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BRIEF COMMUNICATION Open Access

Plasma bile acids are not associated with energy
metabolism in humans
Gemma Brufau1†, Matthias J Bahr2†, Bart Staels3,4,5,6, Thierry Claudel1, Johann Ockenga7, Klaus HW Böker2,

Elizabeth J Murphy8,9, Kris Prado8, Frans Stellaard10, Michael P Manns2, Folkert Kuipers1,10, Uwe JF Tietge1,2*

Abstract

Bile acids (BA) have recently been shown to increase energy expenditure in mice, but this concept has not been

tested in humans. Therefore, we investigated the relationship between plasma BA levels and energy expenditure in

humans. Type 2 diabetic (T2DM) patients (n = 12) and gender, age and BMI-matched healthy controls (n = 12)

were studied before and after 8 weeks of treatment with a BA sequestrant. In addition, patients with liver cirrhosis

(n = 46) were investigated, since these display elevated plasma BA together with increased energy expenditure.

This group was compared to gender-, age- and BMI-matched healthy controls (n = 20). Fasting plasma levels of

total BA and individual BA species as well as resting energy expenditure were determined. In response to treat-

ment with the BA sequestrant, plasma deoxycholic acid (DCA) levels decreased in controls (-60%, p < 0.05) and

T2DM (-32%, p < 0.05), while chenodeoxycholic acid (CDCA) decreased in controls only (-33%, p < 0.05). Energy

expenditure did not differ between T2DM and controls at baseline and, in contrast to plasma BA levels, was unaf-

fected by treatment with the BA sequestrant. Total BA as well as individual BA species did not correlate with

energy expenditure at any time throughout the study. Patients with cirrhosis displayed on average an increase in

energy expenditure of 18% compared to values predicted by the Harris-Benedict equation, and plasma levels of

total BA (up to 12-fold) and individual BA (up to 20-fold) were increased over a wide range. However, neither total

nor individual plasma BA levels correlated with energy expenditure. In addition, energy expenditure was identical

in patients with a cholestatic versus a non-cholestatic origin of liver disease while plasma total BA levels differed

four-fold between the groups. In conclusion, in the various (patho)physiological conditions studied, plasma BA

levels were not associated with changes in energy expenditure. Therefore, our data do not support an important

role of circulating BA in the control of human energy metabolism.

Background

Recently, a novel and unexpected role for bile acids (BA)

in the regulation of energy metabolism has been

reported in mice [1]: addition of the primary BA cholic

acid (CA) to a high fat diet prevented body weight gain

by increasing energy expenditure and fat oxidation [1].

This effect was explained by plasma BA raising intracel-

lularly active thyroid hormone levels via a G-protein-

coupled receptor (Gpbar1/Tgr5)-mediated activation of

type 2 iodothyronine deiodinase (D2) in brown adipose

tissue [1]. In humans, GPBAR1 and D2 were found to

be expressed in white adipose tissue as well as skeletal

muscle and BA increased oxygen consumption in cul-

tured human myoblasts [1]. These data suggested that

similar (patho)physiological mechanisms in the control

of energy metabolism might be operational in humans,

but this concept has not yet been tested. Therefore, the

aim of our study was to investigate, in patients with dif-

ferent pathologies, whether plasma BA are linked to

energy metabolism in humans.

Methods

Twelve male patients with type 2 diabetes mellitus

(T2DM) defined according to the criteria established by

the American Diabetes Association [2] and 12 male BMI

and age-matched controls were investigated (table 1).

