Linear Mixed Model,
PAQUID study, 1989-2004, France. MMSE, BVRT, ISTHaDALC Respectively Refer to

Mini Mental State Examination, Benton Visual Retent Test, Isaacs Set Test and
CALCulation subscore of MMSE. Number of Subjectsl ddedian Number of Visits per

Subject are Given in Figure 2.
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Table 1 Akaike Criterion Computed for Ordinal Data FroretMixed Models with

Educational Level as Predictor in General Aging &reé-Diagnostic Phase of Dementia
Samples, PAQUID study, 1989-2004, France. NumbeBudjjects and Median Number of

Visits per Subject are Given in Figure 2.

Sample Model MMSE BVRT IST CALC
Standard LMM 45418.8 38682.2 57139.0 25738.6
General Pre-transformed LMM 41944 .4
Aging Beta LMM 41235.8 38148.2 57105.3
Threshold LMM 41141.5 38141.8 56997.5 23191.6
Pre- Standard LMM 10075.1 7333.9 11114.9 5825.8
Diagnostic Pre-transformed LMM  9560.8
Phase of Beta LMM 9499.0 7268.1 11108.9
Dementia Threshold LMM 9483.5 7270.5 11127.4 5391.8
Abbreviations: BVRT, Benton Visual Retention TESHLC, calculation subscore of MMSE;

IST, Isaacs Set Test; LMM, Linear Mixed Model; MM3#ini-Mental State Examination.
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Table 2.Estimates (and P-values from the Wald Test) ofdatdanal Level (EL) Effect on Baseline (EL) and |s#o(ELx t) for Different Mixed
Models in General Aging and Pre-Diagnostic Phas®@ientia Samples, PAQUID, 1989-2004, France. NunobeSubjects and Median
Number of Visits per Subject are Given in Figure 2.

_ . General Aging Pre-Diagnostic Phase of Dementia
Psychometric Estimated EL2 EL x t 2P EL2 EL x t &P

test Model Estimate (P valuej Estimate (P valuej Estimate (P valuej Estimate (P value§

MMSE standard LMM _ 0.618 (<0.0001) 0.389 (<0.0001) 0.761 (<0.0001) 0.0184 (0.178)

ptr LMM 0.909 (<0.0001) 0.238 (<0.0001) 0.92 (<0.0001) -0.007 (0.675)

Beta LMM 1.026 (<0.0001) 0.114 (0.034) 1.022 (<0.0001) -0.0242 (0.180)

Threshold LMM 1 gog  (<0.0001) g  (0.067)  1.011 (<0.0001) -0.028  (0.134)

BVRT standard LMM  1.067 (<0.0001) 0.151 (0.029) 0.816 (<0.0001) -0.0186 (0.295)
Beta LMM 1.033 (<0.0001) 0.03  (0.618) 0.863 (<0.0001) -0.0285 (0.156)

Threshold LMM  1.04 (<0.0001) 0.02  (0.621) 0.862 (<0.0001) -0.0295 (0.146)

IST standard LMM _ 1.031 (<0.0001) -0.085 (0.0836) 0.433 (0.0001) -0.036 (0.0199)
Beta LMM 1.038 (<0.0001) -0.131 (0.0050) 0.437 (0.0001) -0.043 (0.0094)

Threshold LMM  1.017 (<0.0001) -0.148 (0.0008) 0.439 (<0.0001) -0.042 (0.0079)

CALC standard LMM  1.241 (<0.0001) 0.288 (<0.0001) 1.196 (<0.0001) -0.005 (0.730)

Threshold LMM  1.09 (<0.0001) 0.037 (0.453) 1.198 (<0.0001) -0.045 (0.016)

Abbreviations: BVRT, Benton Visual Retention TeSALC, calculation subscore of MMSE; EL, Educatioh&vel; IST, Isaacs Set Test;
LMM, Linear Mixed Model; MMSE, Mini-Mental State Exnination; t, Time.

#no diploma in reference

®time t corresponds to age in decades from 65 ingtiveeral aging sample and years before diagnogiseitliagnostic phase of dementia
sample.

°P value from the Wald test
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Table 3.Estimated Type | Error from the Wald Te& (@given in %) of Regression Parameter For Covadater X; and Interaction With Time
From 500 Replicated Samples of 500 Subjects in GeéAging and Pre-Diagnostic Phase of Dementia.

QUt_CO”_‘e Estimated Model General Aging Pre-Diagnostic Phase of Dementia $amp
distribution X1 X]_Xta X5 szta X1 X]_Xta Xo )(2Xta
mim-MMSE Standard LMM 5.0 932 336 40.0 4.8 97.8 11.4 54.0

Pre-transformed LMM 3.6 40.8 7.2 13.¢° 4.6 42.8 6.0 13.0
Beta LMM 4.4 4.6 4.0 4.2 4.4 6.2 4.6 6.0

mim-BVRT Standard LMM 3.2 214 4.4 8.6 4.6 12.2 5.4 8.6
Beta LMM 3.8 6.0 5.4 5.0 4.6 5.0 5.0 6.6

mim-IST Standard LMM 4.6 8 6.6 4.8 4.2 6.0 6.2 5.6

Beta LMM 4.6 5.0 5.6 4.6 4.2 4.6 6.4 4.8

mim-CALC Standard LMM 5.0 45% 6.4 5.2 4.2 564 26.0 5.6
Threshold LMM 6.4 5.2 6.2 5.2 5.2 6.6 5.6 5.4

Abbreviations: LMM, Linear Mixed Model; mim-BVRT, istribution mimicking Benton Visual Retention Testiim-CALC, distribution
mimicking calculation subscore of MMSE; mim-ISTsulibution mimicking Isaacs Set Test; mim-MMSE tdiition mimicking Mini-Mental
State Examination; t, Time.

®time t corresponds to age in decades from 65 ingteeral aging sample and years before diagnosisestliagnostic phase of dementia
sample.

b estimated type | errorgi() outside the expected 95% interval 3.09, 6.91 rddbe nominal value of 5%.
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