The inclusion criteria were: age between 40 and 60 years,

and BMI between 25-35 kg/m2. Subjects with fasting
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triglycerides >5.65 mM; HDL-cholesterol <1.55 mM;

abnormal TSH or history of thyroid dysfunction; treat-

ment with insulin, thiazolidinediones or BA sequestrants

at any time; or treatment with lipid lowering medication

within three months of screening were excluded. Diabetes

was diet-controlled in 7 subjects and treated with glipizide

in 5 subjects. Subjects with fasting glucose >5.5 mM, glu-

cose levels >7.7 mM 2 h after OGTT challenge or fasting

insulin >17.0 μU/mL were excluded from the control

group. The protocol was approved by the RCRC Institu-

tional Review Board (Austin, TX), and was performed at

Diabetes and Glandular Research Associates (San Antonio,

TX) and Clinical Pharmacology of Miami (Miami, FL).

After the baseline blood sampling, subjects received cole-

sevelam HCl (Daiichi Sankyo, Inc., Parsippany, New Jer-

sey) 3.75 g/d for eight weeks divided into two doses given

with lunch and dinner.

In addition, 46 adult patients (26 males/20 females)

with histologically-proven liver cirrhosis of varying clini-

cal severity (classified by the Child-Pugh score [3] as

Child A: n = 7, Child B: n = 19, Child C: n = 20) due to

different etiologies were investigated (viral hepatitis, n =

19; alcoholic, n = 13; primary biliary cirrhosis or pri-

mary sclerosing cholangitis, n = 14). All subjects were in

a stable clinical condition before entering the study.

Subjects with proteinuria, suspected infections, clinically

overt diabetes mellitus, thyroid dysfunction, or other

endocrine disorder and subjects taking any hormone

therapy or beta-blockers were excluded from the study.

Patency of portal vein and hepatic artery was documen-

ted in patients and controls by Doppler ultrasound. This

study protocol was approved by the Ethics Committee

of the Medizinische Hochschule Hannover, Germany.

All subjects were studied at rest in the morning after

an overnight fast, were thoroughly informed about ratio-

nale and possible risks of all procedures, and gave writ-

ten consent before entering the study.

Resting energy expenditure (REE) was measured using

indirect calorimetry as described (colesevalam-HCl study:

Sensormedics, Yorba Linda, CA; cirrhosis study: Deltatrac

metabolic monitor; Datex Instruments, Helsinki, Finland)

[4]. Measured REE values were related to REE values

predicted for healthy subjects using the Harris-Benedict

formula [5].

BA species were determined by gas chromatography-

mass spectrometry as described previously [6,7]. For the

cirrhosis study, plasma from 20 healthy control subjects

(12 males/8 females) matched to the cirrhosis patients

for sex, age and BMI (table 1) was used to establish

normal values for BA species in our laboratory.

Statistical analysis was carried out using the non-para-

metric Mann-Whitney U test (SPSS 16, SPSS Inc,

Chicago, IL). P values <0.05 were considered statistically

significant.

Results

REE was not different between controls and patients

with T2DM before starting treatment (figure 1). Total

plasma BA tended to be lower in T2DM due to reduced

CA and significantly decreased chenodeoxycholic acid

(CDCA) levels (-33%, p < 0.05; figure 2). However,

energy expenditure did not correlate with fasting plasma

levels of either total or individual BA.

Next, we explored the effects of 8-weeks treatment

with the BA sequestrant colesevelam HCl on energy

metabolism in these subjects. BA sequestrants reduce the

flux of BA from the intestine to the liver, thereby redu-

cing plasma BA concentrations, which we hypothesized

would translate into changes in energy metabolism. In

Table 1 Baseline clinical characteristics

colesevelam HCl
study

liver cirrhosis study

T2DM controls cirrhosis controls

n = 12 n = 12 n = 46 n = 20

Age (years) 52.5 ± 1.3 49.0 ± 1.4 48.1 ± 1.3 46.9 ± 2.5

Gender (male/
female)

12/0 12/0 26/20 12/8

BMI (kg/m2) 31.1 ± 0.8 29.4 ± 1.1 23.0 ± 0.4 23.6 ± 0.9

Cholesterol (mM) 5.0 ± 0.3 4.4 ± 0.2 4.7 ± 0.2 4.9 ± 0.3

Triglycerides (mM) 3.0 ± 0.4 1.4 ± 0.2# 1.0 ± 0.1 1.1 ± 0.1

Glucose (mM) 9.4 ± 0.7 5.0 ± 0.2# 6.2 ± 0.2 4.6 ± 0.1‡

HOMA-IR 6.60 ±
0.98

1.97 ±
1.04#

4.58 ±
0.42

1.80 ±
0.26‡

AST (U/l) 21 ± 2 19 ± 1 37 ± 3 15 ± 1‡

ALT (U/l) 25 ± 2 24 ± 3 32 ± 3 16 ± 1‡

g-GT (U/l) n.d. n.d. 89 ± 10 17 ± 2‡

Data are given as means ± SEM. n.d., not determined. # Significantly different

from type 2 diabetic subjects, ‡ significantly different from patients with liver

cirrhosis as determined by the Mann-Whitney U-test, at least P < 0.05.
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Figure 1 Resting energy expenditure (REE) in controls and in

type 2 diabetic subjects before and after 8-weeks of treatment

with colesevelam HCl. Data are given as means ± SEM.
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response to the treatment, DCA levels decreased in both

groups (-60% in controls, -32% in T2DM; p < 0.05), while

CDCA was only lowered in controls (-33%, p < 0.05,

figure 2). In contrast to our hypothesis, colesevelam-HCl

did not change REE, and BA levels (total and individual)

did not correlate with REE after treatment whether nor-

malized to body surface area (figure 3) or expressed per

kg of fat free mass (data not shown).

The second study investigated patients with liver cir-

rhosis, since these display a varying degree of elevated

plasma BA levels and their metabolic state closely

resembles the BA-mediated metabolic effects reported

in mice: increased REE, increased percentage of energy

derived from fat oxidation, and decreased body fat mass

(BFM) [5,8-10]. Notably, the underlying pathophysiologi-

cal basis of these findings is largely unknown, but could

conceivably involve BA.

Patients displayed varying degrees of hypermetabolism

with an average increase in REE of 18% above the Harris-

Benedict prediction (table 2). Total as well as individual

plasma BA levels were significantly elevated in cirrhotic

patients (table 2). However, neither total plasma BA con-

centrations (r = 0.049, NS, figure 4) nor individual BA

species were correlated with REE. When a subgroup

including only subjects with moderately elevated total BA

(< 18 μM, n = 19) was studied, REE was still not asso-

ciated with plasma BA (r = -0.124, NS, insert figure 4).

Similarly, subgroup analysis by gender showed no corre-

lation between plasma BA and REE excluding a potential

sex-specific effect (data not shown).

In addition, we compared a subgroup of patients with

cholestatic etiology of cirrhosis with greater than 2-fold

increased plasma BA (p < 0.01, table 2) to a group with

non-cholestatic cirrhotic liver disease exactly matched
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Figure 2 Plasma bile acid profiles in controls and type 2

diabetic subjects before and after 8 weeks of colesevelam HCl

treatment. (A) Total bile acids, (B) cholic acid (CA), (C)

chenodeoxycholic acid (CDCA) and (D) deoxycholic acid (DCA). Data

are shown as means ± SEM. *p < 0.05 vs baseline and #p < 0.05 vs

controls as determined by the Mann-Whitney U-test.

Figure 3 Correlation between fasting plasma total bile acid

levels and resting energy expenditure (REE) in controls

(squares) and in diabetic patients (circles) before (A) and after

8-weeks of Colesevelam HCl treatment (B). Spearman’s rank

correlation coefficient was used to assess a possible association

between the two different parameters.

Table 2 Plasma bile acid levels and energy expenditure in patient groups with liver cirrhosis

cirrhosis (all)
(n = 46)

cholestatic subgroup
(n = 14)

non-cholestatic subgroup
(n = 14)

normal value

Total BA (μM) 31.2 ± 3.3 40.5 ± 3.4 11.9 ± 1.5 < 10

CA (μM) 10.3 ± 2.2 13.2 ± 0.7 4.2 ± 0.7# <1.0

CDCA (μM) 13.7 ± 2.9 16.1 ± 4.3 6.7 ± 1.7# <3.0

DCA (μM) 3.02 ± 1.48 5.81 ± 2.99 0.60 ± 0.16# <1.0

REE (kcal/d/1.73 m2) 1716 ± 33 1676 ± 64 1650 ± 58

REE (kcal/d/kg FFM) 36.9 ± 0.8 38.5 ± 1.9 37.9 ± 1.3

REE (% increase) 18 ± 2 19 ± 4 18 ± 3

Data are given as means ± SEM. BA, bile acids; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; REE, resting energy expenditure; FFM, fat

free mass. The percent increase in REE is the measured value related to the value predicted by use of the Harris-Benedict formula as described in the text.

# Significantly different from the cholestatic subgroup as determined by Mann-Whitney U-test, at least P < 0.05.
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for sex, age and Child-Pugh stage. However, REE was

virtually identical in both patient groups (table 2).

Significant differences were also not seen when REE was

expressed per kg of fat free mass (table 2).

Discussion

Our data demonstrate that in different human popula-

tions with normal, decreased and variably increased BA

concentrations, plasma BA levels are unrelated to

energy metabolism. Importantly, lowering of plasma BA

levels upon treatment with a BA sequestrant left REE

essentially unchanged in controls and in patients with

T2DM, a finding that is counterintuitive to BA having a

major role in the regulation of human energy

metabolism.

Based on data showing an association between circu-

lating plasma BA and energy expenditure Watanabe et.

al concluded that in mice, brown adipose tissue (BAT)

is the primary target for the metabolic effects of BA [1].

This conclusion is supported by the fact that BAT had

the highest relative expression levels of both Gpbar1

and D2 of all mouse tissues investigated [1]. Respective

expression levels in human BAT have not been

reported, yet [11]. In order to translate the extrahepatic

metabolic effects of BA to the human situation, the

expression of GPBAR1 and D2 in human skeletal mus-

cle was investigated, but appeared to be very low [1].

Other studies confirmed these results [12] and indicated

that the gallbladder is actually the primary site of

Gpbar1 expression [13]. This argues against significant

BA signaling in human skeletal muscle. In addition, it

should be noted that CA and CDCA, major BA species

in man, are only poor ligands for Gpbar1 in vitro [12].

In our study, plasma concentrations of none of the indi-

vidual BA species, including one of the strongest

Gpbar1 activators DCA [12], correlated with resting

energy expenditure. Furthermore, others have shown

Gpbar1 knockout mice have no difference in weight

gain compared with wild-type mice when fed a CA-con-

taining high fat diet for 9 weeks [13], which was unex-

pected on the basis of the previous hypothesis [1].

Another group independently generated Gpbar1 knock-

out mice and observed that feeding a high fat diet with-

out cholic acid for 8 weeks significantly increased body

weight and body fat mass, but only in female Gpbar1

knockouts [14]. These results indicate that also in mice

the effects of the proposed BA-Gpbar1 signaling axis on

energy metabolism are inconsistent.

Additional data arguing against a significant impact of

circulating BA on energy expenditure come from studies

in obese patients that underwent bariatric surgery. This

procedure uniformly results in decreased REE in propor-

tion to weight loss [15,16], while in contrast plasma BA

levels increase [17,18].

Since the role of bile acids in the regulation of energy

metabolism remains unclear, further studies are war-

ranted. However, our data suggest that there is a chance

that GPBAR1/TGR5 agonists, that are currently devel-

oped as a novel therapeutic modality against obesity in

humans [19], might not be effective.

In summary, we found that in a variety of human set-

tings plasma levels of either total or individual BA were

not correlated with energy expenditure. These data sug-

gest that the described metabolic relationship between

REE and BA in mice might not be readily translatable

into the human situation.
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